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ABSTRACT

Motivation: Since many important biological systems or processes

are dynamic systems, it is important to study the gene expression

patterns over time in a genomic scale in order to capture the

dynamic behavior of gene expression. Microarray technologies have

made it possible to measure the gene expression levels of essentially

all the genes during a given biological process. In order to determine

the transcriptional factors (TFs) involved in gene regulation during

a given biological process, we propose to develop a functional

response model with varying coefficients in order to model the

transcriptional effects on gene expression levels and to develop

a group smoothly clipped absolute deviation (SCAD) regression

procedure for selecting the TFs with varying coefficients that are

involved in gene regulation during a biological process.

Results: Simulation studies indicated that such a procedure

is quite effective in selecting the relevant variables with time-varying

coefficients and in estimating the coefficients. Application to the

yeast cell cycle microarray time course gene expression data set

identified 19 of the 21 known TFs related to the cell cycle process.

In addition, we have identified another 52 TFs that also have

periodic transcriptional effects on gene expression during the cell

cycle process. Compared to simple linear regression (SLR) analysis

at each time point, our procedure identified more known cell cycle

related TFs.

Conclusions: The proposed group SCAD regression procedure is

very effective for identifying variables with time-varying coefficients,

in particular, for identifying the TFs that are related to gene

expression over time. By identifying the TFs that are related to

gene expression variations over time, the procedure can potentially

provide more insight into the gene regulatory networks.

Contact: hli@cceb.upenn.edu

Supplementary information: http://www.cceb.med.upenn.edu/

�hli/gSCAD-Appendix.pdf

1 INTRODUCTION

Since many important biological systems or processes are
dynamic systems, it is important to study the gene expression
patterns over time in a genomic scale in order to capture the

dynamic behavior of gene expression. Microarray technologies

have made it possible to measure the gene expression levels of

essentially all the genes during a given biological process.

Research in analysis of such microarray time course (MTC)

gene expression data has focused on two areas: clustering of

MTC expression data (Luan and Li, 2003; Ma et al., 2006) and

identifying genes that are temporally differentially expressed

(Hong and Li, 2006; Tai and Speed, 2006; Yuan and

Kendziorski, 2006). While both problems are important and

biologically relevant, they provide little information about our

understanding of gene regulations.
One approach of studying gene regulation is to associate gene

expression values with oligomer motif abundance by using a

simple linear regression (SLR) for each oligomer of a given

length. Those oligomers with significant coefficients in regres-

sion analysis are inferred as potential transcriptional factor

binding motifs (TFBMs) (Bussemaker et al., 2001; Gao et al.,

2004; Keles et al., 2002). Assuming that in response to a given

biological condition, the effect of a TFBM is strongest among

genes with the most dramatic increase or decrease in

mRNA expression, Conlon et al. (2003) proposed to use SLR

to relate the motif abundance to gene expression by first

selecting genes with large changes in expression levels. While

these approaches work reasonably well in discovery of

regulatory motifs in lower organisms, they often fail to identify

mammalian transcriptional factor binding sites (Das et al.,

2006). Das et al. (2006) proposed to correlate the binding

strength of motifs with expression levels using multivariate

adaptive smoothing splines (MARS) of Friedman (2001).

In addition, all these methods consider gene expression

level at single time point as the response in regression

analysis, rather than the full time course, which can lead to

loss of efficiency in identifying the relevant transcriptional

factors (TFs).
In this article, we consider the problem of identifying the

TFs from a large set of candidates (e.g. from TRANSFAC

database) that may explain the variations of gene expression

over time. Identification of such TFs can provide biological

insights into the active transcriptional subnetworks anchored

on the proximal promotor DNA from genome-wide

mRNA profiles during a biological process (Das et al., 2006).

One approach to analyzing such MTC data is to use the SLR

analysis to relate the TFBM score to the expression level of*To whom correspondence should be addressed.
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genes at each time point (Conlon et al., 2003). Since the

effects of a relevant TF are expected to change over time

during a given biological process, one should expect

some gains in power in detecting the TFs involved in gene

expression changes over a time course when the expression

levels over all the time points are considered simultaneously

in a regression framework. We propose to consider functional

response regression analysis with varying coefficients in

order to identify the relevant TFs. In such models, the ith

response is a real function yiðtÞ, i ¼ 1, . . . , n, t 2 T with

associated covariate vector xi ¼ fxi1, . . . , xikg, which is

constant in time. Of course, it is only possible to observe

the function yi(t) at a finite number of points, possibly

with errors. For the problem of modeling the MTC gene

expression data, yi(t) is the measure expression data

for the ith gene at time point t during a given biological

process, xik is the binding strength of the kth motif

corresponding to the kth TF (Das et al., 2006). The statistical

question to be addressed in this article is to select a set of

TFs from a large set of K candidate TFs that can explain

partially the variation of gene expression levels over time,

where the effects of the TFs on gene expression levels are

time varying.
Partially motivated by analysis of high-dimensional micro-

array gene expression data, the problem of variable

selection in high-dimensional regression settings has

attracted much research attention in recent years. Among

those, the most popular approach is based on penalized

estimation, including Lasso (Tibishrani, 1996), the smothly

clipped absolute deviation (SCAD) (Fan and Li, 2001) and the

least angle regressions (LARS) (Efron, 2005) and various

extensions. However, all these methods are developed for

regression models with parametric scalar parameters.

We propose to develop methods for variable selection for

varying coefficient models by combining smoothing spline

method with the SCAD procedure, where we represent the

time-varying coefficients in terms of B-spline basis functions

and propose a penalized estimation procedure to select

the sets of basis functions. Our approach is similar in

spirit to the group LARS or group Lasso of Yuan and Lin

(2006). Although the L1 penalty gives sparse solutions, the

estimates can be biased for large coefficients since large

penalties are imposed on larger coefficients. In this article, we

propose to use the SCAD penalty on sets of basis functions.

Such a penalty produces sparse solutions by thresholding

small estimates to zero, providing unbiased estimates for

large coefficients. In addition, the resulting estimates based

on the SCAD penalty have desirable theoretical properties

(Fan and Li, 2001).
The rest of the article is organized as follows. We first

introduce the functional response model with time-varying

coefficients for relating the TFs to the MTC gene expression

data. We then present the SCAD procedure for fitting the

models and for selecting the variables (i.e. the TFs). We present

simulation studies to evaluate the methods. We also present

results from analysis of the yeast cell cycle data set of Spellman

et al. (1998). Finally, we present a brief discussion of the results

and methods.

2 FUNCTIONAL RESPONSE MODEL WITH
TIME-VARYING COEFFICIENTS FOR MTC
GENE EXPRESSION DATA

Let Yi(t) be the expression level of the ith gene at time t, for

i ¼ 1, . . . , n. We assume the following regression model with

functional response,

YiðtÞ ¼ �ðtÞ þ
XK
k¼1

�kðtÞXik þ �iðtÞ, ð1Þ

where �(t) is the overall mean effect, �k(t) is the regulation

effect associated with the kth TF, Xik is the matching score or

the binding probability of the kth TF on the promoter region

of the ith gene and �iðtÞ is a realization of a zero-mean

stochastic process. Several different ways and data sources can

be used to derive the matching score Xik. One approach is to

derive the score using the position-specific weight matrix

(PSWM). Specifically, for each candidate TF k, let Pk be the

positive-specific weight matrix of length L, b with element

PkjðbÞ being the probability of observing the base b at position j.

Then each L-mer l in the promoter sequence of the ith gene was

assigned a score Sikl as:

Sikl ¼
XL
j¼1

log
PkjðbiljÞ

BðbiljÞ
,

where, bilj is the nucleotide at position j on the lth sequence

for gene i, and B(b) is the probability of observing b in the

background sequence. This score always assumes a value

between 0 and 1. We then define Xik ¼ maxlSikl, which is

the maximum of the matching scores over all the L-mer in the

promoter region of the ith gene. The maximum scores can then

be converted into the binding probabilities using the method

described in Chen et al. (2007).
Alternatively, we can define the binding probability based

on the chromatin immunoprecipitation (ChIP-chip) data.

We present some details in the next section.

2.1 Calculation of binding probabilities

based on ChIP data

The results produced by a typical ChIP binding experiment for

TF k is a set of measures Zik for the enrichment of each gene

i for that TF k. These measures are then standardized,

UiK ¼ ðZik � ZkÞ=sZk
, to have a common mean and SD.

For each Uik, a significance test is performed against a null

hypothesis of no enrichment, giving a P-value Pik for each

gene that is calculated using a standard normal distribution.

However, as these P-values cannot be directly interpreted as

the probability Xik ¼ PðTF k binds gene iÞ, we adopted the

method proposed by Chen et al. (2007) to convert Pik into

binding probabilities Xik using mixture modeling. For simpli-

city of notation, we drop the subscript k in the following.

We first convert the P-values Pi to normal score Zi using

the inverse CDF for the standard normal distribution.

The distribution of these enrichment measures Xi should be

a mixture of two different groups: a large group of unenriched

genes that should be centered at X¼ 0 and a smaller group of

genes that are truly enriched, with center � > 0. We can model
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each gene with a latent variable Ii that indicates whether that
gene is in the enriched group (Ii ¼ 1) or unenriched group

(Ii ¼ 0). Then the binding probability for each gene is simply

defined as Xi ¼ PðIi ¼ 1jDataÞ. An expeutation maximization
(EM) algorithm can then be applied to estimate these

probabilities.
It should be noted that the mixture model used the

theoretical standard normal null distribution instead of an

empirical null distribution, since the use of an unrestricted
mixture model (with an empirically fitted null distribution)

led to unreasonable mixtures for several TFs. This procedure

was repeated for each TF k to generate our full set of binding
probabilities Xik. For the yeast data set we analyzed in later

section, the correspondence between the number of genes we

predicted as enriched based on P-values (Pi < 0:005) and
binding probabilities (Xi > 0:5) is very good, with a correlation

of 0.97 between the number of genes predicted across our
113 TFs. However, we noticed that our conversion procedure

tended to be overly conservative for genes with very low

P-values. In other words, genes with Pik < 0:001 had estimated
binding probabilities that is smaller than expected, possibly due

to our assumption of a standard normal null distribution.

For these highly significant genes, the binding probabilities
were increased to Xik ¼ 0:95 to reflect our extra confidence

that these genes were truly enriched in the ChIP binding

experiment for TF k.

3 METHODS OF VARIABLE SELECTION
FOR VARYING COEFFICIENT MODELS

We present a penalized estimation procedure for Model (1) using

SCAD by representing the varying coefficient �k(t) using smoothing

splines. In particular, we propose to use B-splines, which have been

shown to provide quite reasonable fits to MTC gene expression data

(Hong and Li, 2006; Luan and Li, 2003; Storey et al., 2005).

3.1 Estimation using B-splines

We consider estimation of non-parametric function in Model (1) using

the smoothing spline method by approximating �k(t) by using the

natural cubic B-spline basis,

�kðtÞ ¼
XLþ4
l¼1

�klBlðtÞ ð2Þ

where, Bl(t) is the natural cubic B-spline basis function, for

l ¼ 1, . . . ,Lþ 4, where L is the number of interior knots. Replacing

�k(t) by its B-spline approximation in Equation (2), Model (1) can be

approximated as

YiðtÞ ¼ �ðtÞ þ
XK
k¼1

XLþ4
l¼1

�kl½BlðtÞXik�

( )
þ �iðtÞ, ð3Þ

where, we have K groups of parameters with ��k ¼ f�k1, . . . , �kLþ4g being

the parameters associated with the group k, and we want to select the

groups with non-zero coefficients. This is the grouped variable selection

problem considered in Yuan and Lin (2006).

3.2 A group SCAD penalization procedure

We propose a general group SCAD (gSCAD) procedure for selecting

the groups of variables in a linear regression setting. Selecting

important variables in Model (1) corresponds to the selection of

groups of basis functions in Model (3). Yuan and Lin (2006) proposed

several procedures for such group variable selection, including group

LARS and group LASSO. Instead of using the L1 penalty for group

selection as in Yuan and Lin (2006), we propose to use the SCAD

penalty of Fan and Li (2001). Specifically, to select non-zero �k(t),

we can minimize the following penalized loss function

lð�Þ ¼
Xn
i¼1

XT
j¼1

½yij � �ðtjÞ �
XK
k¼1

XLþ4
l¼1

�klBlðtjÞXik�
2

þ nT
XK
k¼1

p�ðjj�
�
kjj2Þ, ð4Þ

where, yij is the observed gene expression level for gene i at time tj, p�ð:Þ

is the SCAD penalty with � as a tuning parameter, which is defined as

p�ðjwjÞ ¼

�jwj if jwj � �,

�
ðjwj2�2a�jwjþ�2Þ

2ða�1Þ if � < jwj < a�,

ðaþ1Þ�2

2 if jwj > a�

8>><
>>: ð5Þ

and jj��kjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPLþ4

l¼1 �
2
kl

q
. The penalty function (5) is a quadratic spline

function with two knots at � and a�, where a is another tuning

parameter. Fan and Li (2001) showed that the Bayes risks are not

sensitive to the choice of a and suggested to use a¼ 3.7, which was also

used in this article.

3.3 Algorithm and selection of tuning parameters

Because of non-differentiability of the penalized loss l(�) in

Equation (4), the commonly used gradient method is not applicable.

Instead, we develop an iterative algorithm based on local quadratic

approximation of the non-convex penalty p�ðk�kk2Þ as in Fan and Li

(2001). More specifically, in a neighborhood of a given non-zero

�0 2 R, we can approximate the SCAD penalty at value � as the

following,

p�ðj�jÞ � p�ðj�0jÞ þ 1=2fp0�ðj�0jÞ=j�0jgð�
2 � �20Þ:

In our algorithm, a similar quadratic approximation is used

by substituting � with k��kk2, k ¼ 1, . . . ,K. Given an initial

value of ��0k with k��0k k2 > 0, p�ðk�
�
kk2Þ can be approximated by

a quadratic form

p�ðk�
�0
k k2Þ þ 1=2fp0�ðk�

�0
k k2Þ=k�

�0
k k2gðð�

�
kÞ

t��k � ð�
�0
k Þ

t��0k Þ,

where, the subscript t represents vector or matrix transpose. Using this

approximation and letting

�� ¼ ð�11, . . . , �1ðLþ4Þ, . . . ,�K1, . . . ,�KðLþ4ÞÞ,

the Equation (4) becomes

lð��Þ ¼ ðY� C�� ~X��ÞtðY� C�� ~X��Þ þ
1

2
nT��t���,

where Y ¼ ðy11, . . . , y1T, . . . , yn1, . . . , ynTÞ
t, � ¼ ð�ðt1Þ, . . . ,�ðtTÞÞ,

C ¼ ~1n
N

IT, ~X ¼ X
N

B with Blj ¼ BlðtjÞ, l ¼ 1, . . . ,Lþ 4,

j ¼ 1, . . . ,T, X ¼ fXikg
k¼1,...,K
i¼1,..., n and

� ¼ diag
p0�ðk�

�0
1 k2Þ

j��01 k2
, . . . ,

p0�ðk�
�0
K k2Þ

j��0K k2

� �O
IðLþ4Þ:

Here,
N

represents the Kronecker product of two matrices and I is the

identify matrix. This is a quadratic form and can be solved by

ð ~Xt ~Xþ
1

2
nT�Þ�� ¼ ~XtðY� C�Þ,

� ¼ CtðY� ~X��Þ: ð6Þ

We outline the algorithm as follows:

Step 1: Initialize ð�ð1Þ,��ð1ÞÞ.

Step 2: Set ��0 ¼ ��ðkÞ, solve ð�ðkþ1Þ,��ðkþ1ÞÞ by Equation (6).
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Step 3: Iterate Step 2 until convergence of �� and denote the final

estimate of �� as �̂�.

In the initialization step, we obtain an initial estimation of ð�,�Þ

using a ridge regression, which substitutes p�ðk�
�
kk2Þ in (4) with

a quadratic function k��kk
2
2. At any iteration of step 2, if some k��kk2

is smaller than a cutoff value �1 > 0, we set �̂kl ¼ 0 for all

l ¼ 1, . . . ,Lþ 4 and treat Xik as irrelevant. If any matrix is singular

when solving Equation (6), a small perturbation �2 is added to the

diagonal entry of the matrix. In our algorithm both �1 and �2 are

set to 10�3. Note that adding a small perturbation �2 is equivalent

to adding another L2 penalty to the penalized loss function (4), which

also facilitates the selection of highly correlated features (Zou and

Hastie, 2005).

There are two tuning parameters that we need to choose in order

to implement the proposed procedure: the number of knots L in the

B-spline basis expansion (see Equation 2) and the tuning parameter �

in the SCAD penalty function. These two parameters can be selected

simultaneously using the generalized cross-validation (GCV).

In practice, since the number of time points in typical MTC experiments

is usually small, we choose a small number of basis functions in our

analysis. Key to the performance of gSCAD is selection of the tuning

parameter �. When � is too large, it leads to biased estimates of

the coefficients, whereas a too small � often fails to yield a sufficiently

sparse solution. Note that in our algorithm, the estimated

�̂� ¼ ð ~Xt ~Xþ 1=2nT��ð�̂
�ÞÞ
�1 ~Xt, and thus ŷ ¼ ~X�̂� ¼Mð�Þy with

Mð�Þ ¼ ~Xð ~Xt ~Xþ 1=2nT��ð�̂
�ÞÞ
�1 ~Xt. Therefore, an optimal � can be

obtained by minimizing the following estimated GCV error

GCVð�Þ ¼
1

n

ky�Mð�Þyk22
ð1� tr½Mð�Þ�=nÞ2

:

3.4 Oracle property of gSCAD group selection

In Fan and Li (2001), the oracle property of the SCAD penalized

estimates for standard linear models was established, which indicates

that the SCAD penalty enables consistent variable selection and

parameter estimation simultaneously, as if the subset of relevant

variables is already known. To study theoretical properties of gSCAD,

we generalize the arguments in Fan and Li (2001) to the group selection

settings assuming that the knot locations are held fixed as the sample

size increases. Without loss of generality, we consider the model

given by equation (3) with �¼ 0 and assume that a random design

where zij ¼ ðxij, yijÞ, i ¼ 1, . . . , n, j ¼ 1, . . . ,T, are independently and

identically distributed with

yij ¼ xijb
� þ "ij,

xtij ¼ ðB1ðtjÞXi1, . . . ,BLþ4ðtjÞXiKÞ, E"ij ¼ 0 and Varð"ijÞ ¼ �
2. We

further denote X ¼ ðxt11, . . . , xtnTÞ
t. Let b� ¼ ðb�1

t, . . . , b�K
t
Þ
t and assume

that b�ð1Þ ¼ ðb�1
t, . . . ,b�s

t
Þ
t are the non-zero coefficients, and

b�ð2Þ ¼ ðb�sþ1
t, . . . ,b�K

T
Þ
t
¼ 0, i.e. the first s TFs in Model (3) are

relevant to gene expression levels over time and the next K� s

TFs are not relevant. Let � ¼ diagfð@2lðkb�1kÞ=@b
�
1@b
�t
1 Þjb�1¼b̂�1

, . . . ,

ð@2lðkb�s kÞ=@b
�
sb
�t
s Þjb�s¼b̂�s

g and m¼ nT and we have the following

asymptotic theorem:

THEOREM 1. Assume � ¼ EðXX tÞ is positive definite, and

�m ! 0 and
ffiffiffiffi
m
p

�m !1 as m!1. Then,

(1) b̂�ð2Þ ¼ 0 with probability approaching 1.

(2) m1=2ð�ð1Þ þ�Þðb̂�ð1Þ � b�ð1ÞÞ ! Nð0,�ð1ÞÞ in distribution, where

�ð1Þ is the covariance matrix � corresponding to bð1Þ.

The proof of this theorem is given in the Supplementary Materials.

Such an oracle property of the gSCAD procedure distinguishes it from

other group variable selection procedures, such as group LARS or

group Lasso of Yuan and Lin (2006). As a consequence, the asymptotic

covariance matrix of �̂�ð1Þ is

1

m
ð�ð1Þ þ�Þ�1�ð1Þð�ð1Þ þ�Þ�1,

which can be used to derive the confidence intervals for �̂kðtÞ.

4 SIMULATIONS

We conducted simulation studies to evaluate the proposed

gSCAD procedure in selecting relevant variables and in
estimating the regression coefficients. Specifically, we simulated
MTC gene expression data for 500 genes over 11 time points at

0, 0:1, 0:2, . . . , 0:9 and 1.0 based on Model (3), where �k(t) was
generated using B-splines with 1 interior knot, which corre-
sponds to five basis functions. We assume that there are 10 TFs

that affect the MTC expression levels over time. For each TF,
the binding probabilities were generated from a uniform (0,1)
distribution. The true time-varying coefficients for the TF 2 is

shown as the solid lines in Figure 1 (coefficients for other TFs
are given in Supplementary Materials). We also assume that the
500 genes can be divided into 25 regulatory modules, each

including 20 genes that have similar promoter motif-matching
scores. Finally, the noises in Model (3) are generated from
Nð0, �2Þ, where �2 ¼ 1 or 3 for low and high noise levels.

For each model, we repeated the simulation 100 times and
summarized the results.
Plots (a) and (b) in Figure 1 show the means and þ/� 1 SE of

the estimated time-varying coefficients for the simulated TF 2
using the proposed gSCAD when the noise variance �2 ¼ 1 and
3, respectively, indicating that the gSCAD procedure estimates

the parameters very well (plots for other nine TFs are given
in the Supplementary Materials). As a comparison, plots
(c) and (d) in Figure 1 show the results based on SLR analysis

for each time point. Specifically, for a given TF, an SLR was
used to estimate the corresponding coefficient at each time
point. The means of these estimates (þ/�1 SE) are plotted in

Figure 1 at each of the 11 time points. Although these estimates
can also capture the trend of the true functions well, it is clear
that these estimates have much larger variances than those from
the gSCAD procedure. The same results were also observed for

all other nine TFs (see plots in Supplementary Materials).
Table 1 shows the frequencies over 100 replications of the

relevant TFs and irrelevant TFs that were identified by gSCAD

and simple point-wise linear regression models. For linear
regression, we used the false discovery rate (FDR) procedure
of Benjamini and Hochberg (1995) to select the relevant TFs.

For a given FDR value, if a TF is significant at at least one time
point, we call this TF significant. When the noise variance
�2 ¼ 1, both methods identified almost all the true TFs with

gSCAD resulting smaller rate of false positives. When the noise
variance is increased to �2 ¼ 3, the frequency of the relevant
TFs being identified by the gSCAD is 92% with a false positive

rate of 4%. As a comparison, the SLRs identified fewer
relevant TFs for similar rate of false positives. When �2 ¼ 5,
gSCAD has a true positive rate of 66% and a false positive rate

of 4%. In contrast, SLR identified much fewer TFs. In order to
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achieve a true positive rate of 66% using SLR, the false positive

rate has to be 9.61%.

5 APPLICATION TO YEAST CELL
CYCLE DATA SET

The cell cycle is one of life’s most important processes, and the

identification of cell cycle regulated genes has greatly facilitated

the understanding of this important process. Spellman et al.

(1998) monitored genome-wide mRNA levels for 6178 yeast

ORFs simultaneously using several different methods of

synchronization including an �-factor-mediated G1 arrest,

which covers approximately two cell cycle periods with

measurements at 7 min intervals for 119 min with a total of

18 time points (http://genome-www.stanford.edu/cellcycle/

data/rawdata/). Using data based on different synchronization

experiments, Spellman et al. (1998) identified a total of

about 800 cell cycle regulated genes, some showing periodic

expression patterns only in a specific experiment. Using a

model-based approach, Luan and Li (2003) identified 297 cell

cycle regulated genes based on the �-factor synchronization

experiments. We applied the mixture model approach described

in previous section using the ChIP data of Lee et al. (2002)

to derive the binding probabilities Xik for these 297 cell cycle

regulated genes for a total of 96 TFs with at least one non-zero

binding probability in the 297 genes.

We applied the gSCAD procedure with L¼ 2 and an

additional L2 penalty in order to identify the TFs that affect

the expression changes over time for these 297 cell cycle

regulated genes in the �-factor synchronization experiment.

The gSCAD procedure identified a total of 71 TFs that are
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Fig. 1. True (solid line) and mean (þ/� 1 SE) of the estimated (dashed and dotted lines) time-dependent transcriptional effects for TF 2 using

the gSCAD (plots (a) and (b)) and SLR (plots (c) and (d)) for noise variance of 1 (left) and 3 (right).
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related to yeast cell cycle processes, including 19 of the 21

known and experimentally verified cell cycle related TFs. The

estimated transcriptional effects of these 21 TFs are shown in

Figure 2, except for the two TFs (CBF1 and GCN4) that were

not selected by the gSCAD procedure and the TF LEU3,

the other 18 TFs all showed time-dependent effects of these TFs

on gene expression levels. In addition, the effects followed

similar trends between the two cell cycle periods. It was not

clear why CBF1 and GCN4 were not selected by the gSCAD.

The minimum P-values over 18 times points from SLRs are

0.06 and 0.14, respectively, also indicating that CBF1 and

GCN4 were not related to expression variation over time.

Overall, the model can explain 43% of the total variations

of the gene expression levels.

The 52 additional TFs (see Table 2) that were selected by the

gSCAD procedure almost all showed estimated periodic

transcriptional effects. Figure 3 showed the estimated tran-

scriptional effects for eight of these TFs (CIN5, PHD1, NDD1,

STP1, YAP6, NRG1, HSP1 and MBP1), all showing periodic

transcriptional effects (plots for other 10 randomly selected TFs

can be found in the Supplementary Materials). The identified

TFs include many pairs of cooperative or synergistic pairs

of TFs involved in the yeast cell cycle process reported in

the literature (Banerjee and Zhang, 2003; Tsai et al., 2005).

Of these 52 TFs, 34 of them belong to the cooperative pairs

of the TFs identified by Banerjee and Zhang (2003). The results

are not surprising, since by adding a L2 penalty term to the

SCAD penalized loss function, our procedure can effectively

identify the TFs that bind to similar genes or the TFs that

have similar binding scores. To assess false identifications of

the TFs that are related to a dynamic biological procedure,
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Fig. 2. Estimated time-dependent transcriptional effects for 21 known yeast TFs related to cell cycle process using gSCAD. Note that CBF1 and

GCN4 were not selected by gSCAD.

Table 1. Simulation comparison of the gSCAD method and the SLR

method using Benjamin and Hochberg’s FDR (5 and 15%, respectively)

for noise variances of �2¼ 1, 3 and 5

Method �2¼ 1 �2¼ 3 �2¼ 5

gSCAD 1.00/0.016 0.92/0.040 0.66/0.040

SLR,FDR¼ 5% 0.997/0.033 0.74/0.0094 0.18/0.002

SLR,FDR¼ 15% 0.998/0.12 0.87/0.049 0.33/0.011

For each entry, the numbers are the frequencies of the relevant TFs (first number)

and the irrelevant TFs (second number) that were identified over 100 replications.
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Table 2. Fifty-two additional TFs identified by gSCAD procedure

ARG81 ARO80 ASH1 CIN5 CRZ1 CUP9 DAL81 DOT6 FHL1 FZF1

GAT1 GAT3 GRF10.Pho2. GTS1 HAL9 HAP2 HAP3 HAP4 HAP5 HIR2

HMS1 HSF1 IME4 INO2 MAC1 MAL13 MATa1 MET4 MIG1 MOT3

MSN4 MTH1 NRG1 PHD1 PUT3 RFX1 RGM1 RLM1 ROX1 RTG1

RTG3 SFP1 SIG1 SIP4 SMP1 SOK2 SRD1 STP1 STP2 YAP5

YAP6 YJL206C

These include 34 that belong to the cooperative pairs of the TFs identified by Banerjee and Zhang (2003).
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Fig. 3. Estimated time-dependent transcriptional effects for eight out of 52 additional yeast TFs related to the cell cycle process identify gSCAD.
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we randomly permuted the gene expression values across genes
and time points and applied the gSCAD procedure again to the
permuted data sets. We repeated this procedure 50 times.

Among the 50 runs, 5 runs selected 4 TFs, 1 run selected 3 TFs,
16 runs selected 2 TFs and the rest of the 28 runs did not select
any of the TFs, indicating that our procedure indeed selects

the relevant TFs with few false positives.
To compare the gSCAD procedure with SLR, we performed

SLR with motif probability as the predictor and the gene

expression at each time point as the response. After Bonferroni
adjustment for multiple testing, we found that only 7 out of
the 21 known cell cycle related TFs that showed statistically

significant association with the gene expression levels.
Besides using the binding probabilities derived from ChIP-

chip data, we also performed analysis using the binding

probabilities derived from the sequence data and the PSWMs.
Specifically, we identified 72 TFs with reliable PSWMs for
estimating the binding probabilities. The gSCAD identified

56 TFs that can potentially be related regulation of the cell
cycle process, including 18 of the 21 known cell cycle related

TFs. Overall, the model can explain 33% of the total variation
of the gene expression levels, indicating that the sequences and
PSWMs-based binding probabilities might not be as reliable

as those obtained from ChIP-chip data for explaining the gene
expression variations.

6 CONCLUSIONS AND DISCUSSION

Motivated by identifying TFs that can explain (partially) the

observed variation of MTC gene expression over time during
a given biological process, we introduce a group SCAD
penalized estimation procedure for selecting variables with

time-varying coefficients in the context of functional response
models. Simulation studies indicated that this procedure is very
effective in selecting the relevant groups of variables and in

estimating the regression coefficients. Results from application
to the yeast cell cycle data set indicate that the procedure
can be effective in selecting the TFs that potentially play

important roles in regulation of gene expressions during the
cell cycle process.
In this article, we used B-spline basis functions to approx-

imate the varying coefficients associated with each TF. B-spline
basis functions provide flexible models for MTC gene expres-
sion data and have been applied for clustering MTC gene

expression data (Luan and Li, 2003; Storey et al., 2004)
and for identifying temporally regulated genes (Hong and Li,

2006). Our application to real data sets in this article further
demonstrated its utility in modeling the MTC gene expression
data. However, it should be noted that other basis functions

can also be used to approximate the coefficient functions �k(t).
For example, one can use linear spline with truncated lines
as the basis for regression. Such a linear spline was used in

MARS (Friedman, 2001) and in Das et al. (2006) for modeling
regulatory subnetworks. The proposed gSCAD can equally
work for such linear spline approximation.

The proposed methods can be extended in several ways.
First, in Model (1), we assume an additive model for the effects
of the TFs on the gene expression levels over time. However,

genetic regulation often involves interacting cis-control

motifs. One way to incorporate such interactions is to extend

the proposed Model (1) to include interaction effects between

two TFs as

YiðtÞ ¼ �ðtÞ þ
XK
k¼1

�kðtÞXik þ
XK
k¼1

X
k0 6¼k

�kk0 ðtÞXikXik0 þ �it,

where, �kk0 measures the interaction effects between two TFs k

and k0. The gSCAD procedure proposed in this paper should

be applicable to such models also. Second, although the models

and the procedure considered in this article are motivated by

analysis of MTC gene expression data, the proposed gSCAD

procedure will be easily extended to other regression models

such as the generalized linear models and Cox models with

varying coefficients. These are the topics that deserve further

investigation.

In summary, we have proposed a penalized estimation

procedure using SCAD for selection of grouped variable in

a linear regression model setting. We particularly considered

the application of such a group SCAD procedure to selection

of time-varying coefficients in high-dimensional functional

response regression model settings. The procedure is useful

for identifying the TFs that are related to MTC gene expression

data measured during a given biological process. The TFs

identified can provide useful information about the transcrip-

tional networks.
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