Meta-Analysis of Gene Expression Data:

A Predictor-Based Approach

Supplementary Information
Information about the Adenocarcinoma samples included in the analysis
This section provides information, for each dataset, regarding the cancer samples included in our analysis. This information was extracted from the Supplementary information of the original papers (Beer, et al., 2002; Bhattacharjee, et al., 2001; Garber, et al., 2001).
Michigan dataset: 86 primary adenocarcinoma (AD) samples.
Harvard dataset: 139 ADs resected from the lung. 127 are lung ADs and 12 are ADs suspected to be extrapulmonary metastases based on clinical history. 125 AD samples were associated with clinical data and with histological slides from adjacent sections. 

Stanford dataset:  41 AD patients including 3 intrapulmonary metastases patients. Clinical information is given to about 31 out of the 41 patients.
Table S1 below summarizes the clinical information regarding the cancer samples used in the analysis. 
	
	Michigan
	Harvard
	Stanford

	Number of cancer patients
	86
	139
	41

	Smokers (%)
	89.2
	86
	-

	Tumor stage 1,2,3 (%)
	77.9,0, 22
	-
	3.1,51.6,45.1

	Sex (female, male) (%)
	59.3,40.7
	57.6,42.4
	-

	Average survival (months)
	37.7
	39.4
	23.91

	Average age
	66.3
	63.1
	-


Table S1: Clinical information of the three analyzed datasets. 
Data Pre-processing

We apply the following pre-processing procedure to the Michigan and Harvard datasets: Thresholding: All expression values lower than 32 are set to 32 and all expression values higher than 16,000 are set to 16,000. Filtering: Genes with (max/min) <=2 and (max-min) <=50 are excluded, where max and min refer to the maximum and minimum expression values of a particular gene across all samples (Dudoit, et al., 2000). Logarithmic transformation: Base 2 logarithm is taken for each expression value. Normalization: Each gene is normalized to have mean expression of 0 and standard deviation of 1. For the Stanford dataset missing values are replaced by zeros and the genes are standardized.

Probe Set Filtering

The DAVID database (Dennis, et al., 2003) is used to convert probe sets into gene symbols.  Only probe sets with unique gene symbols which appear both in the datasets of Michigan and of Harvard are retained. After the pre-processing stage and the probe set reduction stage we remain with 5,457 and 6,164 probe sets in the Michigan and Harvard datasets respectively. These probe sets represent 4,579 unique gene symbols.  

The Stanford dataset contains 24,000 cDNA clones which represent 8,401 unique gene symbols. In the Stanford dataset, for each sample the expression values of all clones that correspond to the same gene symbol are given as the average expression value of the clones. 3,509 gene symbols are common to all three datasets.

Construction of a predictive gene set 
This supplementary section explains in detail how a predictive gene set is constructed. An example is provided below (Fig.S1) and we will refer to it throughout the method description.
There are two stages in the construction of a predictive gene set; defining the number of genes required for classification and selecting the genes involved in the classification (see Fig.S1.)
In the first stage, the entire data samples are randomly divided into two sets: 80% of the samples are assigned into a working set (marked in white and purple in Fig.S1.) and 20% of the samples are assigned into a validation set (marked in green).

The working set is further divided into 5 random disjoint subsets. A 5 fold cross validation procedure is used in order to choose the optimal number of genes to be used in the classification. The cross validation procedure is repeated 5 times, in each iteration one of the subsets is held out as test set (marked in purple). The remaining 4 subsets are used as training set (marked in white). 

In each iteration an SVM-RFE ranking procedure is applied using the training set only. This stage results in a ranked gene list in which the top ranked genes are the most important for classification. After the ranking is completed, we examine the success rate obtained by using an increasing number of genes, starting from the top of the ranked list in increments of 5. An SVM classifier with a linear kernel is used to test the predictive performance of the selected genes on the held out subset. 

An example of the results of the 5-cross validation stage is shown in the right most table of Fig.S1. If we look at the first fold iteration we see that SVM classifier based on the 5 top ranked genes reaches a success rate of 76% on the held out set. The 10 top ranked genes (5 more genes are added) reach a success rate of 98%. 

The number of genes ultimately selected for classification is the one that maximizes the average 5-fold cross validation success rate. This optimal number is denoted N.  In our example the mean success rate (over the 5 folds), when using the 5 top ranked genes, is 55.4%. When using the 10 top ranked genes we get a success rate of 95%. With the top 100 genes we get 84%. Now, assuming that the highest mean success rate we got is 95%, the optimal number of genes chosen for classification is 10 (N=10).

In order to identify the genes involved in the classification (second stage in Fig.S1). we re-rank the genes by applying SVM-RFE on the whole working set (and not only on a subset of the data). The N-top genes of the produced ranked gene list comprise the predictive gene set. (The predictive model is constructed by training a SVM classifier on the working set, using the N-top genes chosen in the previous stage and evaluating its performance on the validation set).
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Fig. S2. The distribution of the repeatability frequency of the genes comprising the core-sets of Harvard (A) and Michigan (B). The x-axis represents genes’ indices sorted by their repeatability frequency as presented in the y-axis. For example the most frequent gene in the Harvard dataset appears in 81% of the predictive gene sets
Estimating the Similarity between RGLs and ranked lists produced by SVM-RFE
This section compares the rankings produced by applying SVM-RFE on the entire datasets of Michigan and Harvard with the RGL rankings produced by using the method described in the manuscript. 
The ranking produced by SVM-RFE (will be referred as ´list M`) and the RGL list are quite different for both the Harvard and the Michigan datasets -- the overlap between the 547 top ranked genes in the Harvard RGL (which comprise its core-set) and the top 547 genes of ranked list M is 397. The overlap between the 411 top ranked genes in the Michigan RGL (which comprise its core-set) and the top 411 genes of ranked list M is 311.  Notably, the overlap between the 547 top ranked genes of list M of Harvard with the 411 top ranked genes of list M of the Michigan dataset is smaller than 118 and equals 75.  In conclusion, the ranking of RGL is different from simply ranking the entire dataset by using SVM-RFE. Since the RGL is constructed using many ranked gene lists it is less susceptible to different partitioning of the data and hence better reveals reliable genes. This fact is demonstrated by showing that the joint core of the 2 RGLs is larger in size than the one produced by using SVM-RFE on the entire datasets.  

Statistical Significance of the Joint Core Magnitude

To test the significance of the joint core magnitude, we compare it to an empirical background model constructed from 400 random permutations of the sample class labels (cancer, normal) in each of the Harvard and Michigan datasets. For each random permutation, two RGLs are constructed from each dataset, the permuted core-sets are then derived and the magnitude of the permuted joint core is calculated. However, inferring statistical significance is not straightforward, since in the permuted data the gene core set of each of the datasets are much larger than the true cores. We therefore correct the magnitude of the permuted gene core-sets, prior to constructing the permuted joint core, to be of the same magnitude as the original core-sets, by retaining only the genes from the top of the permuted RGLs. The p-value of the magnitude of the joint core is the fraction of permutation runs which reached a magnitude as large as that of the joint core.

Fig. S3. True joint core magnitude (in squares) versus mean magnitude of the permuted joint core (in circles) obtained by using the permuted label background model. The x-axis represents the threshold on the repeatability frequency in both datasets. The y-axis represents the magnitude of the joint core obtained. Only genes that passed the repeatability threshold in both datasets are counted in the joint-core magnitude.
Comparing the Stanford RGL to the Michigan and Harvard´s RGLs 

The claim in the manuscript is that the joint core has better classification capability than the two separate cores (more transferable as defined in the manuscript). We do not claim that the joint core is similar to the Stanford RGL, and indeed, that is not the case. As high classification accuracy is already obtained with very few genes, such transferability, perhaps quite surprisingly, is not a precondition for high similarity. 

To examine this issue, we have produced an RGL for the Stanford dataset (all the genes in the Stanford dataset were used to construct the RGL).  Here we describe some statistics and a Venn diagram showing the overlap between the three RGLs core set genes: From 8,401 genes in the Stanford dataset, 3,509 are also in the Michigan and Harvard datasets.  The Stanford´s core set contains 806 genes from them 336 are also in Michigan and Harvard. The Michigan's core set has 411 genes from them 320 in the Stanford dataset, and 31 of them are also in Stanford´s core set. Harvard's core set has 547 genes from them 447 in the Stanford dataset, and 50 of them are also in Stanford's core set. The joint core (Michigan and Harvard) has 118 genes from them 97 genes are in the Stanford dataset. The joint core of all three dataset contains 9 genes. A Venn diagram of the core sets of the Stanford, Harvard and Michigan datasets is presented in Fig.S4. The diagram presents genes which appear in all three datasets.

[image: image1]
Fig. S4. A Venn diagram the core set genes of the Stanford, Harvard and Michigan datasets 

We tested the enrichment of the Stanford core set with genes form the joint core using a hypergeometric probability (Given 3,509 genes in the Stanford dataset with 336 in its core set, what is the probability to choose 97 genes and find 9 genes which belong to the core set?).  The results show that the Stanford core set is not enriched with joint core genes (pv = 0.592). Yet, the joint core does provide better transferability. As we show, just very few joint core genes are sufficient in order to provide that in this example, and hence joint core enrichment of the Stanford set is not a precondition.

As we note in the paper (page 4), the joint core itself is not symmetrical as it includes more top-ranked genes of the Michigan set than that of the Harvard dataset.
We hypothesize, however, that as more and more datasets will be utilized to generate
the joint core introduced here, it will become less biased and more 'symmetrical',
resulting in improved transferablity, and possibly, significant enrichment. Furthermore it is important to note that the Stanford dataset was produced using a different platform than that used for generating the Harvard and Michigan datasets. This is likely to be an important factor contributing to the variability among the datasets, and could be another explanation for the lack of enrichment in joint core genes with respect to the Stanford core set. 
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Fig. S1. A schematic view of the construction of a predictive gene set. The data samples are randomly divided into working set (marked in white and purple) and into validation set (marked in green). The working set is further randomly divided into five disjoint subsets. 5 fold cross validation procedure is applied. In each iteration one of the five subsets functions as a testing set (marked in purple), while the other four subsets function as a training set (marked in white). In each iteration SVM-RFE procedure is applied to the training set (resulting in a ranked gene list) and the success rate of various numbers of genes from the top of the list (ranging from 5 to 100 in increments of 5) are tested on the test set (right most table). The mean success rate is calculated. The number of genes chosen for classification, N, is the one that maximizes the success rate over the cross validation iteration. In order to select the genes that participate in the gene set, SVM-RFE is applied to the working set and the N top genes are selected.
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