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Abstract

Purpose: Recent studies sought to refine lung cancer
classification using gene expression microarrays. We evalu-
ate the extent to which these studies agree and whether
results can be integrated.

Experimental Design: We developed a practical analysis
plan for cross-study comparison, validation, and integration
of cancer molecular classification studies using public data.
We evaluated genes for cross-platform consistency of ex-
pression patterns, using integrative correlations, which
quantify cross-study reproducibility without relying on di-
rect assimilation of expression measurements across plat-
forms. We then compared associations of gene expression
levels to differential diagnosis of squamous cell carcinoma
versus adenocar cinoma via reproducibility of the gene-spe-
cific t statistics and to survival via reproducibility of Cox
coefficients.

Results: Integrative correlation analysis revealed a
large proportion of genes in which the patterns agreed
across studies more than would be expected by chance.
Correlation of t statistics for diagnosis of squamous cell
carcinoma versus adenocarcinoma is high (0.85) and in-
creases (0.925) when using only the most consistent genes
identified by integrative correlation. Correlations of Cox
coefficients ranged from 0.13 to 0.31 (0.33—0.49 with genes
selected for consistency). Although we find genes that are
significant in multiple studies but show discordant effects,
their number is approximately that expected by chance. We
report genes that are reproducible by integrative analysis,
significant in all studies, and concordant in effect.

Conclusions. Cross-study comparison revealed signifi-
cant, albeit incomplete, agreement of gene expression pat-

Received 11/12/03; revised 1/6/04; accepted 1/16/04.

Grant support: National Cancer Ingtitute Grants 5P30 CA06973-39
and CA058184 (Lung Cancer Specialized Programs of Research Excel-
lence).

The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked
advertisement in accordance with 18 U.S.C. Section 1734 solely to
indicate this fact.

Requests for reprints: Giovanni Parmigiani, The Sidney Kimmel
Comprehensive Cancer Center at Johns Hopkins, 550 North Broadway,
Suite 1103, Batimore, MD 21230. Phone: (410) 614-3426; Fax:
(410) 955-0859; E-mail: gp@jhu.edu.

ternsrelated to lung cancer biology and identified genesthat
reproducibly predict outcomes. This analysis approach is
broadly applicable to cross-study comparisons of gene ex-
pression profiling projects.

I ntroduction

Lung cancer is currently classified according to morpho-
logica patterns (e.g., squamous cell carcinoma, adenocarci-
noma, small cell carcinoma, and large cell carcinoma). How-
ever, thisclassification is frequently ineffectivein predicting the
biological behavior of these cancers, and therefore, molecular
characteristics such as gene expression profiles are being con-
sidered as alternative classification approaches. Using gene ar-
ray measurements of expression profiles, several groups have
recently reported findings to suggest that distinctive molecular
profiles could lead to refinement of classification and prognos-
tication of lung cancer (1-5).

Attemptsto integrate and cross-study validate the results of
various gene expression profiling projects are complicated by
the use of diverse microarray platforms, sample sets, protocols,
and analytical approaches. Furthermore, review of data summa-
ries from publication yields, in some cases, apparent conflicts of
findings. For example, ornithine decarboxylase was listed as a
gene highly expressed in the good outcome class in one study
(1) and the poor outcome class for another (2).

To approach systematically the issue of comparing results
of existing lung cancer profiling projects, we carried out a
combined analysis of three projects that measured gene expres-
sion in large sets of tumors representing a spectrum of lung
cancer histological patterns (1-3). One study, a collaboration
between investigators at Stanford University and the Humboldt
University Institute of Pathology (here, the Stanford study; Ref.
1), used 24,000 element cDNA arrays to profile 67 lung tumors
of various histological patterns. A second study, performed by
scientists at the Dana-Farber Cancer Institute and the Massa
chusetts Institute of Technology (here, the Harvard study), used
Affymetrix oligonucleotide arrays Hu95a representing 12,600
transcripts to profile 203 samples, including 186 lung tumor
samples (2), again of various histological patterns. The third
study was conducted at the University of Michigan (here, the
Michigan study) and used Affymetrix arrays HG6800 to profile
108 cases of adenocarcinoma (3).

The Harvard and Stanford gene expression profiling
projects reported that hierarchical clustering analysis of the gene
expression patterns could distinguish the major morphological
classes of lung cancer (i.e., small cell carcinoma, squamous cell
carcinoma, and adenocarcinoma) and also define subgroups of
adenocarcinoma tumors. Subclassification of adenocarcinoma
appeared to be different in the two projects, however. For
example, the hierarchical clustering in the Stanford study de-
fined three groups of adenocarcinoma, whereas the clustering in
the Harvard study defined four groups of adenocarcinoma. More
significantly, the Stanford group reported impressive differences
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in survival among the three groups, with patients from one class
(group 2) experiencing no mortality at up to 54 months and
patients in another class (group 3) experiencing 100% mortality
by 16 months (1). In contrast, only a relatively modest differ-
ence in survival was seen for one of the Harvard classes com-
pared with the others (2). The Michigan study, which differed
from the Harvard and Stanford studies by measuring gene
expression patterns only in cases of adenocarcinoma, found
modest differences in survival among different subgroups de-
fined by hierarchical clustering. However, gene expression sig-
natures significantly predictive of outcome could be defined
when supervised statistical methods were applied by the Mich-
igan investigators.

Although &l three studies showed promise in terms of
defining molecular profiles for lung cancer, the extent of con-
cordance among these profiles could not be readily appreciated
from the data as summarized in the manuscripts. To determine
the level of consistency between the various studies with regard
to class characteristics and to identify specific predictive mark-
ers, we initiated a comparative reanalysis of these studies, using
the data available as supplements to the published studies.

Materials and Methods

Data Sources. All data used for our anaysis were ob-
tained from web-based information supporting the published
manuscripts (1-3). We focused our analysis on genes that were
(a) measured in al three projects and (b) met criteria, estab-
lished by investigators in the original studies, for inclusion in
their cluster analysis. Criteria included quality checks and min-
imum requirements on variation in expression levels across
different tumors and are described in detail in the origina
studies. There were 3171 common genes in the three data sets,
as recognized by cross-referencing Unigene cluster numbers
using the Bioconductor annotate package (6). These included
307 genes that met criteria for consideration in the cluster
analysis.

Statistical Analysis. To facilitate comparisons, expres-
sion indices for both Affymetrix data sets were recomputed
using the Robust Multichip Analysis (RMA) method (7) from
the original CEL files. We averaged expression indices over
multiple Affymetrix probe sets that corresponded to the same
Unigene cluster number. We applied a logarithmic transforma-
tion to the cDNA intensity ratios of the Stanford study, to
improve comparability with the expression indices produced
using the RMA method. Our subsequent analysis was conducted
in three phases. First, using data from al samples, we used
integrative correlation analysis, a novel feature of this article
described in detail below, to assess overal reproducibility of
gene coexpression patterns across the three studies and to iden-
tify genes with relatively consistent coregulation patterns. Sec-
ond, we compared the Harvard and Stanford data for genes that
distinguish two major histological classes of lung cancer, squa-
mous cell carcinoma, and adenocarcinoma. Finally, using cases
of adenocarcinoma only, we compared the three studies for
genes that predict survival. The latter two comparisons were
both performed using the 307 genes set and using a subset that
show consistent coregulation as quantified using the integrative
correlation analysis (the consistent set).

To assess reproducibility of gene coexpression patterns
across studies, we performed an integrative correlation analysis.
We started by calculating all possible pairwise correlations of
gene expression across samples within individual projects.
These are computed within a given platform. Define p 5, to be
the Pearson correlation coefficient for apair p of genesin study
s. By examining whether these correlations agree across studies,
we can quantify the reproducibility of results without relying on
direct comparison of expression across platforms. Before pro-
ceeding to acombined analysis, we thus evaluate reproducibility
both overall and by gene. Overall reproducibility is assessed by
scatterplots of p 5, versus p ¥, for studies s and s’ and also
summarized by correlations of correlations coefficients (termed
here integrative correlations), given by I(ss) = %, (p 5, —
p e %p — p %), where p > and p * are the averages of
correlation coefficients over al pairsin studies sand s, respec-
tively, and the summation ranges over all possible pairs. Boot-
strap confidence intervals on | are obtained by resampling
tumors. Gene-specific reproducibility across studiessand s’ for
gene g is computed similarly, but only considering pairs in
which one of the two genes is gene g. With three studies, this
generates three integrative correlations for each gene. The av-
erage of these is used a reproducibility score to select genes for
combined analysis. In the analysis, genes were included in the
reproducible set if they had a reproducibility score above the
median of the 307 scores. Pearson correlations reflect linear
coexpression patterns. To assess the sensitivity of our results to
the assumption of linearity, we computed Spearman correlations
aswell. The results of these two types of correlations were very
similar, and only analyses using Pearson correlations are shown.

To perform a cross-study validation of genes that distin-
guish major histological classes of lung cancer, we considered
squamous cell carcinoma and adenocarcinoma, using the Har-
vard and Stanford data sets only, because the squamous sub-
group had not been included in the Michigan study. We com-
puted, separately for each gene (and in each study), at statistic
for the differentiation of adenocarcinomas versus sguamous
lung cancer. We then correlated these t statistics across the two
studies.

To perform a cross-study validation analysis of genes that
help prognosticating survival we fit, separately for each study
and gene, a Cox proportional hazard model using gene expres-
sion as a predictor and time to earliest adverse event as the
response. Observations were censored for loss to follow-up.
Predictors were divided by their SD before analysis to improve
comparability of the resulting coefficients. The package survival
(8) from the software package R* was used for these analyses.

We approximated the false discovery rate for the survival
analysis by the ratio between the number of significant Ps
expected by chance alone and the number of observed signifi-
cant Ps (9). In this calculation, we assumed all discordant
discoveries were false discoveries. We determined the reference
distribution for the gene-specific integrative correlation analysis
by randomly permuting gene labels within each study and then
reanalyzing the data.

4 Internet address: http://www.r-project.org.
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Fig.1 Comparing coordinate patterns of gene expression across data sets using integrative correlations. In each data set, Pearson correlation
coefficients were calculated to measure, for each possible gene-gene pair, the similarity of variation of gene expression across samples. These values
were then plotted according to the three possible two-way comparisons of data sets. Each spot in a scatterplot corresponds to a gene-gene pair and
shows the correlations between the two genes in two studies, with the correlation coefficient for one study on the abscissa and that for the other on
the ordinate. The overall correlations of this comparison of gene-pairs correlations (i.e., the correlation of correlations or integrative correlation) range
from 0.36 to 0.57. A represents a comparison of Harvard and Stanford, B represents a comparison of Michigan and Harvard, and C represents a

comparison of Stanford and Michigan.

Results

The dissimilarity of the gene expression array technology,
the inclusion of incompletely overlapping sets of genes, and the
use of independent sets of tumor samples do not alow direct
comparisons of the results of the three lung cancer gene expres-
sion profiling studies. Therefore, we initiated an analysis to
compare the coordinate patterns of gene expression across dif-
ferent lung cancer specimens in the three projects. Previous
investigations have shown that genes with related functions
show coordinate patterns of expression across different samples,
providing the basis for clustering genes in the analysis of gene
expression data (10-13). Therefore, we reasoned that the con-
sistency of gene coexpression patterns would reflect the overall
consistency of the data sets. To perform this analysis, each of
the possible gene-gene correl ations was cal culated within a data
set, and these correlations were then compared across data sets.

The three possible two-way comparisons across studies are
demonstrated in the scatterplots shown in Fig. 1, A-C, where
each point represents a correlation between two genes, with the
pairwise correlation from one study on the x axis and from
another on the y axis. Perfectly agreeing points fall on the x =
y line. Overall integrative correlations are 0.54, 0.43, and 0.33,
whereas the corresponding, highly asymmetric, and bootstrap
confidence intervals are (0.37, 0.55), (0.29, 0.47), and
(0.18,0.36). These results imply strong evidence of a positive
association between gene coexpressions across studies (e.g.,
these intervals do not contain 0), but they also suggest that
comparison across studies is challenging.

The highest correlation for atwo-way comparison was seen
for the comparison of Harvard and Stanford data. This could
reflect the similar use of lung cancer cases with a variety of
histological patterns in both studies. Correlations increase with
the heterogeneity of the samples; for example, when only data
for adenocarcinomas were considered, the three correlations
decreased to 0.36, 0.40, and 0.22, respectively, with the highest
correlation corresponding to the comparison of Harvard and
Michigan data. Also, correlations would be smaller if we did not

filter genes for quality of spots and evidence of variation across
samples. For example, when the full set of 3171 genes is used,
correlations decrease to 0.23, 0.28, and 0.14. Again, the highest
correlation corresponding to the comparison of Harvard and
Michigan data.

Consistency of individual gene coexpression patterns is
investigated by evaluating integrative correlations only on pair-
wise correlationsinvolving that gene. Fig. 2, A and B, illustrates
a noisy gene (gene-specific integrative correlation of —0.05)
and a highly reproducible gene (gene-specific integrative corre-
lation of 0.80). Overall, gene-specific integrative correlation
varied considerably for the 307 genes, ranging from —0.30 to
0.86. The distribution of the gene-specific reproducibility score,
i.e., the average of these integrative correlations over the three
possible pairwise comparisons across studies, is shown in
Fig. 2C. Although this analysis provides a relatively indirect
comparison of the data sets, it shows that expression levels of a
large number of genes are measured in a relatively consistent
manner across different projects. Furthermore, this analysis al-
lows us to identify specific genes for which consistency of
measurement appears inferior.

Next, we compared the Harvard and Stanford studies for
variations of expression levels of specific genes asrelated to the
classification of tumors according to histology. The histological
diagnoses of squamous cell carcinoma and adenocarcinoma are
generally highly sensitive and specific, and therefore, we used
these classifications as a reference to compare the predictive
value of genes for diagnosing these morphological categories.
Analyzing each data set individually, we calculated at statistic
to measure the relationship of each gene to this diagnostic
distinction. Comparing these t ratios for individual genes across
the two studies shows a correlation of 0.85 when al 307 genes
are considered, demonstrating a high reproducibility of these
two studies in the gene expression classification of well-defined
lung cancer phenotypes (Fig. 3). When only the relatively more
consistent 25, 50, and 75% of the genes (based on integrative
correlations) are considered, this correlation increased to 0.90,
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Fig. 2 Measuring reproducibility of patterns of gene expression across data sets for specific genes using integrative correlations. Gene-specific
integrative correlation plots are shown for two selected genes in a comparison of Harvard and Stanford data sets. Each point corresponds to the
correlations, measured in the two studies, between the gene in question and one of the other genes in the set of 307. The gene in A has arelatively
inconsistent pattern for coexpression with other genes across the two data sets, whereas the gene in B has a highly consistent pattern for coexpression.
The correlation from these scatterplots, (i.e., the gene-specific correlation of correlations or gene-specific integrative correlation) is an indication of
the reproducibility of the gene across studies. In C, a histogram demonstrates the distribution of the reproducibility indices, i.e., for each gene, the
average of the three possible correlations of correlation resulting by pairwise comparisons of studies.

0.921, and 0.924. Thus, restricting the cross-study comparison
to genes that have relatively consistent coexpression patterns
can considerably improve the consistency of these two inde-
pendent data sets for lung cancer classification.

The third phase of our analysis was to validate across
studies the associations of gene expression data with survival.
This analysis included data from all three studies and used Cox
regression coefficients, calculated for each gene using data from
each data set separately. These coefficients for al two-way
comparisons of the three projects are presented in Fig. 4, A—C.
Correlations across studies are 0.13, 0.31, and 0.28. Reproduc-
ibility across study is less pronounced than in the case of
prediction of histology, consistently with the fact that predicting
survival is generally a harder task than comparing histology. In
all three comparisons, the number of genes that show a signif-
icant and concordant effect on survival far exceeds the number
of genes that show a significant and discordant effect. The latter
group is approximately what should be expected by chance.

We then performed the same analysis using the genes in the
consistent set based on integrative correlations. Although integra-
tive correlations do not make use of outcome data, this selection

resulted in substantialy improved cross-study concordance of the
results (Fig. 4D). Most of the genes that showed significant asso-
ciation of surviva in two studies, but discordant effect signs were
eliminated. The range of cross-study correlations of Cox regression
coefficients went from 0.13—0.31 to 0.33-0.49 (0.26—0.38 at 25%
reproducibility cutoff, 0.40-0.43 a 75%). Table 1 lists the 14
genes that were identified as significant predictors of surviva in al
three studies at the 0.3 level and were concordant in sign. These
four conditions lead to a combined 0.00675 significance level and
an estimated two false discoveries or a 14.3% fase discovery rate.

Discussion

The accruing number of genomics studies for cancer clas-
sification, the variety of genomic technologies and protocols
used, and the cost of these studies pose two important questions.
First, how can we systematically use information available from
multiple studies to assess reproducibility of genomic findings?
Second, how can we efficiently integrate genomics information
across studies?

In microarrays, because of the technical variations with
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Fig. 3 Associations of gene expression
levels with histological diagnosis (squa-
mous cell carcinoma versus adenocarci-
noma). For each gene, we computed t sta-
tistics for the comparison of gene
expression in the two groups, separately
for the Harvard data and the Stanford data.
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Fig. 4 Associations of gene expression levels with survival. Cox proportional hazards coefficients were calculated to represent relationships between
expression levels and survival for each gene using the three data sets. Comparisons across paired data sets of these ratios are demonstrated in
scatterplots for all genes (A—C) and for the consistent set of genes (D—F). A and D represent comparisons of Harvard and Stanford data, B and E
represent comparisons of Michigan and Stanford data, and C and F represent comparisons of Harvard and Michigan data. Red points identify genes
that were significant at level 0.1 in both the studies, resulting in a combined significance of 0.01. Blue points identify genes that were significant at
level 0.22, resulting in a combined significance of 0.05. We therefore expect ~3 of the red points and 15 of the blue points in each scatterplot to be
the significant by chance alone.

probe quality and printing, it is not obvious whether gene-to-
gene comparison across platform is justified because measure-
ments could reflect more strongly the quality of the probes
rather than actual gene expression differences. Recently, Rhodes

Tablel Genes identified as concordant significant predictors of survival in all three studies

et al. (14) considered supervised genomic analyses and exam-
ined the similarity of significance values for each gene across
various prostate cancer gene expression data sets using meta-
analysis methods combined with multiple testing. This cross-

Name uiD Coeff (H)  Coeff (S) Coeff (M) P(H) P(9 P (M)  Repr
Glypican 3 Hs.119651 —1.087 —1.157 —2.558 0.277 0247  0.011 1
BENE protein Hs.185055 -1141 —2.095 —1.846 0254 0.036  0.065 1
Iroquois homeobox protein 5 Hs.25351 —1.152 —1.748 —1.278 0.249 0.08 0.201 1
Fibroblast growth factor receptor 2 Hs.278581 —-1.878 —2.791 —1518 0.06 0.005 0.129 0
Folate receptor 1 (adult) Hs.73769 —2.674 —2.168 —1.098 0.008 0.03 0.272 1
Tyrosinase-related protein 1 Hs.75219 -1.124 —1.608 -1.83 0261 0.108  0.067 0
Syntaxin 1A Hs.75671 1.725 1.89 3.738 0084 0059 O 0
Immunoglobulin J polypeptide Hs.76325 -113 —2.223 —2.74 0.258  0.026 0.006 0
MAD?2 mitotic arrest deficient-like 1 (yeast) Hs.79078 1434 1.239 2.619 0152 0215  0.009 1
Vascular endothelial growth factor C Hs.79141 2.374 1517 2.723 0.018 0.129  0.006 1
KIAAO0101 gene product Hs.81892 1.091 1.185 1.147 0275 0236  0.251 1
Interleukin 6 signal transducer Hs.82065 —1.498 —2.268 —3.142 0134 0.023 0.002 0
Selectin L Hs.82848 —1.39%5 —1.654 —2.591 0.163 0.098 0.01 1
Rho GDP dissociation inhibitor (GDI) beta Hs.83656 -1191 —1.583 —2.072 0234 0113 0.038 1

UID, unigene ID; Coeff, coefficient; P, P-value; H, Harvard; S, Stanford; M, Michigan; Repr, reproducible.
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study comparative analysis demonstrated a reasonably consist-
ent pattern of gene dysregulation in prostate cancer compared
with normal prostate, measured by the various studies, and
indicated the potential for combined analyses in microarray
data.

Here, we developed a systematic statistical approach,
termed integrative correlation, for assessing reproducibility of
gene expression patterns across studies in both supervised and
unsupervised settings. Integrative correlation analysis and cross-
study comparison of t statistics and standardized proportional
hazard coefficients, al of which are unitless quantities, bypass
the need for normalizing expression measurements across plat-
forms, atask for which no well-established methodology exists.
We find that focusing on genes meeting quality requirements
and calculating integrative correlations across data sets provide
abasisfor selecting a subset of genes that ultimately show more
consistent associations with histological classification and out-
come. This approach demonstrates an improved correlation
across the various studies and also helps to identify a subset of
genes that may be highly promising for reproducible profiling of
lung cancer.

Gene-specific reproducibility scores show substantial var-
iability within the set of genes studied. Although some show
excellent reproducibility and many show reproducibility far
above what can be expected by change alone, afraction of genes
show low reproducibility. The latter could be because of defi-
ciencies in the probes in one or more of the platforms or a high
ratio of technical to biological variation in one or more of the
studies. Although we reported only on the genes meeting inves-
tigator’ s criteria, we analyzed the complete aswell. Conclusions
are similar although reproducibility decreases.

With regard to the question of integrating knowledge
across studies, our comparative analysis of three data sets pro-
vides encouragement that there is a significant level of consis-
tency with regard to genes that distinguish well-defined classes
of lung cancer (i.e., squamous cell versus adenocarcinoma) and
genes that are associated with lung cancer patient survival. In
particular, significant but discordant findings, which have been
the source of controversy, occur approximately as should be
expected by chance alone. However, there is also significant
scatter in the comparative correlations of gene expression levels
with relation to classification or outcome.

Our integrative correlation analysis indicates that there
remains a substantial component of unexplained variability
across studies. This variability arises as the result of (a) biolog-
ical differences among the samples and populations considered
in the three studies, (b) technological differences between the
platforms, and (c) random technical variation. To quantify these
three sources of variation separately would be helpful, but it
requires new studies, including cross-platform gene expression
measurements of a common set of tumors and replicate meas-

urements in each study. Additional development of methods for
integrating gene expression data sets, including extension of the
current within-study normalization methods to cross-study com-
parisons, will significantly enhance our ability to extract infor-
mation from existing data.
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