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ABSTRACT

To fully elucidate the functional relationship between DNA methylation and histone hy-
poacetylation in gene silencing, we have developed an integrated “triple” microarray system
that allows us to begin to decipher the influence of epigenetic hierarchies on the regula-
tion of gene expression in cancer cells. Our hypothesis is that in the promoter region of
a silenced gene, reversal of two epigenetic factors (i.e., DNA demethylation and/or histone
hyperacetylation) is highly correlated with gene reexpression after treatment of the human
epithelial ovarian cancer cell line CP70 with the drug combination 5-aza-2′-deoxycytidine
(DAC), a demethylating agent, and trichostatin A (TSA), an inhibitor of histone deacetylases.
To estimate the posterior probabilities for genes with altered expression, DNA methylation
and histone acetylation status measured with a triple-microarray system, we have employed
an established empirical Bayes model. Two methods have been proposed to test our hy-
pothesis that DNA demethylation and histone hyperacetylation are highly correlated among
those up-regulated genes. One method follows a weighted least squares regression, while
the other is derived from a chi-square statistic. The data derived by these approaches,
which have been further verified through bootstrap analyses, support the proposed epige-
netic correlation (p-values are less than 0.001). Further simulations suggest that even if
the constant variance and normality assumptions do not hold, the power of those two tests
is robust.
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INTRODUCTION

Microarray approaches used to study functional DNA–protein interactions have revealed that
many transcription regulators are linked to chromatin remodeling, placing this type of epigenetic

change at the center of gene regulation (Ren et al., 2000; Weinmann et al., 2002; Suzuki et al., 2002;
Cameron et al., 1999). Repressed chromatin and gene silencing are associated with changes in DNA methy-
lation and histone hypoacetylation (Jones and Baylin, 2002). Even though these epigenetic modifications
are widely recognized as contributing factors in human tumorigenesis, the molecular mechanism(s) is not
well understood. To fully elucidate the functional relationship between DNA methylation and histone hy-
poacetylation in gene silencing, we have developed an integrated “triple” microarray system to decipher
the influence of epigenetic hierarchies on regulation of gene expression in cancer cells (Shi et al., 2002,
2003). We used a panel of GC-rich promoter and first exon DNAs, called ECISTs (expressed CpG island
sequence tags), to screen methylated sites within 1,507 CpG island fragments (Shi et al., 2003). In ad-
dition, we utilized the promoter sequences within the ECISTs to identify chromatins immunoprecipitated
with antibodies against hyperacetylated histones and the exon-containing portions for measuring levels of
the corresponding transcripts. This new microarray system provides an effective tool for segregating, at
specific loci, changes in gene expression that are a consequence of promoter demethylation and histone
hyperacetylation by epigenetic treatments (Shi et al., 2003).
To assess the status of gene expression, DNA methylation, and histone acetylation simultaneously,

the human epithelial ovarian cancer cell line CP70 was treated with 5-aza-2′-deoxycytidine (DAC), a
demethylating agent, and trichostatin A (TSA), an inhibitor of histone deacetylases (Shi et al., 2003). Two
replicates were generated for each type of triple microarray experiment. To analyze our triple datasets, we
chose the fold-change method described by Chen et al. (1997). The resulting analysis established an initial
relationship between gene reexpression, DNA demethylation, and histone hyperacetylation. However, this
preliminary analysis lacked both a formal hypothesis and the sound justification of the statistical tests used
to support the fold-change criterion when using different types of microarray data.
Based on this prior analysis, here we have sought to develop rigorous statistical methods to test the

hypothesis that the reversal of two epigenetic factors (i.e., DNA demethylation and/or histone hyperacety-
lation) in the promoter region of a silenced gene is highly correlated with gene reexpression after treatment
with the combination of DAC+TSA. In order to test this hypothesis, it is crucial to know whether or not
a gene is reexpressed, demethylated, or hyperacetylated. Because these indicator variables are not directly
observable, it is desirable to estimate their change in status from the data. Statistically, for any gene,
indicator variable estimates can be used to interpret the probability of a change in status (reversal of an
epigenetic factor), given the data.
Several statistical methods have been used for microarray analysis of differentially expressed genes.

These approaches are based primarily on multiple comparisons of different experimental conditions. For
example, Kerr et al. (2000) and Wolfinger et al. (2001) employed analysis of variance (ANOVA) models
to conduct a hypothetical test for different expression levels of individual genes in multiple microarray
experiments. Dudoit et al. (2001) used a t statistic to address the problem of multiple comparisons through
permutation analysis. These approaches yielded only p-values representing the probability of having an
observed expression difference of a given gene, if the status is assumed to be the same before and after a
treatment. However, for the triple-array data, these approaches cannot be used to estimate the status change.
A Bayes or an empirical Bayes approach may be a more appropriate choice for this type of analysis. In
this regard, Efron et al. (2001) proposed an empirical Bayes model for calculating the probability of a
differentially expressed gene given the observed data. As the empirical distribution for their t-like statistic
for each gene does not share variation information, it works well only in situations involving at least a
few replicates. Newton et al. (2001) also proposed another empirical Bayes model for cDNA microarray
experiments with only one replicate. According to their method, if a gene is differentially expressed under
two conditions, its level of expression is independently generated from the same distribution (Newton
et al., 2001); otherwise, the level of expression is the same between experimental and control samples.
In their work, the observational component follows a gamma distribution with mean µg , and µg itself
follows an inverse gamma distribution (prior component). This hierarchical model is often referred to as
the gamma–gamma model. Specifically, all genes share the same distribution for the within-gene sampling
errors. This is a crucial feature in their method, as no replicates were available in their data example.
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Kendziorski et al. (2003) further extended the gamma–gamma model to situations where replicates were
available. In addition, they developed a log-normal model for the observational component and a normal
model for the prior component. They demonstrated a comparable performance for a log-normal–normal
model and a gamma–gamma model.
There are two major advantages in the methods proposed by Newton et al. (2001) and Kendziorski

et al. (2003). First, information sharing is a consequence of the empirical Bayes approach. The model
pools the variation information across all genes, making it well suited for datasets containing only a
few replicates (e.g., two replicates). Second, it is easy to introduce correlation structures in a log-normal
model. Therefore, in this paper, we have adapted and improved the log-normal–normal model for the
triple-microarray analysis. Instead of having one error term to describe variations as in their model, we
have multiple error terms to represent variation between technical replicates (arrays) and measurement error
within a single array, respectively (Churchill, 2002). In addition, it is important to develop a statistical
approach to formally test our epigenetic hypothesis: demethylation and histone hyperacetylation status
are strongly correlated among up-regulated genes after epigenetic treatment. Moreover, if the normality
assumption or equal variance assumption do not hold, it is important to know the power of the statistical
test and to evaluate its performance (Baggerly et al., 2001). This paper is organized as follows: 1) triple-
microarray experiment, data, statistical models and hypothetical test methods (Materials and Methods);
2) data analysis, power analysis, and sensitivity analysis (Results); 3) Discussion.

MATERIALS AND METHODS

Cell culture
A human epithelial ovarian cancer cell line CP70 was cultured in the presence of vehicle (PBS) or

DAC (0.5 µM; medium changed every 24 hours). After four days, cells were either harvested or treated
with TSA (0.5 µM) for 12 hours. DNA and RNA were isolated using QIAarnp Tissue and RNeasy kits
(Qiagen), respectively.

Methylation microarray analysis
Preparation of methylation amplicons was carried out as previously described (Yan et al., 2001). Briefly,

CP70 DNA (1 µg) was digested with MseI and then ligated to a PCR-linker. The ligated DNA was digested
with methylation-sensitive endonucleases BstUI and HpaII and amplified with a linker primer by PCR.
Genomic fragments containing methylated sites were protected from enzymatic restrictions and could be
amplified; however, fragments containing unmethylated sites were digested and not amplified. Both treated
and control samples were cohybridized onto an ECIST microarray side with different labels (Cy5 or Cy3),
as previously described (Yan et al., 2001; Shi et al., 2003).

Expression microarray analysis
In the expression microarray, total RNA (100 µg) was prepared from control CP70 cells or cell cultured

with TSA/DAC. The RLCS method was used to generate full-length cDNAs. Both treated and control
samples were cohybridized onto the ECIST microarray panel with different labels (Cy5 or Cy3).

Acetylation microarray analysis
The protocol used to identify immunoprecipitated E2F1 targets (Weinmann et al., 2002) was adapted

for this study. To obtain a network of DNA–protein biopolymers, treated or untreated CP70 cells (2× 107
cells/assay) were cross-linked using 1% formaldehyde. Cell nuclei were collected by microcentrifugation,
and cross-linked chromatin fibers were isolated and fragmented to ∼600 bp by sonication. Immunoprecip-
itation was carried out with 5 µg of anti-acetylated histone H3 or H4 rabbit polyclonal antibody (Upstate)
or no-antibody (negative control). Purified chromatin DNA was recovered from 10–15 preparations for flu-
orescent labeling. H3 or H4 treated samples were labeled with Cy5, while untreated samples (no-antibody)
were labeled with Cy3. Microarray hybridization and posthybridization washings procedures have been
previously described by Weinmann et al. (2002).
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FIG. 1. Schematic flowchart for parallel assessment of gene expression, DNA methylation, and histone acetylation
in ovarian cancer cell line CP70.

Data structure
The CP70 cell line, cultured with either vehicle or DAC+TSA, was divided into two aliquots for

two technical replicates for the three microarray analyses. Each microarray used the same array panel but
different slides in individual experiments. A schematic flowchart for parallel assessment of gene expression,
DNA methylation, and histone acetylation is presented in Fig. 1. Among expression and methylation arrays,
two replicates followed the same protocol in two parallel experiments, and Cy5 and Cy3 dyes were swapped
between treated (DAC+TSA) and untreated (vehicle) samples. However, for the acetylation arrays, the no-
antibody treated sample served as a negative control with the Cy3 label and antibody treated (H3 or H4)
samples were labeled by Cy5. Among those four acetylation arrays, a balanced 2 by 2 factorial experiment
was designed: (H3, H4) versus (vehicle, DAC+TSA). Although the no-antibody effect and the dye effect
were totally confounded, the treatment effect (vehicle, DAC+TSA) was not.

Normalization
Our analysis started from background-justified intensities. All negative intensities were set at a positive

threshold. Many statistical strategies have been proposed to normalize array-to-array variations. Kerr,
Martin, and Churchill (2000) advocated a unified ANOVA model to perform normalization and estimate
gene-treatment interaction effects on the cDNA microarray data simultaneously. However, with nonlinear
array-to-array variation (discussed below), that unified model has been difficult to implement. On the
other hand, Wolfinger et al. (2001) proposed a two-step analysis strategy. At step one, a linear model was
employed to normalize the data; and at step two, another linear mixed model was adopted to estimate
gene-treatment interaction effects. We would like to combine the method of Kerr, Martin, and Churchill
(2000) with the strategy of Wolfinger et al. (2001). At step one, a nonlinear model was used to normalize
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the array-to-array variation; at step two, we used a linear mixed model to normalize the dye bias and
estimate gene-treatment interaction effects.
To address array-to-array variation, we have considered the following notation. Denote Gijkg as the

log-transformed expression level for gene g from replicate i (i = 1, 2) under treatment group j (j = 1
for control, 2 for DAC+TSA) with dye k (k = 1 for Cy5, 2 for Cy3). In particular, let {G1••g = G111g +
G122g}g=1,...,n and {G2••g = G212g + G221g}g=1,...,n. (Note: the dye assignment in replicates followed a
Latin square design). Therefore, if two replicates are comparable, {G1••g−G2••g} should vary around 0 and
this difference should be independent of {G1••g +G2••g}. This is the A (average of log-expression values)
versus M (difference in log-expression values) plot proposed by Dudoit et al. (2002), which is displayed
in Fig. 2(a). We have applied the Loess nonlinear normalization technique discussed by Bolstad et al.
(2003). In addition, we have added one extra step: denote G′

i••g as the normalized total intensity for gene
g of replicate i. The treated or untreated gene g’s intensity is G′

ijkg = G′
i••g × Gijkg/Gi••g . Figure 2(b)

displays the expression MA plot after normalization. M is approximately around 0 and independent of A.
Similarly, the notation of methylation arrays has the same subscriptsMijkg and the normalization follows

the same procedures as those of expression arrays. Figure 2(c) and (d) are MA plots before and after
normalization, respectively.
The notation for acetylation arrays is the same but its interpretation is different from the previous two.

Denote Aijkg as the log-transformed acetylation level for gene g from replicate i (i = 1 for H3, 2 for H4)
under treatment group j (j = 1 for control, 2 for DAC+TSA) with antibody k (k = 1 for yes, 2 for no).
In particular, let {A1j•g = A1j1g + A1j2g}g=1,...,n and {A2j•g = A2j1g + A2j2g}g=1,...,n. Following the
same procedures as with the other two arrays, Fig. 2(e) and (g) are MA plots before normalization for the

FIG. 2. Triple array normalization. (a) Gene expression before normalization. (b) Gene expression after normaliza-
tion. (c) DNA methylation before normalization. (d) DNA methylation after normalization. (e) Histone acetylation
before normalization (control). (f) Histone acetylation after normalization (control). (g) Histone acetylation before nor-
malization (treated). (h) Histone acetylation after normalization (treated). The bold lines are based on the Loess fits.
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control and DAC+TSA treated arrays respectively, and Fig. 2(f) and (h) are their corresponding MA plots
after normalization. Without loss of generality, we still use (Gijkg, Mijkg, Aijkg) to denote the normalized
intensities.
There was no significant evidence of a weak hybridization region for any of our array samples, either

before or after normalization. From Fig. 2, all Loess curves, before normalization, appear to be flat at
the beginning, suggesting that low signals for low abundance or absent genes were comparable for both
replicates from all three array types. In other words, weak signals were comparable between two replicates.
However, some curvature for higher signals was evident, suggesting that biological and technical variations
were higher for the higher abundance genes. The nonlinear normalization effectively detected this overall
discrepancy pattern among all genes between two replicates and globally filtered out biological and technical
variations. The impact of the normalization step to the second step analysis will be discussed in the Results
section.

Model specification
Although array-to-array variations between replicates were approximately 0 on average after normal-

ization, different genes showed differences between replicates, even after normalization (Fig. 2(b), (d),
(f), (h)). In addition, dye bias for expression and methylation arrays was not yet corrected . Therefore,
similar to the step-two of Wolfinger et al. (2001), our model for gene expression is

Gijkg = 1{k=1}γG + µG,jg + bG,ig + εG,ijg, (1)

where the subscript G denotes the random variables and regression parameters for gene expression data.
SubscriptsM and A will be adopted for methylation and acetylation models, respectively, as the acetylation
model has a different formulation from (1). In particular, Gijkg is the normalized expression level after step
one. The symbol εG,ijg ∼ i.i.d. N(0, σ 2G,0) represents the measurement error within a single array (i.e.,
reading the fluorescent labels). It is referred to as the third component of variation in Churchill et al. (2002).
The symbol bG,ig ∼ i.i.d. N(0, σ 2G,1) is the between-replicate sampling error (i.e., array-to-array variation).
It is referred to as the second component of variation in Churchill et al. (2002). The symbol γG is the dye
effect due to Cy5 comparing to Cy3, and 1{k=1} is an indicator for Cy5. The vectors (µG,1g , µG,2g)

T are
the expression levels for gene g in the control and treatment groups, respectively. It follows a mixture of
two normal distributions (2),

(
µG,1g
µG,2g

)
∼ (1− zG,g)N

{(
µG

µG

)
,

(
σ 2G,2 σ 2G,2

σ 2G,2 σ 2G,2

)}

+ zG,gN

{(
µG

µG

)
,

(
σ 2G,2 ρGσ 2G,2

ρGσ 2G,2 σ 2G,2

)}

,

(2)

where zG,g = 0 if the expression levels of gene g are not different between two treatment conditions
and zG,g = 1 otherwise. If the expression levels are not different, model (2) implies that µG,1g =
µG,2g = µG and they are sampled from distribution N(µG, σ 2G,2); otherwise, (µG,1g, µG,2g)

T are sampled

from N

[(
µG,1
µG,2

)
,

(
σ2G,1 ρGσ2G,2

ρGσ2G,2 σ2G,2

)]
, i.e., a bivariate normal distribution with correlation ρG. In particular,

N(µG, σ 2G,2) represents a latent distribution of expression levels among all genes.
Together with model (1), our mixture model (2) is an extension of the two-step linear mixed model

of Wolfinger et al. (2001). Because of an incorporation of the indicator variable, 1{G,g}, we are able
to estimate the probability of a gene being differentially expressed between two treatment conditions.
In addition, the two error terms in model (1) are also an extension of the log-normal–normal model of
Kendziorski et al. (2003) that had only one measurement error term to describe all technical and biological
variation. Moreover, the mixture distribution (2) also has a term ρG to model the potential correlation of
gene expression levels between treated and untreated groups, if they are differentially expressed, while
Kendziorski and colleagues (2003) assumed the correlation to be 0. The gene–dye interaction effect has
not been included in our current model (1). As this effect is orthogonal to the gene-treatment interaction
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effect, µG,2g − µG,1g , it will not bias the estimation of the gene-treatment interaction effect. According to
our initial analysis (not reported here), the gene-dye interaction effect was too small to have an impact on
the gene-treatment interaction inference.
The complete data log-likelihood function is

lG =
∑

g

zG,g{log[f1(Gg)] + pG} + (1− zG,g){log[f0(Gg)] + 1− pG}

Gg = (G111g, G122g, G212g, G221g)
T ,

f1(Gg) = (2π |DG,1|)−1/2 exp{−(Gg − xGβG)TD−1
G,1(Gg − xGβG)/2},

f0(Gg) = (2π |DG,0|)−1/2 exp{−(Gg − xGβG)TD−1
G,0(Gg − xGβG)/2},

xG = (xT
1 , xT

2 )T , x1 = (1, 1, 1, 1)T , x2 = (1, 0, 0, 1)T ,

βG = (µG, γG),

D1 = diagr (σ
2
G,0) + σ 2G,1 × diag2(1) ⊗ I2 + H1 ⊗ I2

D0 = diag4(σ
2
G,0) + σ 2G,1 × diag2(1) ⊗ I2 + H0 ⊗ I2

HG,1 =
(

σ 2G,2 ρGσ 2G,2

ρGσ 2G,2 σ 2G,2

)

, HG,0 =
(

σ 2G,2 σ 2G,2

σ 2G,2 σ 2G,2

)

.

(3)

In is an n by n matrix with all elements equal to 1. Denote pG as the overall probability of changed gene
expression. In particular, npG represents the average number of genes with changed expression levels.
Kendziorski et al. (2003) have assumed that the correlation ρG = 0. Under this assumption, D1 is

D1 = diag4(σ 2G,0) + σ 2G,1 × diag2(1) ⊗ I2 + σ 2G,2 × diag2(1) ⊗ I2. (4)

The log-likelihood function (3) is called a dependent model, while the log-likelihood function based on (4)
is called an independent model. We have used the EM algorithm to perform the maximization. The detailed
procedure is given in Appendix I. The estimation has been performed through function nlminb() in Splus.
The models for methylation microarrays are identical to those of expression arrays, except that subscript

G is replaced by M . However, the acetylation array models are different from the other two models in the
following way:

Aijkg = 1{k=1} × µA,jg + γA + aA,g + bA,ig + εA,ijkg, (5)

where Aijkg is the normalized acetylation level after step one; 1{k=1} = 1 if the antibody is applied and 0
otherwise; εA,ijkg ∼ i.i.d. N(0, σ 2A,0) represents the measurement error within a single array; bA,ig ∼ i.i.d.
N(0, σ 2A,1) is the between-replicate sampling error due to antibodies (H3 or H4); γA is the combination
of dye and no-antibody effects averaged over all the genes; aA,g ∼ N(0, σ 2A,a) is the gene specific no-
antibody and dye effect; and vectors (µA,1g, µA,2g)

T are the acetylation levels adjusted for both dye and
no-antibody effects for gene g under control and treatment, respectively. It follows a mixture of two normal
distributions,

(
µA,1g
µA,2g

)
∼ (1− zA,g)N

{(
µA

µA

)
,

(
σ 2A,2 σ 2A,2

σ 2A,2 σ 2A,2

)}

+ zA,gN

{(
µA

µA

)
,

(
σ 2A,2 ρAσ 2A,2

ρAσ 2A,2 σ 2A,2

)}

.

(6)
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The log-likelihood function is

lA =
∑

g

zA,g{log[f1(Ag)] + pA} + (1− zA,g){log[f0(Ag)] + 1− pA}

Ag = (A111g, A112g, A121g, A122g, A211g, A212g, A221g, A222g)
T ,

f1(Ag) = (2π |DA,1|)−1/2 exp{−(Ag − xAβA)TD−1
A,1(Ag − xAβA)/2},

f0(Ag) = (2π |DA,0|)−1/2 exp{−(Ag − xAβA)TD−1
A,0(Ag − xAβA)/2},

xA = (xT
1 , xT

2 )T , x1 = (1, 1, 1, 1, 1, 1, 1, 1)T , x2 = (1, 0, 1, 0, 1, 0, 1, 0)T ,

β = (γA, µA),

D1 = diag8(σ
2
A,0) + σ 2A,1 × I4 ⊗ diag2(1) + σ 2A,a × I8 + H1 ⊗ I2

D0 = diag8(σ 2A,0) + σ 2A,1 × I4 ⊗ diag2(1) + σ 2A,a × I8 + H0 ⊗ I2

H1 =





σ 2A,2 0 ρAσ 2A,2 0
0 0 0 0

ρσ 2A,2 0 σ 2A,2 0
0 0 0 0



 , H0 =





σ 2A,2 0 σ 2A,2 0
0 0 0 0

σ 2A,2 0 σ 2A,2 0
0 0 0 0



 .

(7)

where In is an n by n matrix with all elements equal to 1. Denote pA as the overall probability of changed
gene expression.

Epigenetic hypothesis test
Our primary epigenetic hypothesis is that among all up-regulated genes, DNA demethylation and histone

hyperacetylation are highly correlated after treatment with DAC+TSA. Before testing, this hypothesis
needs to be defined. Denote (&Gg, &Mg, &Ag) as three multinomial random variables that are equal
to 1 if gene g is up-regulated, demethylated, and hyperacetylated, are equal to −1 if gene g is down-
regulated, hypermethylated, and deacetylated, and are 0 if the status of all three is not changed. However,
as (&Gg, &Mg, &Ag) are all unobserved from the triple-arrays, they need to be estimated from the data.
Without loss of generality, we use &Gg as an illustration, as &Mg and &Ag follow in the same way:

&Ĝ(1)
g = Pr{&Gg = 1 | Gg}

= Pr{µG,g2 > µG,g1) ∩ (zG,g = 1) | Gg}
= Pr{µG,g2 > µG,g1 | zG,g = 1,Gg}Pr(zG,g = 1 | Gg)

= '(dGg) × ẑG,g,

(8)

&Ĝ(−1)
g = Pr{&Gg = −1 | Gg}

= Pr{(µG,g2 < µG,g1) ∩ (zG,g = 1) | Gg}
= Pr{µG,g2 < µG,g1 | zG,g = 1,Gg}Pr(zG,g = 1 | Gg)

= '(dGg) × ẑG,g,

(9)

&Ĝ(0)
g = Pr{&Gg = 0 | Gg}

= Pr{µG,g2 = µG,g1) ∩ (zG,g = 0) | Gg}
= Pr(zG,g = 0 | Gg) = 1− ẑG,g,

(10)

where dGg = (
G111g+G212g−G122g−G221g

σ 2G,0+σ 2G,1
)/

√
4σ 2G,0

(σ 2G,0+σ 2G,1)
2 + 2(1−ρG)

σ 2G,2
, ' is the standard normal probability

distribution (the detailed derivation for (8) is in Appendix II), and the three probabilities in (8), (9), and (10)
add up to 1. In particular, p̂(1)

G = ∑
g &Ĝ

(1)
g /n, p̂(−1)

G = ∑
g &Ĝ

(−1)
g /n, and p̂

(0)
G = ∑

g &Ĝ
(0)
g /n.
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The same derivation can be applied to the methylation array indicator variable estimates, (&M̂
(1)
g ,

&M̂
(−1)
g , &M̂

(0)
g ). However, the formulations of the (&Â

(1)
g , &Â

(−1)
g , &Â

(0)
g ) estimates are slightly dif-

ferent form (8), (9), and (10) in '(dAg) = '

[(
A111g−A112g+A211g−A212g−(A121g−A122g+A221g−A222g)

σ 2A,0

) /

√
4

σ 2A,0
+ 2(1−ρA)

σ 2A,2

]
(see Appendix III).

In order to test the association between estimated DNA demethylation and histone hyperacetylation
status, our first method is simply a linear model,

&Â(1)
g = β0 + β1&M̂(1)

g + eg, (11)

where e is an error term. The null hypothesis is that β1 = 0, while the alternative is that β1 '= 0. Since our
main goal is to focus on up-regulated genes, we have applied a weighted least squares estimate (Weinsberg,
1985), which maximizes the following objective function:

lWLS(β0, β1) = −
∑

g

&Ĝ(1)
g (&Â(1)

g − β0 − β1&M̂(1)
g )2. (12)

If the up-regulation information (&Ĝ
(1)
g = 0 or 1) were known for all the genes, Equation (12) would be

reduced to an ordinary least squares for all the up-regulated genes.
Our second method is based on a 2× 2 contingency table with cell probability

p11|1 = Pr(&Mg '= 1, &Ag '= 1 | &Gg = 1), p12|1 = Pr(&Mg '= 1, &A1 = 1 | &Gg = 1),

p21|1 = Pr(&Mg = 1, &Ag '= 1 | &Gg = 1), p22|1 = Pr(&Mg = 1, &Ag = 1 | &Gg = 1).

Under the null hypothesis, &Mg ⊥ &Ag given that &Gg = 1. Then the odds ratio

OR = (p11|1 × p22|1)/(p11|1 × p22|1) = (p111 × p221)/(p111 × p221) = 1. (13)

The alternative hypothesis is OR '= 1. To test this hypothesis, a natural choice is a chi-square statistic
(Agresti, 1990). Denote the cell counts for the contingency table as

n11 =
∑

g

1{&Gg = 1, &Mg '= 1, &Ag '= 1}, n12 =
∑

g

1{&Gg = 1, &Mg '= 1, &Ag = 1},

n21 =
∑

g

1{&Gg = 1, &Mg = 1, &Ag '= 1}, n22 =
∑

g

1{&Gg = 1, &Mg = 1, &Ag = 1},

n1• = n11 + n12, n2• = n21 + n22, n•1 = n11 + n21, n•2 = n12 + n22, n•• = n•1 + n•2.

(14)

The chi-square statistic is

X = (n11 − m11)
2

m11
+ (n12 − m12)

2

m12
+ (n21 − m21)

2

m21
+ (n22 − m22)

2

m22

where m11 = n1• × n•1
n••

, m12 = n1• × n•2
n••

, m21 = n2• × n•1
n••

, m22 = n2• × n•2
n••

.

(15)

As the joint Bernoulli random variable 1{&Gg=1,&Mg '=1,&Ag '=1} for gene g is unobserved, we have
assumed that within each gene g, its up-regulation, demethylation, and hyperacetylation status are inde-
pendent. Therefore, 1{&Gg=1,&Mg '=1,&Ag '=1} = 1{&Gg=1} ×1{&Mg '=0} ×1{&Ag '=0}, and it can be estimated as

1̂{&Gg=1,&Mg '=1,&Ag '=1} = 1̂{&Gg=1} × 1̂{&Mg '=1} × 1̂{&Ag '=1}

= Pr{&Mg '= 1 | Mg}Pr{&Ag '= 1 | Ag}Pr{&Gg = 1 | Gg}

= (1− &M̂(1)
g )(1− &Â(1)

g )&Ĝ(1)
g .

(16)

This assumption will attenuate the power of our test statistics, as it forces the calculation of
1̂{&Gg=1,&Mg '=1,&Ag '=1} toward the null hypothesis, and it will become clear later in our power analysis.
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RESULTS

Data analysis
The results of the triple microarray data analysis are summarized in Table 1. The dependent model,

our proposed method, allowed for a correlation between differentially expressed, methylated, and acety-
lated genes. The independent model assumed a zero correlation. For the gene expression data, ignoring
the correlation resulted in a 30% underestimation of the overall probability of the genes with changed
expression (from 0.434 when correlation was taken into account to 0.303 when it was not). On the other
hand, both models produced similar results for the methylation and acetylation arrays, as the correlation
parameters in both cases were close to zero. In summary, between control and the combined treatment
of DAC and TSA, based on the dependent model, approximately 43.4% of genes were up-regulated or
down-regulated, 72.3% of genes had altered methylation status, and 57.7% of genes had altered acetylation
status. In addition, among genes with an altered expression level, 77% were up-regulated. Among genes
with an altered methylation status, 60% were demethylated. And among genes with altered an acetylation
status, 68% were hyperacetylated.
In order to assess the bias of the probability estimate for up-regulated or down-regulated genes when

ignoring the correlation structure, we performed a simulation study. We chose the dependent model (1) as
the true model and the parameter estimates from gene expression data as the true parameters. We generated
1,000 datasets, and each dataset contained 1,507 genes and two replicates per group. Its Monte Carlo
estimate from the dependent model (averaged over 1,000 samples) was 0.441 ± 0.008, while its Monte
Carlo estimate from the independent model was 0.313 ± 0.007. These results reinforce the importance of
accounting for the correlation structure in the dependent model.
The between-gene variance is sometimes desirable, and in our situation, it includes the treatment effect.

The more significantly a treatment alters gene expression, methylation, and acetylation, the larger the
between-gene variance will be. On the other hand, it is important to control the within-replicates and
between-replicates sampling errors, as lower sampling errors increase the chance of detecting differentially
expressed, methylated and acetylated genes. In the gene-expression array, the variance among genes was
σ̂ 2G,2 = 1.343, or about 6 to 10 times higher than the variance of the within and between-replicate sampling
errors σ̂ 2G,0 = 0.232 and σ̂ 2G,1 = 0.118, respectively. In the methylation array, the variance among genes
was σ̂ 2M2 = 0.082, about 1.5 to 2 times higher than the within and between-replicate sampling error
σ̂ 2M,0 = 0.057 and σ̂ 2M,1 = 0.044, respectively. Similarly, in the acetylation array, the variance among

Table 1. Parameter Estimation from Mixture Models

Gene expression model

pG γG µG σ 2G,0 σ 2G,1 σ 2G,2 ρG

Independent model 0.303 0.657 3.060 0.255 0.114 1.292 0.000
Dependent model 0.434 0.655 3.046 0.232 0.118 1.343 0.494

Gene methylation model

pM γM µM σ 2M,0 σ 2M,1 σ 2M,2 ρM

Independent model 0.728 0.700 2.379 0.055 0.043 0.085 0.000
Dependent model 0.723 0.697 2.356 0.057 0.044 0.082 −0.153

Gene acetylation model

pA γA µA σ 2A,0 σ 2A,1 σ 2A,2 σ 2A,a ρA

Independent model 0.576 0.345 2.634 0.186 0.052 0.020 0.404 0.000
Dependent model 0.577 0.344 2.631 0.182 0.051 0.020 0.405 0.032
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genes was σ̂ 2A,2 = 0.405, or about 2 to 8 times higher than the within and between-replicate sampling
error σ̂ 2A,0 = 0.182 and σ̂ 2A,1 = 0.051, respectively. In addition, the variance of no-antibody and dye effects
among all genes was σ̂ 2A,a = 0.02 in the acetylation arrays.
To account for dye bias, log-Cy5 signals were 0.655 and 0.697 (γ̂G, γ̂M) higher than log-Cy3 in the

expression and methylation arrays, respectively. On the other hand, γ̂A = 0.344 represented the average
the no-antibody and dye effect among all genes in the acetylation arrays.
Figure 3 displays scatter plots for (&M̂

(1)
g , &Â

(1)
g ), after the genes were filtered by &Ĝ

(1)
g . Although the

overall patterns were flat, the weighted least squares regressions showed an increasing trend. Particularly,
the fitted line was &

ˆ̂
A

(1)
g = 0.37 + 0.164&M̂

(1)
g when all data were included in Fig. 3(a), where β̂1 =

0.164 ± 0.022 (p-value < 0.00001 based on the standard normal distribution). Based on this, we reject the
null hypothesis that DNA demethylation and histone hyperacetylation are independent among up-regulated
genes.
In order to better understand the associations among gene expression, DNA demethylation, and histone

hyperacetylation, contingency tables were constructed. Among genes with a large chance of up-regulation
(Table 2a, b, c, and e), DNA demethylation and histone hyperacetylation status were positively correlated.
Among genes with a small chance of up-regulation (Table 2d and f), there was no evidence of an association
between DNA demethylation and histone hyperacetylation status. It is worthwhile to notice that in Table 2e,
among 60 genes with a high chance of up-regulation (&Ĝ(1) ≥ 0.8), there was no strong evidence of both
DNA demethylation and histone hyperacetylation change in 44 genes (&Â(1) < 0.2 and &M̂(1) < 0.2).
Biologically, while expression of these genes was not directly associated with epigenetic changes, these

FIG. 3. Scatter plot of (&M̂
(1)
g , &Â

(1)
g ) (a) All genes; (b) genes with &G

(1)
g > 0.25; (c) genes with &G

(1)
g > 0.50;

and (d) genes with &G
(1)
g > 0.80.
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Table 2. Contingency Tables of DNA-Methylation/Histone-Acetylation with
Different Gene Expression Threshold

(a) &Ĝ(1) ≥ 0

&Â(1) ≥ 0.5 &Â < 0.5

&M̂(1) ≥ 0.5 304 398
&M̂(1) < 0.5 300 503

Chi-square p-value = 0.022

(b) &Ĝ(1) ≥ 0.25

&Â(1) ≥ 0.5 &Â < 0.5

&M̂(1) ≥ 0.5 92 91
&M̂(1) < 0.5 169 266

Chi-square p-value = 0.011

(c) &Ĝ(1) ≥ 0.8

&Â(1) ≥ 0.5 &Â < 0.5

&M̂(1) ≥ 0.5 31 16
&M̂(1) < 0.5 84 102

Chi-square p-value = 0.013

(d) &Ĝ(1) < 0.2

&Â(1) ≥ 0.5 &Â < 0.5

&M̂(1) ≥ 0.5 167 300
&M̂(1) < 0.5 122 210

Chi-square p-value = 0.83

(e) &Ĝ(1) ≥ 0.8

&Â(1) ≥ 0.8 &Â(1) < 0.2

&M̂(1) ≥ 0.8 4 2
&M̂(1) < 0.2 10 44

Chi-square p-value = 0.032

(f) &Ĝ(1) < 0.2

&Â(1) ≥ 0.8 &Â(1) < 0.2

&M̂(1) ≥ 0.8 15 42
&M̂(1) < 0.2 12 30

Chi-square p-value = 0.98

genes could be downstream targets of other genes controlled by DNA demethylation and histone hyper-
acetylation.
On the other hand, in Table 2f, among 99 genes with a small chance of up-regulation (&Ĝ(1) <

0.2), there was some evidence of a change in either DNA demethylation or histone hyperacetylation for
69 genes (&Â(1) ≥ 0.8 or &M̂(1) ≥ 0.8). Biologically, these 69 genes could be regulated by nonepigenetic
mechanisms; therefore, a change in DNA methylation and histone acetylation status would not lead to
up-regulation of these genes.
To consolidate our results, we performed three sets of bootstrap analyses. Our null hypothesis was

that Mijkl and Aijkl were independent, regardless of Gijkl . The first bootstrap analysis tried to address the
effect of the normalization step on the follow-up data analysis. A bootstrap array contained 1,507 resampled
genes (with replacement) from the raw data (before normalization). To preserve the treatment effect on
gene expression, DNA demethylation, and histone hyperacetylation, the Cy3 and Cy5 signals for a given
gene were drawn in pairs. A set of bootstrap samples (two replicates for each of three array types) had
one bootstrap array generated from each array sample in our data, and these bootstrap samples were drawn
independently. This independent resampling scheme ensured that gene expression, DNA demethylation,
and histone hyperacetylation status were independent under the null hypothesis. In total, k = 1, . . . , 1,000
sets of bootstrap samples, {G(k)

g ,M(k)
g ,A(k)

g }1,507g=1 , were generated. Then, in each bootstrap sample, two
replicates for each of three array types were normalized by the same Loess nonlinear method (Bolstad et al.,
2003). A mixture model (1) was fitted to the normalized expression and methylation arrays, and a mixture
model (5) was fitted to the normalized acetylation array. The values (&Ĝ

(1)(k)
g , &M̂

(1)(k)
g , &Â

(1)(k)
g ) were

estimated, a weighted least square regression was performed, and the ratio β̂
(k)
1 /se(β̂

(k)
1 ) was calculated.

Based on the empirical distribution of {β̂(k)
1 /se(β̂

(k)
1 )}k=1,...,1,000, the p-value was less than 0.001.

The main difference between the second and first bootstrap analysis was that the second analysis drew
normalized instead of unnormalized signals. Similarly to the first analysis, k = 1, . . . , 1,000 sets of normal-
ized independent bootstrap samples, {G(k)

g ,M(k)
g ,A(k)

g }1,507g=1 , were generated. This independent resampling
scheme ensured that gene expression, DNA demethylation, and histone hyperacetylation status were inde-
pendent under the null hypothesis. For each bootstrap sample, a mixture model (1) was fitted to expression
and methylation arrays, and a mixture model (5) was fitted to the corresponding acetylation array. The
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values (&Ĝ
(1)(k)
g , &M̂

(1)(k)
g , &Â

(1)(k)
g ) were estimated, a weighted least square regression was performed,

and β̂
(k)
1 /se(β̂

(k)
1 ) was calculated. Based on the empirical distribution of {β̂(k)

1 /se(β̂
(k)
1 )}k=1,...,1,000, the

p-value was less than 0.001. By comparing this p-value to the one from the first analysis, we concluded
that the normalization step had little if any effect on the follow-up data analysis.
Because the standard errors of the mixture model parameters in (3) and (7) were within 3% of their

parameter estimates (not reported in Table 1), the parameter estimates were highly accurate with such a
large sample size (n = 1,507). Therefore, in our third bootstrap analysis, we directly sampled (n = 1,507)
&Ĝ

(1)(k)
g from &Ĝ

(1)
g , &M̂

(1)(k)
g from &M̂

(1)
g , and &Â

(1)(k)
g from &Â

(1)
g independently with replacement

k = 1, . . . , 1,000 times. This independent resampling scheme ensured that gene expression, DNA demethy-
lation, and histone hyperacetylation status were independent under the null hypothesis. In each bootstrap
sample, a weighted least squares regression was performed, and β̂

(k)
1 /se(β̂

(k)
1 ) was calculated. The empir-

ical distribution was formed {β̂(k)
1 /se(β̂

(k)
1 )}, and the p-value was the percent of {β̂(k)

1 /se(β̂
(k)
1 )} replicates

that were larger than the observed β̂1/se(β̂1). The p-value was less than 0.001.
Therefore, all three bootstrap analyses confirmed the result using weighted least square analysis. By

comparing bootstrap p-values between analysis one and two, we concluded that the normalization step
had little effect on the follow-up data analysis. By comparing bootstrap p-values between analysis two
and three, we concluded that the mixture model parameters in (3) and (7) were highly accurate such that
their variances had little effect on the weighted least square inference.
The chi-square statistic X = 0.357 in the triple-array data (p-value = 0.45) was based on the chi-square

distribution with one degree of freedom. However, as the approximation, 1̂{&Gg = 1, &Mg '= 0, &Ag '=
0} = Pr{&Mg '= 0 | Mg}Pr{&Ag '= 0 | Ag}Pr{&Gg '= 1 | Gg}, may change the shape of the asymptotic
distribution of X, we have performed three bootstrap analyses. These three bootstrap procedures were
exactly the same as those in the weighted least squares method. In the first analysis, based on k = 1,000
sets of bootstrap samples from unnormalized data under the null hypothesis, (&Ĝ

(1)(k)
g , &M̂

(1)(k)
g , &Â

(1)(k)
g )

were estimated, and an empirical distribution of {X(k)} was generated. The p-value for the observed
X = 0.357 was less than 0.001.
In the second bootstrap analysis, based on k = 1,000 sets of bootstrap samples from normalized data

under the null hypothesis, (&Ĝ
(1)(k)
g , &M̂

(1)(k)
g , &Â

(1)(k)
g ) were estimated, and an empirical distribution of

{X(k)} was generated. Again, the p-value for the observed X = 0.357 was less than 0.001.
In the third bootstrap analysis, 1,000 sets of (&Ĝ

(1)(k)
g , &M̂

(1)(k)
g , &Â

(1)(k)
g ) were directly sampled from

(&Ĝ
(1)
g , &M̂

(1)
g , &Â

(1)
g ). An empirical distribution of {X(k)} was formed. The p-value for the observed

X = 0.357 was less than 0.001.
The conservative nature of the chi-square statistic due to the independence assumption made in (16)

was confirmed in three bootstrap analyses. The fact that the p-value from analysis one and two was the
same suggested that the normalization step had little effect on the follow-up analysis. The equality of
the p-values from analysis two and three suggested that the mixture model parameters in (3) and (7)
were highly accurate such that their variances had little effect on the chi-square inference. Both bootstrap
analysis one and two involved computationally intensive normalization or mixture model fitting steps. By
contrast, the computational burden associated with the third bootstrap scheme was much lighter and is a
viable replacement for the chi-square test that is of questionable validity in this context.

Power analysis
For an experimental design to test the epigenetic hypothesis, it is useful to have some statistical guide-

lines. The interesting issues are the relationships among the power, the number of genes, the number of
replicates, and the size of the effect. In the power analysis, we adopted all the parameter estimates from
the dependent model (Table 1). In addition, marginally, among genes with an altered expression level, 78%
were set as up-regulated. Among genes with an altered methylation status, 60% were set as demethylated.
And, among genes with altered acetylation status, 68% were set as hyperacetylated.
The odds of hyperacetylation were defined as the proportion of hyperacetylated genes over the proportion

of nonhyperacetylated genes. In the experiment, when all of these genes were up-regulated, the odds of
hyperacetylation in the demethylated genes were expected to be higher than for hyperacetylation in the
methylated genes. If the genes were not up-regulated, they were assumed to have independent methylation
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FIG. 4. Simulation scheme.

and acetylation status. The odds ratio (OR) (Agresti, 1990) was employed to describe the association
between methylation and acetylation status. The stronger the positive association, the larger the OR,
while independence means OR = 1. In the power analysis, we used OR values of 1, 5, and 10 for the
hyperacetylation and demethylation association among the up-regulated genes.
Gene expression, DNA methylation, and histone acetylation signals were simulated according to a

scheme described in Fig. 4. In each simulated dataset, triple array signals for 500 or 1,500 genes were
generated with either two or four replicates. In total, 1,000 simulated datasets were generated. A one-sided
p-value under 0.05 was claimed to be statistically significant. The p-value for a bootstrap analysis was
based on its empirical distribution. The bootstrap procedure was the same as the third bootstrap analysis
outlined in the data analysis section. The results of the power analysis are shown in Table 3. First, the
more genes or the more replicates, the higher the power. Second, the normal test in the weighted least
squares regression had inflated type I errors (≥0.05), which were calculated as the power when OR = 1.
Hence, its higher power was biased compared to the weighted least squares bootstrap analysis. Third, while
both methods maintained a 5% type I error rate, the weighted least squares bootstrap analysis was more
powerful than the chi-square bootstrap analysis. For a dataset of 1,500 genes with two replicates for each
array, the bootstrap WLS generated approximately 42% power to detect an OR of 5 for the correlation of
the demethylation and hyperacetylation among up-regulated genes.

Sensitivity analysis
Model (1) assumes that µG,jg , the log-transformed true expression for gene g, follows a normal dis-

tribution. However, according to Figs. 2(a) and (b), the distribution of gene expression is heavily skewed
to the right, even after log-transformation. This is also true for both the methylation and acetylation ar-
rays [Figs. 2(c), (d), (e), (f), (g), and (h)]. Newton et al. (2003) recognized this situation and applied a
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Table 3. Power Analysisa

WLS Chi-square

Normalb (OR) Bootstrapc (OR) Bootstrapc (OR)

# Gene # Replicate 1 5 10 1 5 10 1 5 10

1500 4 0.132 0.743 0.902 0.050 0.582 0.845 0.052 0.168 0.464
1500 2 0.114 0.612 0.865 0.053 0.423 0.694 0.050 0.123 0.227
500 4 0.135 0.573 0.797 0.051 0.349 0.575 0.049 0.101 0.203
500 2 0.123 0.432 0.590 0.050 0.153 0.332 0.051 0.068 0.112

aIn the simulation, data are generated through models (1)–(3).
bHypothesis tests and power calculations are based on a standard normal distribution from a weighted least-square regression.
cHypothesis tests and power calculations are based on a bootstrap analysis.

nonparametric distribution instead of a normal or a gamma distribution. They demonstrated that a more
flexible model leads to a better posterior probability calculation for gene selection. As our goal in this
paper is an epigenetic hypothesis test, we would like to know whether the test is sensitive to the violation
of the normality assumption.
Figures 5(a), (c), and (e) display the between-replicates variation for gene expression, DNA methylation,

and histone acetylation signals, respectively. These features, as reported by many researchers (Baggerly
et al., 2001; Efron et al., 2001; Roche and Durbin 2001; Tusher et al., 2001), are not constant, suggesting
that measurement errors for high-intensity gene expression follow an approximately constant coefficient

FIG. 5. Between replicate variances of three arrays: (a), (c), and (e) are between replicates variance for the gene
expression, DNA methylation , and histone acetylation respectively, and (b), (d), and (f) are their loess fits respectively.
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Table 4. Sensitivity Analysisa

WLS Chi-square

Normalb (OR) Bootstrapc (OR) Bootstrapc (OR)

# Gene # Replicate 1 5 10 1 5 10 1 5 10

1500 4 0.122 0.675 0.849 0.054 0.531 0.752 0.052 0.134 0.443
1500 2 0.115 0.560 0.715 0.055 0.374 0.603 0.047 0.076 0.204
500 4 0.127 0.456 0.634 0.049 0.274 0.473 0.046 0.079 0.189
500 2 0.133 0.325 0.543 0.052 0.103 0.305 0.050 0.066 0.094

aIn the simulation, log-transformed signal is generated through a gamma distribution, and between replicate variance follows
Equation (13).
bHypothesis tests and power calculations are based on a standard normal distribution from a weighted least square regression.
cHypothesis tests and power calculations are based on a bootstrap analysis.

of variation (CV), and the variation of log-transformed low signals is usually higher than that of log-
transformed high signals. As illustrated in Figs. 5(b), (d), and (f), we observed a slightly different pattern
compared to what has previously been reported. The variance of the lowest log-transformed signals was
less than the median-level signals, though the variance of the highest signals remained low. This was mainly
due to the initial normalization procedure, in which the negative signals were all set as a small positive
number. This procedure inevitably forced some low-signal genes to have very small variance. The variance
shapes of the three arrays were very similar. Furthermore, when the log-transformed signals were between
2 and 4 but otherwise approximately constant, the variance shapes followed a bell shape. Therefore, it was
critical to know whether our tests were sensitive to the inequality in the variances.
To perform a sensitivity analysis, data were simulated to accommodate the above two features and the

follow-up weighted least squares and chi-square tests were based on the mis-specified normality and equal
variance assumptions. If our tests were robust, they would have comparable power regardless of the as-
sumption violations. Therefore, a gamma distribution was employed to simulate the (µG,jg, µM,jg, µA,jg)

for each gene. This distribution had the same mean and variance as our initial normal random variable
but was skewed unlike a normal distribution. In addition, the between-replicate variance was simulated as
follows:

σ 21 (µ) =
{

−a + b otherwise,
−a(µ − 3)2 + b 2 ≤ µ ≤ 4,

(17)

where µ represents the true log-transformed signal for log-transformed gene expression, methylation, or
acetylation level. In particular, (a, b) = (0.22, 0.31) for an expression array, (0.07, 0.11) for a methylation
array, and (0.07, 0.10) for an acetylation array.
Gene expression, DNA methylation, and histone acetylation signals were simulated according to the

same scheme described in Fig. 4, except that step 3 employed a gamma model and used the between-
replicate variances described by (17). In each simulated dataset, 500 or 1,500 triple array gene signals
were generated with either two or four replicates, and a total of 1,000 simulated datasets were generated.
The power of our proposed tests are listed in Table 4. The violations of those two assumptions only

slightly reduced the power of the three tests. In particular, the type I error rate of the WLS bootstrap
analysis was maintained at the 5% level.

DISCUSSION

Our empirical Bayes model (1) and (5) extend the log-normal–normal model of Kendziorski et al.
(2003), the ANOVA model of Kerr et al. (2000), and the two-stage ANOVA model of Wolfinger et al.
(2001). Furthermore, our model provides a flexible way to describe each individual microarray type of the
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triple-microarray system. Based on this framework, by an EM algorithm between the group treated with
TSA and DAC and the control, approximately 43.4% of genes were differentially expressed (up-regulated
or down-regulated), a change in the methylation status was observed for 72.3% of the genes, and the
acetylation status of 57.6% of the genes was also changed . In particular, we demonstrated the importance
of accounting for the correlation structure in our proposed model (1). Furthermore, we show that ignoring
the correlation leads to a 30% underestimation of the overall probability of differentially expressed genes
(a reduction from 0.434 when correlation is taken into account to 0.303 when it is not). This has been
verified through Monte Carlo simulations.
Two methods have been developed to test our null hypothesis, i.e., that promoter hypermethylation and

histone hypoacetylation status are independent among up-regulated genes. One approach follows a weighted
least squares regression and the other a chi-square statistic. Both methods provided strong evidence to reject
the null hypothesis. Bootstrap analyses subsequently verified these results.
Based on the results of the power analysis, we showed that the WLS bootstrap approach is more powerful

than the chi-square bootstrap methodology. The type-I error rate of a normal test in WLS is inflated and
so is its power. Sensitivity analyses demonstrated that our proposed tests are highly robust to the violation
of normality or equal variance assumptions.

APPENDIX A

Expression data was used to demonstrate our EM algorithm. The complete data log-likelihood function
is given in Equation (A.1)

lG(θ) =
∑

g

zG,g{log[f1(Gg)] + pG} + (1− zG,g){log[f0(Gg)] + 1− pG} (A.1)

where θ = (µG, σ 2G,0, σ 2G,1, σ 2G,2, ρG).
In the M-step, for given p̂G and {ẑG,g}, lG(θ) is maximized with an Splus function nlminb. In E-step,

based on current θ̂,

ẑG,g = p̂Gf1(Gg)

p̂Gf1(Gg) + (1− p̂G)f0(Gg)
and p̂G =

∑

g=1,...,n
ẑG,g

n
. (A.2)

The EM algorithm for methylation and acetylation arrays follows similar procedures.

APPENDIX B

As &Gg was not observed from the expression arrays, it was necessary to estimate it from the data.

Pr{&Gg = 1 | Gg} = Pr{(zG,g = 1) ∩ (µG,1g > µG,2g) | Gg}

= Pr{µG,1g > µG,2g | zG,g = 1,Gg)Pr(zG,g = 1 | Gg)
(B.1)

The second term of the right-hand side of Equation (B.1) is the probability of different expression levels
for gene g between treatment and control given the observed data.

Pr(zG,g = 1 | Gg) = pGf1(Gg)

pGf1(Gg) + (1− pG)f0(Gg)
= ẑG,g, (B.2)

where f1(Gg) and f0(Gg) are defined in Equation (3).
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The first term of the right-hand side of Equation (B.1) is the posterior probability of up-regulation for
gene g due to the treatment given that gene expression levels are different between treatment and control
and observed data. The posterior mean and covariance of (µG,1g, µG,2g) are

E(µG,1g | zG,g = 1,Gg) =

G111g + G212g

σ 2G,0 + σ 2G,1
+ µG

σ 2G,2
2

σ 2G,0 + σ 2G,1
+ 1

σ 2G,2

,

E(µG,2g | zG,g = 1,Gg) =

G122g + G221g

σ 2G,0 + σ 2G,1
+ µG

σ 2G,2
2

σ 2G,0 + σ 2G,1
+ 1

σ 2G,2

,

var(µG,1g | zG,g = 1,Gg) = var(µG,2g | zG,g = 1,Gg) = 1
2

σ 2G,0 + σ 2G,1
+ 1

σ 2G,2

,

cov(µG,1g, µG,2g | zG,g = 1,Gg) =

2σ 2G,1

(σ 2G,0 + σ 2G,1)
2 + ρG

σ 2G,2
(

2
σ 2G,0 + σ 2G,1

+ 1
σ 2G,2

)2 .

The posterior mean and variance of (µG,1g − µG,2g) are

E(µG,1g − µG,2g | zG,g = 1,Gg) =

G111g + G212g

σ 2G,0 + σ 2G,1
− G122g + G221g

σ 2G,0 + σ 2G,1
2

σ 2G,0 + σ 2G,1
+ 1

σ 2G,2

,

var(µG,1g − µG,2g | zG,g = 1,Gg) =

4σ 2G,0

(σ 2G,0 + σ 2G,1)
2 + 2(1− ρG)

σ 2G,2
(

2
σ 2G,0 + σ 2G,1

+ 1
σ 2G,2

)2 .

Hence, the posterior probability can be written as

Pr{µG,1g > µG,1g | zG,g = 1,Gg} = '





G111g + G212g

σ 2G,0 + σ 2G,1
− G122g + G221g

σ 2G,0 + σ 2G,1√√√√ 4σ 2G,0

(σ 2G,0 + σ 2G,1)
2 + 2(1− ρG)

σ 2G,2




,

where '(•) is the standard normal distribution function.
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APPENDIX C

As &Ag is not observed from the expression arrays, it is necessary to be estimated from the data.

P̂r{&Ag = 1 | Ag} = Pr{(zA,g = 1) ∩ (µA,1g > µA,2g) | Ag}

= Pr{µA,1g > µA,2g | zG,g = 1,Ag)Pr(zG,g = 1 | Ag)
(C.1)

The second term of the right-hand side of Equation (C.1) is the probability of differential expression levels
for gene g between treatment and control given the observed data.

Pr(zA,g = 1 | Ag) = pGf1(Ag)

pAf1(Ag) + (1− pA)f0(Ag)
= ẑA,g, (C.2)

where f1(Ag) and f0(Ag) are defined in Equation (7).
The first term of the right-hand side of Equation (C.1) is the posterior probability of up-regulation for

gene g due to the treatment, given that the expression levels of that gene are different between the treatment
and control groups and the observed data. The posterior mean and covariance of (µA,1g, µA,2g) are

E(µA,1g | zA,g = 1,Ag) =

A111g − A112g + A211g − A212g

σ 2A,0
+ µA

σ 2A,2
2

σ 2A,0
+ 1

σ 2A,2

,

E(µA,2g | zG,g = 1,Ag) =

A121g − A122g + A221g − A222g

σ 2A,0
+ µA

σ 2A,2
2

σ 2A,0
+ 1

σ 2A,2

,

var(µA,1g | zA,g = 1,Ag) = var(µA,2g | zA,g = 1,Ag) = 1
2

σ 2A,0
+ 1

σ 2A,2

,

cov(µA,1g, µA,2g | zA,g = 1,Ag) =

ρA

σ 2A,2
(

2
σ 2A,0

+ 1
σ 2A,2

)2 .

The posterior mean and variance of (µA,1g − µA,2g) are

E(µA,1g − µA,2g | zA,g = 1,Ag) =

A111g − A112g + A211g − A212g − (A121g − A122g + A221g − A222g)

σ 2A,0
2

σ 2A,0
+ 1

σ 2A,2

,

var(µA,1g − µA,2g | zA,g = 1,Ag) =

4
σ 2A,0

+ 2(1− ρA)

σ 2A,2
(

2
σ 2A,0

+ 1
σ 2A,2

)2 .
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Hence, the posterior probability can be written as

Pr(µA,1g > µA,2g | zA,g = 1,Ag)

= '





A111g − A112g + A211g − A212g − (A121g − A122g + A221g − A222g)

σ 2A,0√
4

σ 2A,0
+ 2(1− ρA)

σ 2A,2





where '(•) is the standard normal distribution function.
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