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Transcription regulation is a fundamental biological process, and
extensive efforts have been made to dissect its mechanisms
through direct biological experiments and regulation modeling
based on physical–chemical principles and mathematical formula-
tions. Despite these efforts, transcription regulation is yet not well
understood because of its complexity and limitations in biological
experiments. Recent advances in high throughput technologies
have provided substantial amounts and diverse types of genomic
data that reveal valuable information on transcription regulation,
including DNA sequence data, protein–DNA binding data, microar-
ray gene expression data, and others. In this article, we propose a
Bayesian error analysis model to integrate protein–DNA binding
data and gene expression data to reconstruct transcriptional reg-
ulatory networks. There are two unique aspects to this proposed
model. First, transcription is modeled as a set of biochemical
reactions, and a linear system model with clear biological inter-
pretation is developed. Second, measurement errors in both pro-
tein–DNA binding data and gene expression data are explicitly
considered in a Bayesian hierarchical model framework. Model
parameters are inferred through Markov chain Monte Carlo. The
usefulness of this approach is demonstrated through its applica-
tion to infer transcriptional regulatory networks in the yeast cell
cycle.

gene expression � Markov chain Monte Carlo � misclassification

Transcription regulation involves synthesizing and�or degrading
mRNA in response to the need of a biological system. Under-

standing its mechanisms has been a central topic in biology for many
decades because of its importance as a fundamental biological
process. Recently, large amounts of diverse types of genomic data,
e.g., DNA sequence data (1–4), microarray gene expression data
(5–7), and protein–DNA binding data (8–13) have been collected,
and they yield valuable information on different aspects of tran-
scription regulation. Motivated by the availability of these data,
many computational approaches have been developed to model
transcription regulation, where it is often formulated as an inter-
action network between sets of transcription factors (TFs) and
genes being regulated (14–18). The potentially large numbers of
nodes (TFs or genes), high connectivity, and transient behaviors of
the network results in high complexity in such models. Because
different types of genomic data reveal different aspects of the
underlying transcriptional regulatory network (TRN), inference of
TRNs based on information integration from different data types
is expected to provide a more thorough understanding than that
based on each data type alone. However, information integration
is nontrivial because different data types are related to each other
through a complex biological system, and they are generally col-
lected with much noise.

In this article, we focus on transcription regulation in yeast as
many diverse data types are available and much knowledge has
been accumulated in the literature on this organism. Several
research groups have attempted to dissect yeast transcription
regulation by using multiple types of genomic data. For example,
sequence data and gene expression data were considered jointly to
infer regulatory elements (i.e., binding motif) (7, 18–20), and gene

expression data and protein–DNA binding data were considered
jointly to infer TRNs (12, 16). In the latter approach, the focus was
on reconstructing large-scale TRNs for many yeast TFs (e.g., 113
TFs in ref. 10). However, information from different data types was
not jointly modeled in a coherent framework in the existing
approaches, and the associated measurement errors were not
explicitly considered.

To address the limitations in the existing methods, we introduce
a Bayesian model for inferring TRNs from two valuable data
sources, microarray gene expression data and protein–DNA bind-
ing data, in this article. The advantages of our approach are that the
model parameters have clear biological interpretations and the
measurement errors for both data types are explicitly modeled in a
coherent fashion. We also introduce Markov chain Monte Carlo
(MCMC) methods for the inference of TRNs and other model
parameters. The usefulness of this Bayesian error analysis model
(BEAM) is illustrated through its application for studying yeast
cell-cycle transcription regulation.

Results
In BEAM, there are three submodels: a system model, a misclas-
sification model, and an exposure model. The system model relates
gene expression and true TRN through chemical reaction models,
the misclassification model connects true binary TRN with the
observed protein–DNA binding data, and the exposure model
specifies priors for transcription regulations in TRN. We have
developed an MCMC algorithm to infer model parameters {�t, �t

2;
t � 1, . . . , T}, R, p, q, �R} from gene expression data {Yt; t �
1, . . . , T} and protein–DNA binding data [binding intensity matrix
B and binary binding network (BN) W with threshold of P � 0.001].
The notation can be found in Methods and Table 3, which is
published as supporting information on the PNAS web site. We
selected eight cell-cycle regulators, Fkh1, Fkh2, Swi4, Mcm1, Ace2,
Ndd1, Mbp1, and Swi5 (see Data Sources). For 786 cell-cycle genes,
we used the binding data of these eight cell-cycle regulators for
these genes and their �-arrest cell-cycle gene expression data at 18
time points as inputs for BEAM. The details of BEAM and
statistical inference are described in Methods. Our goal is to infer
the underlying true TRN (R) of these eight regulators for cell-cycle
genes, while we also gain understanding on the system model
parameters, {�t, �t

2; t � 1, . . . , T}, and the network parameters, {p,
q, �R}. Our MCMC algorithm converged quickly (see Fig. 6, which
is published as supporting information on the PNAS web site), and
we chose a burn-in of 1,000 iterations followed with 4,000 iterations
in our analysis.

Sensitivity Analysis. We studied the sensitivity to prior specifications
of model parameters. We specified noninformative priors Beta(1,1)
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for {p, q, �R}. The posterior means of the model parameters {�t,
�t

2} from either improper or proper priors are plotted across 18 time
points in Fig. 1a. These estimates are robust with respect to prior
specifications. The Pearson correlation coefficients between the
posterior probabilities for TRN of each TF using different priors are
generally high (above 0.9 except 0.78 for Fkh1). Using 0.5 as a
threshold for inferring TRN (i.e., all TF gene pairs whose posterior
probability is �0.5 are considered regulatory targets), the binary
TRN was obtained for each gene. A Venn diagram showing the
overlaps among BEAM results with improper prior, proper prior,
and the observed BN is shown in Fig. 1b. The posterior TRN
assuming an improper prior is consistent with that using a proper
prior, and they both differ from BN. However, the overlap between
the inferred TRN and the observed BN is still high. The posterior
means and 90% credible intervals of parameters p, q, and �R are
summarized in Table 1. Note that the inferred value of p is low,
suggesting high false-negative rates of the observed protein–DNA
binding data. One possible explanation is that for those genes whose
expression profiles cannot be well explained by the observed
protein–DNA binding data, the inclusion of other relevant TFs may
improve model inference on their TRNs. Overall, model results are
robust to prior specification. To avoid redundancy, we only present
the results using improper priors in the following discussion.

We investigated the sensitivity of model parameter inference to
different TF choices. When the system model included the eight
cell-cycle regulators and different informative priors were assumed
for {p, q, �R}, the posterior means of the relative TF activities were
rather stable, except that Fkh1, Fkh2, and Ndd1 showed small
variations (Fig. 2a). When we replaced Fkh2 and Ace2 with two TFs
unspecific to cell-cycle regulation, Dal82 and Yap3, the posterior
means based on different prior specifications are plotted in Fig. 2b,
where a rather large variation of the inferred protein activities can
be observed for Dal82 and Yap3. The results for Fkh1 became more
unstable, but Ndd1 and other cell-cycle regulators stayed quite
stable. This observation may be caused by the low quality of the
binding data for Fkh1, marginally acceptable quality for Fkh2, but
good quality for Ndd1 and other cell-cycle TFs (Table 2). Hence,
these results suggest that the inference results are rather robust
across multiple runs for the cell-cycle regulators whose protein–

DNA binding data have good quality. Furthermore, robustness
under different prior specifications may also serve as a diagnostic
tool for the relevance of a certain TF in the system model.

Correlation with Binding Motif in Sequence Data. In the absence of
complete knowledge of the true underlying TRN to assess the
validity of our results, we evaluated our BEAM results indirectly
through binding motifs. If our model performs well in terms of
better identifying the regulatory targets of a TF, there should be
enrichment for the binding motif for this TF in the upstream
sequences of the genes inferred to be regulated by this TF.

According to the literature (Table 2), we identified binding
motifs for the eight cell-cycle TFs and used these motifs to scan the
upstream sequences of the cell-cycle genes. For a set of genes and
a given TF, the enrichment of the binding motif for this TF is
defined as the proportion of genes with at least one such motif in
their upstream sequences. The gene set can be selected from the
inferred TRN (R) or the observed BN (W). We calculated the
enrichment score as a function of the number of inferred regulated
genes per TF, and the results are shown in Fig. 3. Fig. 3 has one plot
for each of the eight TFs and two curves within a plot, with one
representing the motif enrichment score from the observed BN
(marked with squares) and the other corresponding to that from the
inferred TRN through BEAM (marked with up-triangles). It is easy
to see that the motifs are more enriched in the inferred TRNs for
Ace2, Ndd1, Mbp1, and Swi5 compared with the observed BN,
similar between both networks for Swi4, but less enriched for Fkh1,
Fkh2, and Mcm1.

The relatively poor performance for Fkh1 and Fkh2 may be
explained by the lower qualities of the protein–DNA binding data

Fig. 2. Sensitivity analysis: the posterior means of the inferred relative
activities of TFs versus 18 time points. (a) The system model included eight
cell-cycle regulators. (b) The system model included six cell-cycle regulators
and two TFs not specific to cell-cycle genes. The values for (p, q, �R) used are:
(0.4, 0.8, 0.2), (0.2, 0.8, 0.5), (0.1, 0.8, 0.2), and (0.2, 0.9, 0.2).

Table 1. Comparisons of BEAM results with either improper or
proper prior distributions

Parameters Proper Improper

p 0.067 (0.056, 0.079) 0.069 (0.057, 0.081)
q 0.947 (0.941, 0.952) 0.947 (0.941, 0.952)
�P 0.290 (0.264, 0.315) 0.264 (0.237, 0.291)

Table 2. Known DNA binding motifs and the reported qualities
of the protein–DNA binding data

TF Binding site Source
Binding data

quality

Fkh2 GTMAACAA 13 Acceptable (300)
Fkh1 GTMAACAA 13 Poor (376)
Swi4 CGCSAAA TRANSFAC, ref. 13 Good (289)
Mcm1 CCNNNWWRGG TRANSFAC, SCPD Good (225)
Ace2 GCTGGT TRANSFAC, SCPD Good (179)
Ndd1 CCNRWWNNGG 13 Good (176)
Mbp1 WCGCGW TRANSFAC, ref. 13 Good (223)
Swi5 KGCTGR TRANSFAC, SCPD, ref. 13 Good (279)

TRANSFAC, transcription factor database (www.gene-regulation.com�
pub�databases.htm). SCPD, promoter database of Saccharomyces cerevisiae
(http:��rulai.cshl.edu�SCPD).

Fig. 1. Sensitivity to prior specification. (a) The posterior mean profiles of
relative TF activities or �t

2 versus 18 time points based on either improper (red
triangle line) or proper (green cross line) prior distributions. (b) Venn diagram
showing the overlaps of the inferred regulatory targets based on BEAM using
improper and proper priors and those with the observed protein–DNA bind-
ing data.
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on these two TFs (Table 2), coupled with the fact the binding motifs
used in scanning were derived from the binding data itself. Sensi-
tivity analysis results of these two TFs (Fig. 2) also revealed the
relatively larger variations in their inferred activities. Different from
Fkh1 and Fkh2, the binding data quality of Mcm1 was good and the
binding motif was consistent across several databases, yet the
binding motif was not enriched as much in the inferred TRN. Based
on the literature, Mcm1 interacts with many coactivators or core-
pressors to regulate gene transcription (21–25). If Mcm1 barely
functions as a regulator alone, its posterior activities at different
time points may be influenced by its cofactors. The nonlinear effect
of various protein complexes between Mcm1 and its cofactors may
lead to the poor performance of BEAM in inferring its regulatory
targets. However, the BEAM results for the other five TFs are
promising. Overall, the results suggest that BEAM can effectively
integrate protein–DNA binding data and gene expression data to
better infer regulatory targets of TFs provided the protein–DNA
binding data have good quality. We selected 0.5 as the threshold for
inference of regulatory targets from the posterior network because
at this level the dichotomized posterior TRN has similar motif
enrichment as that in the observed BN with a rather stringent
threshold of P � 0.001. This inferred TRN for yeast cell cycle is
discussed in the following section.

Inferred TRN for Yeast Cell Cycle. A Venn diagram based on the
inferred TRN and the observed BN is plotted in Fig. 4a, and the
difference between the two networks can be clearly seen. With
similar motif enrichment for each TF, 200 regulatory targets were
inferred by BEAM but not in the observed BN (W) defined with
threshold P � 0.001. A total of 94 genes with weak binding evidence
(P � 0.05) were inferred to be regulatory targets by BEAM,
whereas 67 genes with strong binding evidence (P � 0.001) were not
inferred as regulatory targets. In general, we found that genes in the
former group tended to have strong gene expression variations and
clear cell-cycle patterns (Fig. 4b), and genes in the latter group
tended to show weak expression changes over all of the time points
(Fig. 4c). The above results indicate that the inferred TRN does
effectively integrate gene expression data to explain strong in vivo
gene regulation in a real biological process. However, because the
exact TRN in the cell cycle of the �-arrest experiment is still
unknown, our model results can only serve as an exploratory tool
to guide the reconstruction of in vivo time-independent TRN.

Conclusions
In this article, we have proposed a Bayesian model, BEAM, to
integrate protein–DNA binding data with gene expression data

with explicit consideration of the measurement errors in these
genomic data for the inference of TRNs. MCMC was implemented
for statistical inference, and this procedure yielded robust results
when relevant TFs were studied in the model. When applied to
dissect TRNs in the yeast cell cycle, we observed that the inferred
regulatory targets for those TFs with good-quality binding data and
robust regulatory role were more enriched for known binding
motifs in their upstream sequences compared with those inferred
based on protein–DNA binding data alone.

We have focused on this set of TRNs, both because the yeast cell
cycle is a well studied biological process, and more importantly,
because we assumed that the underlying TRNs for this process are
time-independent. This assumption may be valid for some core
biological processes, but is likely invalid when experimental condi-
tions change (13) or nonessential processes are studied. If we think
of the whole TRN as an organized network according to its
biological functions, TRN in the yeast cell cycle is only one module
of the full network. It is unclear how to model transient behavior
of the currently incomplete network to account for the variations of
observed gene expression or protein–DNA binding data. Hence,
modeling at a smaller scale like BEAM may be one reason for us
to obtain some insights on TRNs in yeast cell cycle.

Although we have focused on small-scale networks, there lacks
ground truth even for this system to evaluate computational
methods for TRN reconstruction. Simulations have been used to
study and demonstrate the good performance of a similar method
(N.S. and H.Z., unpublished results); however, they are rather
limited by the models used to simulate data. In this article, we used

Fig. 3. The motif enrichment score versus the number of inferred regulatory
genes for each of the eight cell-cycle TFs. The red dashed line with triangle
symbols represents the BEAM results, and the black dashed line with square
symbols represents results based on protein–DNA binding data.

Fig. 4. Comparisons between the inferred TRN from BEAM and the observed
protein–DNAbindingdata. (a)Venndiagramforcomparisons.All cell-cyclegenes
(786 total) are in the black circle. The inferred regulated genes based on BEAM
(343 genes) are in the sky-blue circle, the inferred regulated genes based on the
observed BN with a P � 0.001 cut-off (210 genes) are in the red circle, and the
inferred regulated genes based on the observed BN with a P � 0.05 cut-off (400
genes) are in the orange circle. (b and c) Focus on Mbp1, gene expression profiles
versus 18 time points are plotted for 57 genes that were inferred to be regulatory
targets by BEAM but had weak binding evidence (b) and 29 genes with strong
binding evidence but were not inferred to be regulated by Mbp1 (c).
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DNA sequence data to evaluate the model results by examining the
enrichment of known binding motif of a TF in the upstream
sequences of the inferred regulatory targets. Although some re-
searchers (16) evaluated their results by using Gene Ontology
(www.geneontology.org) information, such information is rather
incomplete and nonspecific, making it less useful compared with
motif enrichment.

The motif enrichment results are encouraging. A number of
modifications of BEAM may further improve TRN inference. Note
that in BEAM the constant error structures are assumed for both
types of data. These simplifying assumptions on errors may lead to
the failed TRN inference for Fkh1 and Fkh2 because different
measurement errors are embedded in their binding data. A more
sophisticated error structure such as TF-specific error may be
required to account for varying data qualities. In addition, the
measurement errors in the binding intensities (B) may also need to
be incorporated. In the system model, the equilibrium assumptions
of transcription initiation and the quasi steady-state assumption of
mRNA synthesis and degradation may not hold. Incorporation of
kinetics in the system model may be crucial to improve BEAM. In
summary, we note that BEAM provides a flexible framework for
incorporating the above suggested extensions through modifying
submodels, integrating more data types, and adjusting error as-
sumptions.

Methods
BEAM has three submodels: a system model, a misclassification
model, and an exposure model. The three submodels amalgamate
into a hierarchical structure (Fig. 5). The details of each submodel
are described in the following.

System Model. The system model describes the relationship between
measured gene expression levels, TRN, and TF activities. A TRN
is represented by a matrix with each row corresponding to the
specific TRN of each gene and each column corresponding to the
regulation targets of each TF. The (i, j)th entry in the matrix
describes the role of the jth TF in regulating gene i. In our analysis,
the transcription activity of each gene is measured through gene
expression data.

We model mRNA regulation as a closed reacting system,
which involves proteins, chromosomes, nucleotide bases,
mRNA, and intermediate species. We assume that specific
bindings of TFs or interacting TFs to immobilize partial TFs
from cell solution onto DNA sequences and the reaction for the

bound TFs to further recruit RNA polymerase II complex (Pol
II) onto promoter region of DNA are accomplished by a set of
reversible reactions. For this given set of chemical species, there
may exist multiple sets of independent reactions to relate the
species as reactants and products. However, the minimization of
free (or Gibbs) energy determines that a specific set of reversible
reactions actually happens. Here we assume that all reversible
reactions reach equilibrium. The amounts of atomic species are
conserved in this closed system, so that an overall chemical
reaction stoichiometry of transcription initiation is given in the
chemical equation (CE):

�DNAi� � ai1�TF1� � · · · � aiJ �TFJ� � �Pol II�

� �DNAi�TF1�ai1
· · · �TFJ�aiJ

Pol II� , [CE]

where there are a total of J TFs as regulators of gene i, the
stoichiometric coefficient aij represents the effective abundance of
bound TFj involved in the regulation of gene i, and DNAi is the
sequence of gene i. The product of transcription initiation is an
immobilized compound denoted by [DNAi(TF1)�i1

� � � (TFJ)�iJ
Pol

II]. Although we cannot obtain the set of reversible reactions and
write the formulae for their equilibrium constants, we can obtain an
apparent equilibrium constant as the product of all equilibrium
constants. The activities of intermediate species cancel out in this
formula based on stoichiometry analysis (CE). This apparent
equilibrium constant can be expressed as

Keq �
�DNAi�TF1�ai1

· · · �TFJ�aiJ
Pol II�

�DNAi��Pol II��
j

�TFj�
aij

. [1]

The combinatorial effect among TFs is included in the selected set
of reactions constrained by minimum Gibbs energy. Therefore, the
apparent equilibrium constant reflects this combinatorial effect. In
this article, we assume that TRN is time-independent, so the
combinatorial effect on the equilibrium constant is time-invariant.
This assumption should generally hold for the TRN in the yeast cell
cycle. Therefore, if we assume that reaction equilibrium is reached
at each time point, the apparent equilibrium constant (Keq) does not
change for the TRN of a given gene. We further assume that there
are sufficient RNA Pol II complexes in cells so that [Pol II] � 1 and
[DNAi] remains constant. Stoichiometry analysis on this process
then leads to Eq. 2:

�DNAi�TF1�ai1
· · · �TFJ�aiJ

Pol II� � �
j�1

J

�TFj�
aij. [2]

The complex in Eq. 2 is modeled to catalyze the mRNA
synthesis. Assume that nucleotide bases are sufficient, the
mRNA synthesis rate reaches maximum value, which is propor-
tional to the activity of [DNAi (TF1)ai1

. . .(TFJ)aiJ
Pol II]. By a

quasi steady-state assumption for mRNA synthesis and degra-
dation, we have

�mRNAi� � �DNAi�TF1�ai1
· · · �TFJ�aiJ

Pol II� . [3]

By combining Eqs. 2 and 3 and performing log transformation,
we have

log2� y�it�y�i0� � �
j�1

J

aijlog2���jt���j0� , [4]

where y�it � [mRNAi]t, y�i0 � [mRNAi]0, ��jt � [TFj]t, ��j0 � [TFj]0, and
t � 0 refers to a reference sample, e.g., asynchronized cell sample,
which may be considered as an average quantity over multiple time

Fig. 5. The hierarchical structure of BEAM. The unknown parameters are in
ovals, and the observations are in rectangles.
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points. Let �jt � log2(��jt���j0) and Yit � log2(Y�it�Y�i0), where Yit

represents the relative gene expression level at time t, and �jt is the
unknown relative activity of TFj at time t and needs to be estimated.

The above model describes the expected gene expression levels.
However, microarray data are noisy and the biological system is
intrinsically stochastic. In BEAM, we assume that the observed
gene expression data differ from the expected level described in Eq.
4 by an error term, and we further assume that the errors for all of
the genes at the same time point have the same distribution, while
allowing the errors at different time points to have different
distributions. This leads to the following system model for all genes
in vector notation,

Yt � A�t � et, [5]

where Yt � (y1t, . . . , yNt)T, �t � (�1t, . . . , �Jt)T, A � {aij; i � 1, . . . ,
N, j � 1, . . . , J}, et � (e1t, � � � , eNt)T, eit 	iid N(0, � t

2), N is the number
of genes, and J is the number of TFs. In our following discussion,
we consider different prior distributions for � and �2 in BEAM
(26), a noninformative improper prior (Eq. 6a) and a proper prior
(Eq. 6b)

p(�t, � t
2) �

1
� t

2, [6a]

p��t� � N��0, 
�0
� , p�� t

2� � IG� n0

2
,

n0�0
2

2 � , [6b]

where 
�0
is a diagonal matrix with diagonal elements being ��j0

2 ,
IG stands for inverse Gamma distribution, �j0 	 U(�2,2), ��j0

2 	
U(0.001, 1.0), n0 � 5, and � 0

2 � 2. This system model links
relative mRNA abundance of gene i with relative activities of
TFs through TRN. The elements of TRN are stoichiometric
coefficients for transcription initiation. Because aij is specific
between TFj and gene i, the same TF may have different impacts
on different genes, and different TFs may have different regu-
lation roles on the same gene. We use the measured relative
protein-binding intensity of a TF to approximate the value of aij

if TFj regulates gene i. Therefore, we consider TRN as consisting
of two components: a binary network (rij), indicating the in-
volvement of TFj in the transcriptional regulation of gene i; and
if rij is 1, we use the relative binding intensity (bij) to approximate
the stoichiometric coefficient aij for TFj and gene i. So the
element (aij) in TRN can be expressed as the product of bij and rij.

Therefore, complete knowledge of R � {rij} and B � {bij}
determines the TRN. Here we use a threshold level, e.g., 0.001, to
define the observed binary protein–DNA BN, W � {wij}. We
consider W as the surrogate of true binary TRN (R). Note that
because of nonequivalence between physical binding and regula-
tion, W and R can differ. In the following, we describe a misclas-
sification model to account for the discrepancy between W and R.

Misclassification Model. Recall that rij denotes the underlying reg-
ulation relationship between TFj and gene i, wij denotes the
observed physical binding data dichotomized through a threshold,
we introduce p and q to denote the sensitivity and specificity of W
with respect to R defined in the following:

p�wij � 1 � rij � 1� � p, p�wij � 0 � rij � 1� � 1 � p,
[7]

p�wij � 0 � rij � 0� � q, p�wij � 1 � rij � 0� � 1 � q,

where we assume that p and q are constants for any pair of TF
and gene. In BEAM, we assume that the prior distributions for
p and q are Beta(b1, c1) and Beta(b2, c2), respectively, where
different specifications of b1, c1, b2, and c2 represent different
prior beliefs on p and q.

Exposure Model. For this submodel, we specify the prior distribution
of the binary TRN R, which describes the probability of rij being 1.
We assume that the rij are independent and have the same Bernoulli
distribution with parameter �R. We assume a Beta prior distribu-
tion Beta(b3, c3) for �R.

MCMC Algorithm for Statistical Inference. In our model set-up, a
large number of unknown parameters {{�t, �t

2; t � 1, . . . , T}, R,
p, q, �R} need to be inferred based on the observed gene
expression data {Yt; t � 1, . . . , T} and protein–DNA binding
data B � {bij} and W � {wij}. Let A � {bijrij}. We propose to use
the following MCMC algorithm iterated between the following
two steps for statistical inference: (i) sample {{�t, �t

2; t �
1, . . . , T}, p, q, �R} conditional on the updated estimates of R;
and (ii) sample R conditional on the updated estimates of {{�t,
�t

2; t � 1, . . . , T }, p, q, �R}. These two steps are described in
detail in the following.

In the first step, given the current estimates of the components
in the regulatory matrix R, the system model reduces to a standard
linear regression model. The parameters {�t, �t

2; t � 1, . . . , T} can
be sampled as follows:

(a) For the improper prior (Eq. 6a), the conditional posteriors
of �t and �t

2 are (26):

�t� rest � N��̂t, V��̂ t
2� ,

[8a]

�t
2�rest � IG�N � J

2
,
�N � J�st

2

2 �,

where V� � (ÂTÂ)�1, each element in TRN Â is âij and âij �
bijr̂ij, �̂t � V�ÂTYt, st is the sample standard deviation for the
errors associated with gene expression data at time point t,
and R̂ is the current estimate for the TRN.

(b) For the proper prior (Eq. 6b), the conditional posteriors of �t,
� t

2 are:

�t�rest � N��̂t, 
�t
� ,

[8b]

�t
2�rest � IG�N � n0

2
,

n0�0
2 � �N � J�st

2

2 �,

where �̂t � 
�t
(
�0

�1
�0 � ÂT 
yi

�1 Yt), 
�t
� (
�0

�1 � ÂT 
yi

�1

Â)�1, 
y � �̂t
2I, I is an identity matrix, and other parameters

are defined the same as those in Eq. 8a.

The parameters related to TRN, i.e., parameters in the Beta
distributions of {p, q, �R}, are sampled based on the comparisons
between the estimated regulatory matrix R̂ and the observed
binding matrix W. Recall that we assumed Beta distributions
Beta(b1, c1), Beta(b2, c2), and Beta(b3, c3) for these three param-
eters. Therefore, it is easy to see that the posterior distributions
for these three parameters are

p�rest � Beta�n̂11 � b1 � 1, n̂10 � c1 � 1�,

q�rest � Beta�n̂00 � b2 � 1, n̂01 � c2 � 1�, [9]

�R�rest � Beta�n̂0 � b3 � 1, n̂1 � c3 � 1�,

where the estimated rij is compared with wij, and n̂kl represents the
number of TF gene pairs whose estimated true regulation is k (r̂ij �
k) and the observed one is l (wij � l) with k and l being either 0 or
1; n̂0 (n̂1) is the number of elements with r̂ij � 0 (r̂ij � 1) in R.
Therefore we have n̂1 � n̂10 � n̂11, and n̂0 � n̂00 � n̂01.

In the second step, given the sampled parameter estimates of
{{�t, �t

2; t � 1, . . . , T}, p, q, �R}, we sample the TRN R by
sampling each row in R (which corresponds to the regulation
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pattern for each gene) one at a time from K � 2J possible
patterns as follows,

Ri � multinomial�1, exp�Lik�� �
k�1

K

exp�Lik�� , [10]

where Lik is the log-likelihood for each pattern k, and Lik �
Lik

R � Lik
Y � constant. Lik

Y is the log-likelihood contribution from
gene expression data, which is �t�1

T ((Yit � Ŷikt)2�2�̂t
2), and

Lik
R � n̂1 log�̂R � n̂11 log p̂ � n̂10 log(1 � p̂) � n̂0 log(1 � �̂R) �

n̂01log (1 � q̂) � n̂00 logq̂, and it represents the log-likelihood
contribution from protein–DNA binding data. We repeat this for
each of the N genes to obtain the updated R̂ for the next
iteration.

Based on the sampled parameter values, we can derive the
posterior distributions for all of the unknown parameters in the
model. For example, we can obtain the marginal posterior
distribution of the regulation between TFj and gene i by using the
proportion of sampled rij that is 1. These posterior probabilities
can then be used to infer the presence or absence of regulation
of TFj on gene i through specifying a threshold, e.g., the posterior
mean of �R, such that all of the entries below this cut-off are
inferred to have no regulation effect, whereas all of the entries
having values above this cutoff are inferred to have a regulation
role.

Data Sources. For gene expression data, we used the yeast �-arrest
gene expression data reported by Spellman et al. (7). There were
18 time points covering two cell cycles. Spellman et al. identified
800 cell cycle genes For protein–DNA binding data, we used the
data in Lee et al. (10), where protein–DNA binding data for 113
TFs on 6,270 genes were reported. Among the 800 cell-cycle
genes, 794 genes had protein–DNA binding data. We further
removed eight genes because all of their expression levels were
missing in the �-arrest experiment, resulting in a total of 786
cell-cycle genes being studied here.

From protein–DNA binding data of each TF, a threshold (e.g.,
0.05) can be set for the observed statistical evidence for binding
to separate the 786 genes into two classes: those genes with P �
0.05 are considered to be bound by this TF and those with P �
0.05 are considered not bound by this TF. For each time point,
we calculated the t statistics to test the null hypothesis that these

two groups of genes have the same average gene expression level
at the given time point and selected the maximum t statistic
across all 18 time points to represent the correlations between
the binding data and gene expression data of this specific TF.
Then we randomly permuted the binding data of this given TF
with 786 genes 10,000 times. A total of 20 TFs were selected at
family wise error rate � 0.07 whose binding patterns were
associated with gene expression variations during the cell cycle
(Table 4, which is published as supporting information on the
PNAS web site).

Then we evaluated the binding specificity of these 20 TFs to
786 cell-cycle genes versus all 6,270 yeast genes. For each TF, we
constructed a 2 � 2 table with rows representing 786 cell-cycle
genes or other yeast genes and columns representing the number
of genes being bound or unbound by the given TF. A hypergeo-
metric distribution was used to estimate the statistical signifi-
cance of the binding specificity of the given TF to the cell cycle
genes. We ranked the specificity of 113 TFs. The top 11
cell-cycle-specific binding TFs are among the chosen 20 TFs (Fig.
7 and Table 4, which are published as supporting information on
the PNAS web site).

We applied hierarchical clustering analysis on the protein–DNA
binding intensities of the 20 TFs and 786 cell-cycle genes, and the
results are shown in Fig. 7. Nine of these 20 TFs in a tight cluster
are well known cell-cycle regulators. We removed one cofactor,
Swi6, from the list and focused on eight other cell-cycle regulators
(Fkh1, Fkh2, Swi4, Mcm1, Ace2, Ndd1, Mbp1, and Swi5) in our
following analysis. These eight TFs, except Ace2 (which has a rank
of 37 with P being 0.007), have top cell-cycle specificity ranks among
all 113 TFs. These results are consistent with literature (Saccharo-
myces Genome Database, www.yeastgenome.org).

Our objective is to infer TRN between the eight TFs and 786
cell-cycle genes. The missing entries in gene expression data and
protein–DNA binding data were assumed to be missing at
random and the k-nearest neighbor method was used to infer
their values, where k was set to 5. The Euclidean distance was
used to determine the nearest neighbors for a given gene (27).
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