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Abstract

We extend the finite mixture model to estimate the
association between exposure and latent disease subtype
measured by DNA methylation profiles. Estimates from this
model are compared with those obtained from the simpler
two-phase approach of first clustering the DNA methyla-
tion data followed by associating exposure with disease
subtype using logistic regression. The two models are fit to
data from a study of colorectal adenomas and are compared
in a simulation study. Depending on the analytic approach,
we obtain different estimates of the odds ratio (OR) and its
95% confidence interval (95% CI) for the association of RBC
folate and DNA methylation subtype in colorectal adeno-
mas (OR, 0.31; 95% CI, 0.08-1.26 from the extended finite
mixture model; OR, 0.44; 95% CI, 0.15-1.28 from the two-

phase approach; n = 58 case subjects). Although our results
could be a chance occurrence due to fluctuations from small
sample size, we did a simulation study using larger
samples and found that differences between the two
approaches emerge when there is noise in the cluster
analysis. In the naive two-phase approach, the estimate of
the OR is biased towards the null, and its SE is under-
estimated when there is error in the cluster assignment.
Estimates from the extended mixture model are unbiased
and have the correct SE estimate but may require larger
sample sizes for convergence. Thus, when the clusters are
not identified with certainty, the extended mixture model is
preferred for valid estimation of the OR and CI. (Cancer
Epidemiol Biomarkers Prev 2006;15(3):567–72)

Introduction

Today, researchers study tumor heterogeneity at the molecular
level using new high-throughput technologies. Molecular
features, such as gene expression, immunohistochemical
tumor marker expressions (protein abundances), or DNA
methylation, can all be measured. These fingerprints allow
investigators to search for novel disease subgroups based on
molecular characteristics. Once novel subgroups are identified,
they must be validated. External validation is achieved by
associating the subgroups with respect to risk factors or
outcomes. Several articles have dealt with associating novel
classes with outcome (1, 2). We focus on the opposite, treating
the novel disease subgroup as the outcome and associating
these outcomes with hypothesized risk factors. Thus, we are
looking for factors related to the etiology of the subgroups. We
use as an example data on folate and DNA methylation
subtypes in colorectal adenomas.

DNA methylation is an enzymatic modification of DNA
frequently found to be abnormally distributed in cancer. The
underlying etiology of abnormal methylation in tumors is
currently unknown as is the best measure of tumor methyl-
ation class. Several methods have been used to categorize
tumors into groups based on DNA methylation profiles.
Probably the best known of these is the use of a gene panel to
identify tumors with multiple methylated genes (3). This
definition uses discrete measurements of DNA methylation; a
site is either methylated or unmethylated. In our study, we
propose to use a panel of quantitative markers to identify
tumor subgroup using cluster analysis.

We compare and contrast two methods for defining DNA
methylation subgroups using cluster analysis for etiologic
studies. We use both methods to assess the hypothesis that
low folate availability is associated with more widespread
abnormal methylation in colorectal adenomas. To test this
hypothesis, we model folate as the exposure and tumor
subgroup as the outcome, where tumors are clustered into
groups defined by DNA methylation profiles. The primary
variable of interest is the association between folate and tumor
subtype.

A standard method to classify samples based on DNA
methylation profiles is cluster analysis. To validate the results,
one might correlate folate with the newly identified disease
subgroups. This describes a two-phase analysis, first clustering
the tissue samples into novel disease subgroups followed by a
correlation of folate levels with cluster assignment. However,
inherent in clustering is the uncertainty in group assignment,
and this uncertainty is ignored by this two-phase analysis. A
more appropriate analysis would be to take the uncertainty in
cluster assignment into account when associating folate with
DNA methylation subgroup. This describes a pathway where
low folate is associated with a certain likelihood of having
aberrant DNA methylation profiles. We fit this second model
using an extension to model-based cluster analysis.

Model-based clustering has been proposed for identifying
disease subgroups using DNA methylation data (4) and gene
expression data (5-8). Furthermore, traditional mixture models
have been extended to incorporate clinical covariates (7, 8). We
focus on one approach considered by McLachlan et al. (7).
Although their focus is on the classification of samples to
classes, ours is on the estimation of the association between
exposure (e.g., folate level) and disease subgroup defined by
classes of DNA methylation profiles. In related articles that
have focused on estimation (9-11), results are given for the
one-phase model but are not compared with estimates
obtained from a two-phase approach. We apply both
approaches to a data set on colorectal adenomas and compare
results. In a simulation study, we compare the bias and
efficiency of the two approaches, showing when they are
similar and when they differ.
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Materials and Methods

Colorectal Adenoma Data. The data reported are from a
study of colorectal adenomas (12). Cases were individuals
diagnosed for the first time with adenomas confirmed by
histology. Circulating RBC folate was measured from blood
samples obtained for laboratory analysis. DNA methylation
was measured using the MethyLight technology as a percent
methylated reference (PMR; ref. 13). Measurements were
obtained for one CpG region in each of 10 genes: APC ,
MLH1, MGMT, CDKN2A, PTGS2, ESR1, MYOD1, TIMP3,
MTHFR, CALCA . Measurements for each gene were standard-
ized on the natural log scale using ln(PMR + 1). The data are
quantitative, with some loci having an excess of zeros. In
previous work, we showed that under a wide range of
conditions, one can cluster the log-transformed PMR values
reasonably well using normal mixture models (4).

We present results using a subset of nine CpG regions. We
chose to exclude MTHFR from the analyses because its DNA
methylation level did not discriminate between adenoma and
adjacent normal tissue. By excluding MTHFR , the results from
the two analytic approaches showed more differences than
had MTHFR been included. Thus, we can better highlight the
differences that can arise using the two approaches.

We measured DNA methylation on 218 adenoma samples
from 132 subjects. The measured RBC folate was available on a
subset of 63 subjects (48%). For simplicity, we restrict our
analysis to individuals with measured RBC folate and
measured DNA methylation in their adenoma tissue at all 10
genes (n = 58 case subjects). For analysis, we select one
adenoma at random from individuals having multiple adeno-
mas. In a more comprehensive analysis, the methods would be
extended to include samples with missing methylation data,
missing covariate data, or multiple tissue samples from the
same individual. However, that is beyond the scope of this
article.

Statistical Methods. We analyze the colorectal adenoma
data using two different approaches. In the first approach, we
fit a standard mixture model to classify adenomas into disease
subtypes based on their DNA methylation profile. These
disease subtypes are then associated with folate level to
determine if low folate levels are associated with a subgroup of
tumors showing abnormal DNA methylation. This is a two-
step approach for characterizing the relationship between
folate level and DNA methylation subtype. In a second
approach, folate levels are incorporated directly into the
mixture model, and the association variable is estimated
simultaneously with the clustering procedure. We describe
the two mixture models, the estimation procedures, and a
simulation study designed to explore the generalizability of
our results.

Mixture Model. We assume that after log transformation,
the distribution of DNA methylation data follows a mixture of
normal distributions. For a review see McLachlan and Basford
(1988) and Fraley and Raftery (14). Let yi denote the vector of p
DNA methylation measurements for sample i (i = 1, . . ., n). We
call the vector of measurements the DNA methylation profile
for the sample. In our analysis, p = 9, the number of CpG
regions selected for cluster analysis. The methylation profiles
are considered to be from a mixture of K disease subtypes. The
variable denoting to which subtype a sample belongs is given
by c i = (ci1, . . ., ciK), where cik is an indicator denoting
membership in the kth subgroup. The probability a sample
belongs to the different subtypes is given by p i1, . . ., piK . The
mixture distribution is written as

fðyi; �Þ ¼
XK

k¼1

�ikfðyi j cik ¼ 1; �k;fkÞ; ð1Þ

where f (yi jc ik = 1, lk , Rk ) is a p -dimensional normal
distribution for subgroup k , with mean vector lk and
covariance matrix Rk . The average methylation values in lk

can vary across loci. This permits variable associations of folate
level with DNA methylation at individual loci. A discussion of
different Rk is given by Fraley and Raftery (14). The variable u
denotes the mean vectors, lk , the covariance matrices, Rk , and
the mixing proportions, pk for k = 1, . . ., K .

Extended Finite Mixture Model. In the extended finite
mixture model, we model our latent disease subtype as a
function of exposures. In our data set, there is only one
exposure of interest, level of circulating RBC folate.
However, in general, there can be any number of
exposures; thus, our formulae are written for the
more general situation. Let x be a vector of q exposures
and pik(xi) the probability that sample i belongs in disease
subtype k given exposures xi [pik(xi) = Pr(cik = 1jxi)].
Then pi(xi) = [p i1(xi), . . ., pik(xi)] is a K-dimensional
variable vector and logit[pi(xi)] = (ln[p i2(xi)/p i1(xi)],
. . ., ln[piK(xi)/p i1(xi)]) is a (K � 1)-dimensional vector.
The extended mixture model is

fðyi; �Þ ¼
XK

k¼1

�ikðxiÞfðyi j cik ¼ 1; �k;fkÞ:

The vector of probabilities pi(xi) is fit using polytomous
logistic regression,

logitð�iðxiÞÞ ¼ �c þ �cxi;

where ac is a (K � 1)-dimensional variable vector and bc

is a (K � 1) � q-dimensional variable matrix. In the
simplest situation of one exposure and two disease
subtypes, there is only one variable in ac and one in bc .
Then, the variable bc is interpreted as the log odds ratio
(OR) of the abnormal subtype for a 1-unit increase in
exposure. At this point, we note that the clusters identified
by the extended mixture model are conditioned on
exposure. Because of this conditioning, the model detects
disease subtypes related to exposure so that the association
of exposure with clustering is not an independent validation
of the clustering results.

One could further condition the normal distributions f(yijcik =
1, lk , Rk) on the exposures x as proposed by McLachlan et al.
(7), but we do not do this. We introduce the exposure as a
predictor of the disease subtype probabilities only. Thus, we
assume that conditional on disease subtype, DNA methylation
of individual loci no longer depends on folate values.

Estimation. We fit the normal mixture model to the
colorectal adenoma data using the function MCLUST in
SPLUS version 6.1 (15) specifying equal spherical (Ir2) or
unequal spherical (Irk

2) variance structures. More flexible
variance structures cannot be fit due to the limited sample
size. The function MCLUST was downloaded from http://
www.stat.washington.edu/fraley/mclust (14). The program
EMMIX is also available for fitting mixtures of normal
distributions (16). The number of components for the mixture
model is selected using the Bayesian information criterion
[BIC = �2 � log-likelihood + number of variables � ln(number
of observations)]. The model with the lowest BIC value is
considered to have the best fit. Convention states that
differences in BIC values that are <2 denote weak evidence
for model differences, and differences that are >6 denote
strong evidence (17). When faced with BIC values that differ
by <2, we opted for the more parsimonious model. After
selecting the best-fitting model, adenomas are assigned to the
subgroup yielding the greatest posterior probability. The
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assigned subgroup is then associated with RBC folate (on the
natural log scale) using standard logistic regression.

We calculate the average RBC folate level for each cluster
using a weighed average. The (log-transformed) folate level for
each subject is multiplied by the probability that they belong to
the given subgroup; these terms are summed over all
individuals and divided by the sum of the probabilities of
belonging to the different subgroups. The exponential of the
weighed average (geometric mean) estimates the average
folate level for the subgroup.

The mixture model and the extended mixture model are fit
using the expectation-maximization algorithm (18). In the two-
phase approach, the data are clustered using the mixture
distribution in Eq. (1) before assigning samples to subtypes
and associating the subtypes with the level of RBC folate. For
the one-phase approach, the cluster outcome is associated with
RBC folate directly from the extended mixture model. We
assume Rk = I but investigate the robustness of our model to
misspecification of the variance matrix. The SE for the
association variable is computed using the observed informa-
tion matrix as described by Louis (19). These models are
programmed using the C++ language. We consider the
expectation-maximization algorithm converged when the
increase in the observed data likelihood is <1 � 10�5. As
starting values, we used both a random assignment of class
membership and true class assignment, obtaining the same
results each time. When the algorithm did not converge, it did
not converge for either starting value. The code is available
from the first author upon request.

Simulation Study. We conduct a simulation study to
evaluate the bias and SE estimate for the variable associating
folate with disease subtype. We assume a disease with two
subtypes denoting normal and abnormal DNA methylation.
The association variable of interest is the coefficient b from a
logistic regression model (b = ln OR). We evaluate the effect
of different model parameters and sample size on our ability
to estimate b . We vary the strength of association between
exposure and disease subtype, the proportion of samples
assigned to each subtype, and the difference in mean
methylation level between the two subtypes. We simulate
data when b = �1 and �2. For b = �1, a one-SD decrease in
folate (on the ln scale) results in a 2.7-fold increased odds of
having abnormal DNA methylation. For b = �2, it
corresponds to a 7.4-fold increased odds. The value �1 is
chosen to reflect the association we find in our data. The
value �2, although strong for an epidemiologic study, shows
the affect that the strength of association has on the
properties of the b estimate. Log-transformed folate levels
are generated using a random normal distribution with
variance one. The mean folate level is selected to control the
proportion of observations assigned to abnormal methylation
subgroup (f23% or 50%).

Once the subgroup is known, we generate the DNA
methylation data. First, we consider the simple scenario where
the average DNA methylation level is the same at each of the
nine genes and is independent of all other genes within the
subgroup. Later, we allow for correlation among genes within
a single disease subtype. In the first simulation setting, DNA
methylation level is generated from a multivariate normal
distribution, N9(lk,I), k = 1, 2 for the two classes. The larger the
distance between the mean methylation levels for the two
clusters, l1 and l2, the more distinct the disease subtypes. We
assume differences of 0.75, 1.0, and 1.5 in the log methylation
value. The discrimination between the two groups is greatest
in the last scenario, where the difference in means is greater
than the SD of the measures in each subgroup. The other two
scenarios have a smaller signal that results in higher
uncertainty in cluster assignment. The second and third
simulation settings allow us to compare estimates of associa-

tion from the two mixture-model approaches under misspe-
cification of the variance matrix. In the second simulation
setting, we generate data under three models that do not
assume conditional independence among loci within disease
subtype. In the first, all loci share a pair wise correlation of 0.1.
We call this the exchangeable correlation design. In the second
and third models, we have two subsets of loci, one size four
and the second size five, where pairs of loci from the same
subset share a constant pairwise correlation and pairs of loci
from different subsets are uncorrelated. This describes a
diagonal correlation structure for two gene subsets each
having an exchangeable correlation design. We consider
correlations of 0.1 and 0.2 for the two exchangeable correlation
designs in the diagonal correlation structure. For the third
simulation setting, we consider a different type of variance
misspecification; we assume conditional independence of loci
within subgroup but a higher variance in one subgroup than
the other, R1 = I and R2 = 2I .

Results

Cluster Colorectal Adenoma Tissue

Two-Phase Approach. Using BIC for model selection, we
select two clusters under the equal spherical variance
structure as our best model (Supplementary Fig. S1). This
model shows strong evidence for the existence of more than
one cluster; only weak evidence favors it over a two-cluster
model with unequal spherical variance structure. Using the
more parsimonious model, 32 subjects are assigned to one
subgroup and 26 to the other. Table 1 shows the average
methylation values for each gene by disease subgroup. The
profiles for the mean DNA methylation levels show that
methylation is higher in subgroup one compared with
subgroup two for all CpG regions except CALCA . For CALCA ,
there is very little difference in average methylation value
between the two subgroups.

Using logistic regression we find that RBC folate (on the ln
scale) is inversely associated with DNA methylation subgroup
[OR, 0.44; 95% confidence interval (95% CI), 0.15-1.28]. The CI
includes 1, suggesting that the association is not statistically
significant. However, as expected, the subgroup with the
higher folate intake shows less DNA methylation. The
geometric mean levels of folate are 267 and 218 ng/dL in
the clusters with low and high DNA methylation profiles,
respectively.

One-Phase Approach. Assuming the same two-subgroup
model, we estimate a slightly stronger inverse association
between RBC folate level and DNA methylation profile (OR,
0.31; 95% CI, 0.08-1.26). The model coefficients (ln OR
estimates) for the one-phase and two-phase approaches are
compared in Table 2. The SE estimate is greater in the
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Table 1. Average DNA methylation measurements in
colorectal adenoma tissue by disease subtype identified
using a normal mixture model (n = 58 case subjects)

Gene Subtype 1 (n = 32) Subtype 2 (n = 26) Difference

APC 1.08 �0.12 1.20
MLH1 0.29 �0.21 0.50
MGMT 0.45 �0.14 0.58
CDKN2A 0.74 �0.60 1.34
PTGS2 0.20 �0.12 0.31
ESR1 0.51 �0.22 0.73
MYOD1 0.79 �0.65 1.45
TIMP3 0.63 �0.37 1.00
CALCA �0.05 0.06 �0.11
Average (overall) 0.52 �0.26 0.78

NOTE: DNA methylation is measured as PMR. For each gene, measurements are
log transformed [ln(PMR + 1)] and standardized across all samples.
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one-phase than the two-phase approach. The total uncertainty,
a measure describing uncertainty in the assignment of disease
subtype, is also higher in the one-phase approach. This could be
a chance occurrence due to small sample size as we would
expect a lower total uncertainty from the model that incorpo-
rates exposure information in the estimation of disease
subtypes.

The one-phase approach is not an independent validation of
the clustering results as the cluster probabilities are condi-
tioned on the observed exposures. A result of this conditioning
is illustrated by three samples that are assigned to different
subgroups using the one-phase and two-phase approaches.
Two samples with high folate values (448 ng/dL, 89th
percentile and 736 ng/dL, 98th percentile) are assigned to
the subgroup that has the higher average folate measure using
the one-phase approach. One sample with low folate (129 ng/
dL, 11th percentile) is assigned to the subgroup with the lower
average folate measure. These samples are assigned to the
opposite subgroups by the mixture model that did not
incorporate information on folate.

In summary, the variable estimates and their SEs differ
depending upon the modeling approach we use (OR, 0.44; 95%

CI, 0.15-1.28 two-phase analysis versus OR, 0.31; 95% CI, 0.08-
1.26 one-phase analysis). We also find a difference in the
measure of uncertainty of group assignment. We investigate
the cause of these differences in a simulation study.

Simulation Study. The models we consider result in
univariate correlations of DNA methylation with folate levels
ranging from �0.11 to �0.37. These correlations are similar to
those observed in our set of colorectal adenomas. Overall, we
find that when the disease subtypes have a large separation in
the average DNA methylation values at each locus, the two
approaches give similar results. However, when the separation
is less distinct, there is measurement error in the outcome
(disease subtype) that is ignored by the two-phase model. This
results in biased estimates of association and low coverage
probabilities that are not seen in the one-phase approach when
the association variable is modeled jointly with the clustering
of disease subtypes.

Table 3 compares the bias and SE of the estimate of b under
the two-phase and one-phase approaches for a sample size of
200 subjects. For the two-phase approach, the average bias in
the estimate of b increases as the mean methylation levels for
the two subgroups get closer together; the bias is towards
underestimation of the true regression coefficient. At the same
time, the mean SE estimate decreases. For the one-phase
approach, the average bias of the regression coefficient seems
to increase as the distance between average methylation values
in the two subtypes decreases; however, this increase is due to
a slight skewness in the estimate of b in the simulation.
Overall, there is no increase in the median estimate of bias. In
contrast to what was observed for the two-phase approach, the
mean SE estimate of b increases as the distance between the
two clusters decreases. This accurately reflects the higher
uncertainty (measurement error) in the cluster assignment.
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Table 2. Coefficient and standard error estimates for the
association of RBC folate with abnormal DNA methylation
subtype in a set of colorectal adenomas using the mixture
model with post hoc validation (two phase) and extended
mixture model (one phase) approach (n = 58 case subjects)

Approach b̂ SE(b̂) P Total uncertainty

Two phase �0.81 0.54 0.14 3.7
One phase �1.16 0.71 0.10 3.8

Table 3. Bias and standard error for the mixture model with post hoc validation and extended mixture model (n = 200
observations; 500 replicates)

Cluster
distance*

bc Average frequency
in group 2b (%)

Average
bias

Median
bias

SD(b̂) Average
SE(b̂)

Empirical coverage
95%

Average total
uncertaintyx

Mixture model with validation (two phase)
1.5 �1 50 �0.02 �0.01 0.20 0.19 95.0 2.4

22 �0.01 0.01 0.23 0.22 95.2 1.9
�2 50 0.04 0.07 0.30 0.28 92.0 2.4

23 0.05 0.07 0.33 0.32 93.0 1.9
1.0 �1 50 0.15 0.15 0.18 0.18 82.0 12.7

22 0.16 0.16 0.21 0.21 84.4 10.1
�2 50 0.50 0.50 0.25 0.23 43.0 12.7

23 0.52 0.53 0.30 0.27 47.8 10.1
0.75 �1 50 0.31 0.33 0.17 0.17 49.6 23.8

22 0.35 0.36 0.22 0.20 53.8 18.6
�2 50 0.88 0.90 0.21 0.20 4.0 23.7

23 0.92 0.94 0.29 0.23 8.8 18.6
Extended finite mixture model (one phase)

1.5 �1 50 �0.05 �0.05 0.20 0.20 95.6 2.1
22 �0.05 �0.04 0.24 0.23 94.8 1.6

�2 50 �0.08 �0.06 0.32 0.31 94.2 1.6
23 �0.09 �0.05 0.37 0.35 95.0 1.3

1.0 �1 50 �0.06 �0.05 0.24 0.22 94.6 11.0
22 �0.06 �0.03 0.28 0.26 95.8 8.7

�2 50 �0.11 �0.07 0.39 0.37 95.0 8.6
23 �0.11 �0.05 0.46 0.42 94.8 6.7

0.75 �1 50 �0.07 �0.05 0.29 0.27 95.0 20.5
22 �0.08 �0.05 0.38 0.33 95.0 16.0

�2 50 �0.18 �0.10 0.60 0.48 94.6 15.7
23k �0.17k �0.07k 0.70k 0.56k 94.8k 12.2k

NOTE: Nine CpG regions are simulated for each observation.
*Cluster distance is the difference in average methylation level between disease subtypes for each CpG region.
cb is the ln OR associating exposure with subgroup having abnormal methylation in a logistic regression model.
bGroup 2 is the subgroup having a DNA methylation defect.
xAverage total uncertainty is the average across replicates of the sum of uncertainties from the mixture model.
kEstimates not obtained for one data set.
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We also compare the two approaches in terms of the
empirical coverage for the estimate of b . We find the two-
phase approach does not attain the proper 95% empirical
coverage for settings in which the clusters are not determined
with a high level of certainty; the coverage probability
decreases as the two clusters become closer together. In
addition, the coverage decreases the stronger the association
between exposure and outcome (b = �2 versus �1). In general,
the one-phase model attains the proper 95% empirical
coverage regardless of the distance between disease subtypes
or the association between exposure and outcome. If we
decrease the sample size, we find the empirical coverage of the
one-phase model is low on occasion (Supplementary Table S1).
Interestingly, decreasing the sample size improved the
empirical coverage estimates for the two-phase model;
however, they are still well below the nominal 95% level
(Supplementary Table S1).

Overall, we see that the average total uncertainty is lower
for the one-phase than the two-phase approach (Table 3). This
can be explained by the fact that information from the
exposure variable is being exploited by the one-phase
approach. Thus, we see that for the one-phase approach, the
average total uncertainty decreases as the disease-exposure
association increases. This same phenomenon is not seen for
the two-phase model where clustering is carried out without
use of the exposure information.

We also compare the bias and SE estimates of the two-
phase and one-phase approaches under a misspecified
covariance matrix. In general, the one-phase approach shows
less bias and better empirical coverage than the two-phase
approach (Table 4). This suggests that by using exposure
information, the one-phase model was more robust for
estimating b under a misspecified covariance structure. A
small amount of correlation among genes within a disease
subtype led to a slight overestimate of the association
variable for the two-phase approach. The bias was less
noticeable if the correlation was not among all loci but among
two smaller subgroups of loci. When the genes were
independent within disease subtype but the variance differed
in the two subtypes, the bias was larger and the empirical
coverage worse the more unequal the size of the two disease
subgroups. At the same time, more samples were assigned to
the subgroup with the larger variance than should have been
(data not shown).

Discussion

We present an extended mixture model to study the
association between exposures and latent subgroups of
disease. In a simulation study, we show that a naive two-
phase approach of a cluster analysis followed by association
analysis yields estimates similar to a one-phase approach
when the clusters are distinct and can be determined with
certainty from the methylation data alone. When there is
uncertainty in the cluster assignments, the naive approach can
lead to underestimates of the association variable and its SE.
On the other hand, the extended mixture model provides
unbiased estimates of association and valid estimates of
precision. The larger average SE estimate from the one-phase
approach can be explained by taking uncertainty of the cluster
assignment into account when simultaneously estimating the
cluster assignment and the association variable. However, this
one-phase approach is no longer unsupervised. The latent
classes are generated conditional on the association with the
exposure variables.

The simulation study investigated a simple scenario where a
methylation defect had the same effect on methylation at all
CpG regions. In this situation, a repeated-measures analysis of
covariance (RMANCOVA) would be a valid method for
testing the hypothesis of an association between folate level
and DNA methylation level across multiple CpG regions. In
fact, for this simulation study, this approach would give
smaller Ps than a test of the log OR from the extended mixture
model. This might be explained by the fact that the
RMANCOVA model can assume that the effects are the same
at each locus where the extended mixture model models the
effects at each locus separately. In a more realistic situation, we
might expect different CpG regions to hypermethylate at
different rates under a methylation defect. To consider this, we
tried a few simulations where we allowed the difference in
mean methylation level between the two groups to vary across
the nine genes while holding the overall average difference
constant. These scenarios resulted in smaller Ps using the
extended mixture model compared with simple RMANCOVA
(data not shown). The situation where we would expect the
extended mixture model to be superior to the RMANCOVA
model is when the association between exposure and
methylation go in different directions for different CpG
regions. For example, in an earlier study, we found different
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Table 4. Bias and standard error for the mixture model with post hoc validation and extended mixture model under
misspecification of the correlation structure (n = 200 observations; 500 replicates)

True correlation
within group*

Average frequency
in group 2c (%)

Estimated average
frequency in group 2 (%)

Average
bias

Mean
SE(b̂)

Empirical coverage
95%

Average total
uncertaintyb

Mixture model with validation (two phase)
Exch(0.1)9�9 50 50 0.12 0.18 86.2 4.3

22 24 0.15 0.20 86.0 3.9
Diag[Exch(0.1)4�4, Exch(0.1)5�5] 50 50 0.07 0.18 93.6 3.5

22 23 0.06 0.21 91.4 2.9
Diag[Exch(0.2)4�4, Exch(0.2)5�5] 50 50 0.10 0.18 87.0 4.2

22 23 0.13 0.21 88.0 3.8
Extended finite mixture model (one phase)

Exch(0.1)9�9 50 50 0.05 0.19 91.4 4.0
22 24 0.06 0.22 92.0 3.5

Diag[Exch(0.1)4�4, Exch(0.1)5�5] 50 50 0.01 0.19 97.0 3.1
22 23 0.00 0.23 95.0 2.6

Diag[Exch(0.2)4�4, Exch(0.2)5�5] 50 50 0.02 0.20 92.4 3.8
22 23 0.04 0.23 94.6 3.4

NOTE: Nine CpG regions are simulated. At each CpG region, the difference in average methylation value between the two subgroups is 1.5. The ln OR associating
exposure with subgroup having abnormal methylation in a logistic regression model is �1. All models are fit assuming an independence variance matrix (I).
*True correlation structures within group are as follows: (a ) exchangeable with correlation 0.1 [Exch(0.1)9�9]. (b ) Two subgroups of loci with exchangeable correlation
structure in each subgroup, correlation = 0.1. Subgroups of loci are size 4 and size 5 {Diag[Exch(0.1)4�4,Exch(0.1)5�5]}, and (c) same as (b ) but with correlation of 0.2 in
each subgroup of loci {Diag[Exch(0.2)4�4,Exch(0.2)5�5]}.
cGroup 2 is the subgroup having a DNA methylation defect.
bAverage total uncertainty is the mean sum of uncertainties from the mixture model.
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DNA methylation profiles in non–small cell and small cell
lung cancer (20). In a subset of CpG regions DNA methylation
was higher in non–small cell than in small cell lung cancer. In
another subset of regions, the reverse was true. If we were to
find an exposure that correlated with lung cancer cell type, we
would have a situation where the exposure and methylation
might also be in different directions for different CpG regions.
In such extreme scenarios, the RMANCOVA model will not
find any association with exposure unless one was to limit the
analysis to CpG regions with associations in the same
direction.

Many variables will affect the comparison of the extended
mixture model and RMANCOVA. Another variable that we
found important is the proportion of observations in the
different clusters. The more imbalanced the clusters, the more
likely the extended mixture model will compute smaller Ps
(data not shown). In practice, one might try all of the methods
described to try and understand the complex relationships in
the data.

One simplification we made in our real data example was to
select one adenoma at random from patients with multiple
adenomas. This could introduce bias to a cluster analysis if
individuals having multiple adenomas tended to have higher
or lower methylation values on average than individuals
having only one adenoma. Then the clusters we identify might
simply be related to the number of adenomas in the patient. In
our study, we found no differences in the average methylation
values at any of the nine loci studied between subjects having
one or multiple adenomas. Furthermore, having multiple
adenomas was not associated with our final disease subgroups.

Other articles have considered how to correlate clinical
covariates with gene expression profiles (7, 21). Shannon et al.
(21) present an approach that does not require a fixed number
of clusters. They correlate the distance matrix of gene
expression profiles with a distance matrix of clinical covariate
profiles using a Mantel Statistic. The distance matrix is
computed by measuring the distance between all pairs of
observations (gene expression profiles or clinical covariate
profiles). Their method allows valid statistical inference
correlating the two types of data. McLachlan et al. (7) fit a
model with a distinct number of disease subtypes similar to
ours. However, their focus is on the classification of tissue
samples and not variable estimation.

Finally, a popular method to validate clusters using an
external criterion is the adjusted Rand index (22). This index
compares two classification schemes by comparing how pairs
of observations are classified by the two schemes. The index
equals one when there is perfect agreement and zero when it
equals its expected value under random partitioning. The
index requires the external variable to be categorical, which
may be limiting when using exposures for validation in
studying disease etiology. In addition, it does not take cluster
uncertainty into account.

In summary, we find the mixture model approach is a useful
tool for identifying potentially homogeneous subgroups of
disease. When exposure data are available, the mixture model

can be extended to condition on the exposure data. When the
results obtained from the model resemble those obtained from
a two-phase analysis, it suggests that the clusters are distinct
based on the outcome data alone. In this situation, the
exposure might be used to validate the identified clusters.
When the results differ, only the one-phase approach provides
unbiased estimates of association with valid estimates of
precision.
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