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The prenatal environment plays an important role in many conditions, particularly those with onset early in life,
such as childhood cancers and birth defects. Because both maternal and fetal genotypes can influence risk,
investigators sometimes use a case-mother/control-mother design, with mother-offspring pairs as the unit of
analysis, to study genetic factors. Risk models should account for both the maternal genotype and the correlated
fetal genotype to avoid confounding. The usual logistic regression analysis, however, fails to fully exploit the fact
that these are mothers and offspring. Consider an autosomal, diallelic locus, which could be related to disease
susceptibility either directly or through linkage with a polymorphic causal locus. Three nested levels of assumptions
are often natural and plausible. The first level simply assumes Mendelian inheritance. The second further assumes
parental mating symmetry for the studied locus in the source population. The third additionally assumes parental
allelic exchangeability. Those assumptions imply certain nonlinear constraints; the authors enforce those con-
straints by using Poisson regression together with the expectation-maximization algorithm. Calculations reveal that
improvements in efficiency over the usual logistic analysis can be substantial, even if only the Mendelian assump-
tion is honored. Benefits are even more marked if, as is typical, information on genotype is missing for some

individuals.

case-control studies; genetics; linear models; polymorphism, single nucleotide; risk

Abbreviation: EM, expectation-maximization.

When studying the etiology of complex conditions with
onset early in life, such as childhood cancers, certain psy-
chiatric illnesses, congenital malformations, and pregnancy
complications, both the maternal genome and the fetal ge-
nome may influence susceptibility, and both need to be con-
sidered. Case-parent triad designs, where one genotypes
cases and both of their parents, can enable the investigator
to differentiate fetal genetic effects from maternally medi-
ated genetic effects (1-3) and can bypass the practical prob-
lems imposed by the need to recruit population controls.
Triad designs also offer robustness against a potential source
of bias called “genetic population stratification,” which
may arise when the population consists of incompletely

mixed subpopulations that differ both in their baseline dis-
ease risk (i.e., risk in people who do not carry the variant
allele) and in the frequency of the genetic variant being
studied. Such a population structure can produce confound-
ing bias in a case-control study, but not in a triad study. Triad
designs also permit assessment of parent-of-origin effects,
where inheritance of a particular genetic variant can have
effects on risk that differ according to which parent trans-
mitted it to the offspring.

These advantages aside, triad designs suffer from some
important limitations. First, fathers may be hard to recruit,
and paternity is also inherently harder to be confident of
than is maternity. A more disturbing limitation is that the
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TABLE 1. Expected frequencies of control mother-child pairs under Mendelian

transmission of parental alleles*

CcC=0 Cc=1 cC=2
M=0 Hoo + (1/2)no+ (1/2)no1 + oz 0
M=1 (122)p10 + (1/4)p114 (1/2)[10 + 11 + 2] (1/4)a1 + (1/2)p42

M=2 0

Hoo + (1/2)n24

Moz + (1/2)p21

* Note that i, is proportional to the underlying frequency in the source population of parental
pairs in which the mother carries m copies of the variant and the father carries fcopies and where
>3 s = No, the total number of control-mother pairs.

m f

case-parent triad design does not permit estimation of main
effects of exposures.

An alternative design calls for comparing randomly sam-
pled mother-offspring pairs in which the offspring is healthy
with mother-offspring pairs in which the offspring has the
condition under study. We shall refer to this approach as the
case-mother/control-mother design. We assume that the dis-
ease is rare in the population under study and that, although
subpopulations might vary either in their baseline risks of
disease or in their frequencies of the genetic variant, the
covariance across subpopulations between the genotype fre-
quency and baseline risk is 0 (4). In effect, we are making
the usual assumption of no uncontrolled confounding; there-
fore, a case-control design is valid for this disease and
population.

One complication of the case-mother/control-mother de-
sign (5) is that the maternal genome is a confounder for
effects of the fetal genome, because of their correlation.
Consequently, naive analyses that use separate models to
estimate effects of fetal genotypes and effects of maternal
genotypes are vulnerable to confounding bias. One should
instead fit a single model that simultaneously includes as
predictors the fetal genotype and the maternal genotype.
What has not been appreciated, however, is that the parent-
child relationship implies certain linear relations among
parameters. Our purpose in this paper is to describe those
natural family-based constraints, to demonstrate a log-linear
approach implemented through the expectation-maximization
(EM) algorithm (6) that can honor them, and to document
the power advantages they confer. We also assess the extent
to which use of the family-based constraints can improve
analytic efficiency/precision when some genotypes are ran-
domly missing.

NATURAL CONSTRAINTS BASED ON FAMILY
RELATIONSHIPS

Suppose, for simplicity, we are considering a diallelic
single nucleotide polymorphism in an autosomal gene that
could be related to disease susceptibility either causally or
through linkage with a polymorphic causal locus. Let M and
C denote the number of copies of the variant allele (i.e., 0, 1,
or 2) carried by the mother and the child, respectively. It will
not matter which allele is considered the *variant,” but

usually the one designated as such is the less frequent
one, the “minor” allele. One obvious constraint that applies
to both case pairs and control pairs is that (M,C) cannot be
(2,0) or (0,2), because a homozygous mother has to pass on
one of her two identical alleles to her child. Thus, instead of
nine mother-child pairs being possible, only seven are
possible.

Considering the father, who is not directly studied in this
design, there are nine possible pairs of parental genotypes.
Let p,,, denote the population frequency of pairs of parents
in which the mother has m copies and the father f copies of
the allelic variant. Suppose control mother-child pairs are se-
lected at random from the source population, where trans-
mission from mother to offspring follows Mendelian
inheritance and survival to the time of study is nondifferen-
tial by genotype. If the disease is rare or unrelated to the
variant under study, then the population-based distribution
of mother-child paired genotypes among controls can be
expressed in terms of the p,, parameters and Mendelian
proportions (table 1). We have simply collapsed over the
missing fathers. For example, the (0,0) cell in table 1 con-
sists of triads with (M,F,C) equal to (0,0,0) and (0,1,0) with
expected frequencies [y, and half of pg;, respectively.

With no additional assumptions about the population, the
M = 1 row already implies a constraint: The expected
counts for (1,0) and for (1,2) sum to the expected count
for (1,1). Thus, the family relationship alone specifies two
structural zeroes and also a constraint.

Next, suppose that in addition to Mendelian inheritance
we assume parental mating symmetry in the source popula-
tion, at the locus under study (i.e., W, = g, for all m, f).
This additional assumption reduces the nine original .
parameters in table 1 to only six. Adjusting the cell com-
ponents of table 1 accordingly, the family relationships then
imply a second constraint for the expected counts for
mother-child pairs, (M,C): The expected difference between
the count for (1,0) and the count for (0,1) equals the ex-
pected difference between the count for (1,2) and the count
for (2,1)—mnamely, (1/4)p;; — Hop, Which is the same as
(D11 — pao-

Another constraint that is often plausible is parental allelic
exchangeability, which asserts that in the source population,
conditional on the set of four alleles carried by a pair of
parents, those alleles are randomly allocated to the two in-
dividuals. This condition is a single-locus special case of
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TABLE 2. Expected frequencies of case mother-child pairs under a multiplicative model
for risk*

cC=0 c=1 C
M=0 Bluoo + (1/2)p01] BR4[(1/2)101 + Hoz] 0
M=1 BS[(1/2)p1o + (1/4)p1]  (1/2)BR1Siliio + it + pia]l  BR2Si[(1/4)141 + (1/2)p42]
M=2 0 BR; Ss[lz0 + (1/2)p24] BR>S5[zz + (1/2)p21]

I
N

* Note that p,,; denotes the underlying frequency in the source population of parental pairs in
which the mother carries m copies of the variant and the father carries fcopies. Ry and R, denote
the relative risks for a child with one or two copies, respectively, relative to a child with no copies;
S; and S, denote the relative risks for a child whose mother has one or two copies, respectively,
relative to the child whose mother has no copies. B is a normalizing constant included to ensure

that the expected counts will sum to the total number of case-mother pairs.

parental haplotype exchangeability (7). This assumption is
slightly stronger than mating symmetry, but it is much
weaker than Hardy-Weinberg equilibrium because it per-
mits the existence of genetically distinct subpopulations.
Under parental allelic exchangeability, because there are
four ways to assign one variant each to two parents,
Ky = 4Hpo = 41y. This exchangeability assumption also
implies the other two assumptions, and it follows that the
expected difference between the count for (1,0) and the
count for (0,1) and the expected difference between the count
for (1,2) and the count for (2,1) are not just equal to each
other but are both equal to 0. Thus, with this slightly stronger
additional assumption, now three constraints can be imposed
on the expected counts for control pairs.

What about the distribution for case-mother pairs? Under
a multiplicative model for risk of a rare condition, the ex-
pected counts for case mother-child pairs can be expressed
in terms of the ,,r parameters, Mendelian proportions, and
relative risks (table 2). Here R; and R, are the relative risks
for a child with one or two copies, respectively, relative to
a child with no copies, and S| and S, are the relative risks for
a child whose mother has one or two copies, respectively,
relative to a child whose mother has no copies. The param-
eter B is the normalizing constant included to ensure that the
expected counts sum to the total number of case-mother
pairs.

FITTING MODELS THAT ENFORCE THESE
CONSTRAINTS

In the usual logistic regression model, one conditions on
all the predictor variables and models the log odds of dis-
ease. This approach is wonderfully flexible because one
does not need to specify the distribution of covariates when
maximizing the relevant conditional likelihood. The down-
side is that one has no way to impose prior knowledge about
that covariate distribution. Imposing appropriate constraints
on the covariate distribution can improve statistical effi-
ciency (3, 8).

One way to impose constraints on the covariate distribu-
tion is to use log-linear Poisson regression. If no constraints
are imposed, the results of fitting logistic and Poisson re-
gression models are identical for the same data set. Using
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logistic regression to carry out a case-mother/control-
mother analysis with the (M,C) count data corresponding
to tables 1 and 2, one would fit the model:

Pr(D|M,C)
In <1—Pr(D|M,C)> =u+PBilc=1)+Bal(c=2)
+0L11(M:1) +O(21(M:2)-

Here, /(expression) 18 an indicator function which is 1 when the
expression is true and O when it is false. The coefficients B;
and [, are the natural logarithms of R; and R,, while o; and
o, are the natural logarithms of S; and S».

To accomplish an equivalent analysis using Poisson re-
gression, let N,,., denote the observed number of families in
which M = m, C = ¢, and D = d, where d is 1 for case pairs
and 0O for control pairs, and let E(N,,.,) be the expected value
of that count. One uses the 14 observed cell counts to fit the
following Poisson regression model:

ln[E(chd)] = emc +0d + Bldl(czl) + BZdI(c:Z)
+O£1d[(m:1) +O£2d](m:2).

The seven parameters 0,,., one for each (M,C) cell among
controls, by allowing complete flexibility for the control-
mother distribution (consider setting d = 0), ensure that the
covariate distribution is unconstrained. An advantage to
using the Poisson version of these two identical approaches
is that, by modeling the cell counts directly, the Poisson
approach provides a way to impose constraints on the 6,,.
parameters describing the covariate distribution.

An additional difficulty is that the constraints we have
described are linear constraints on the cell counts or, equiv-
alently, on the p,,, parameters, but they are nonlinear con-
straints on the 6,,. parameters, because those parameters are
the natural logarithms of the cell counts. Imposition of such
nonlinear constraints is not straightforward in available soft-
ware packages like Stata or SAS. Other software, for exam-
ple, LEM (log-linear expectation maximization) by van den
Oord and Vermunt (9), easily handles such constraints.

For the constraints that we are considering, it is conve-
nient to imagine an idealized data structure with 15 cells for
case-parent triads (as in the article by Weinberg et al. (1))
and a similar data structure with 15 cells for control-parent
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triads, but where the fathers’ genotypes are all missing. One
then can use the EM algorithm to maximize the fatherless
likelihood, and it becomes easy to impose these constraints.
The assumption required by the EM algorithm that the fa-
thers’ genotypes be noninformatively missing is trivially
satisfied because all are missing. The proposed construction
automatically satisfies the linear constraint (and the struc-
tural zeroes) that follows from Mendelianism and the family
relationships. One must, of course, use the observed-data
likelihood, rather than the pseudo-complete-data likelihood,
to compute the likelihood ratio y? statistic.

To impose parental mating-type symmetry, one collapses
each 15-cell multinomial to a 10-cell multinomial (1), be-
cause, for example, the triple genotype (0,1,C) is merged
with (1,0,C). One can then again use the EM algorithm to
maximize the appropriate likelihood. The additional con-
straint of parental allele exchangeability (7) can be honored
by using the same 10-cell multinomials but using a single
stratum parameter for both the {0,2} and {1,1} parental
strata and assigning offsets that are the logarithms of 2, 1, 2,
and 1 to the MFC triads (0,2,1), (1,1,0), (1,1,1), and (1,1,2),
respectively. (Here “(0,2,1)” includes *“(2,0,1),” because
parental switches are treated as equivalent under mating
symmetry.)

In an actual case-parent/control-parent study, a proportion
of the genotypes will be missing, either because the individ-
ual was not studied (e.g., the baby did not survive, or um-
bilical cord blood but not maternal blood was retained) or
because the laboratory could not assign the genotype. Not
only does the Poisson approach together with the EM algo-
rithm (6) permit imposition of constraints, it facilitates the
use of partial data when genotypes are missing. For such an
approach to be valid, one must assume that missingness is
noninformative—that is, missingness is random conditional
on disease status and the observed genotypes. Thus, if some
offspring genotypes are missing due to failure to survive,
one must assume that survival is unrelated to the unobserved
genotype among case mother-offspring pairs and also un-
related to the unobserved genotype among control mother-
offspring pairs.

POWER COMPARISONS

To evaluate the power gains possible by exploiting vari-
ous constraints in the analysis of a case-mother/control-
mother study, we considered a study of 150 case-mother
pairs and 150 control-mother pairs. For convenience, we
employed a source population in which the single nucleo-
tide polymorphism was in Hardy-Weinberg equilibrium.
Hardy-Weinberg equilibrium is neither necessary nor as-
sumed in our analyses, but it simplifies power calculations
by allowing us to specify the p,, parameters as simple
functions of allele frequency. A source population in
Hardy-Weinberg equilibrium satisfies all three assumptions.
Assuming the model of tables 1 and 2, we examined several
risk scenarios defined by R, R,, S;, and S, over a range of
allele frequencies.

For complete data, we calculated power for the usual
logistic regression analysis (no constraints) and for our pro-

posed analysis under each of the three nested levels of con-
straints. We also calculated power for a case-parent triad
design with 150 cases. We repeated these calculations for
scenarios with 20 percent of the genotypes randomly miss-
ing. For these missing-genotype scenarios, we considered
two versions of the unconstrained logistic analysis: one re-
stricted to mother-offspring pairs with complete genotype
data and one where pairs with missing data were included
via Poisson regression and the EM algorithm. Constrained
analyses always included pairs with missing data.

We studied the noncentrality parameter, equivalently the
power, for the 4-df y? likelihood ratio test of the null hy-
pothesis that Ry = R, = S = §; = 1. We made use of the
fact that the noncentrality parameter of the likelihood ratio
test statistic under a specified alternative can be closely ap-
proximated by the likelihood ratio statistic calculated by treat-
ing the expected counts under that alternative as if they were
data (10). We calculated expected cell counts under various
scenarios using the formulae in tables 1 and 2 and employed
LEM software (9) to maximize the observed data likelihoods
under the null and alternative hypotheses. LEM software is
freely available, and the reader can download the LEM
“scripts” that we used for maximizing the relevant observed
data likelihoods under any of our three sets of assumptions
from our website (http://www.niehs.nih.gov/research/atniehs/
labs/bb/staff/weinberg/index.cfm#downloads).

We plotted the noncentrality parameters as a function of
allele frequency for analyses under different sets of assump-
tions and included horizontal reference lines corresponding
to specific power values for a 0.05-level 4-df likelihood ratio
test. When the noncentrality parameter exceeds a particular
cutpoint, the power exceeds the specified power. To modify
the number of cases studied to some other number, say
K, one can simply multiply these noncentrality values by
K/150. The ratio of any two of the case-mother/control-
mother curves corresponds to the relative efficiency of the
two analytic approaches, across allele frequencies—that is,
the approximate ratio of sample sizes required to achieve
any desired level of statistical power.

Consider first a scenario in which Ry, R,, S|, and S, are
2,3, 1, and 1, respectively. This scenario includes a gene-
dose effect of the fetal genotype with no effects of the
maternal genotype. Under this scenario, noncentrality curves
for analyses that impose the constraints lie above the curve
for the usual logistic regression analysis (figure 1, panel A).
Simply imposing the fact that the mother-offspring pairs
reflect Mendelian proportions improved power, particularly
at allele frequencies below 0.5. Imposing two constraints or
all three together improved the power even more. For this
scenario, a case-parent design with 150 case triads provided
power comparable to that of an unconstrained case-mother/
control-mother logistic analysis with 150 case-mother pairs
and 150 control-mother pairs.

We obtained qualitatively similar results with two addi-
tional risk scenarios. In a scenario where the only effect is
arecessive effect of the fetal genotype (R}, R,, S;, and S, are
1, 3, 1, and 1, respectively), increasing the number of im-
posed constraints again increased the power across all allele
frequencies (figure 1, panel B). The power advantage of
even the simple familial constraint was marked. For this
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FIGURE 1. Noncentrality parameter and power as a function of allele frequency for the case-mother/control-mother design and case-parent triad
design. The vertical axes show, in the left column, the % noncentrality parameter for a 4-df likelihood ratio test, and, in the right column, the power of
a corresponding test with oo = 0.05. Left column (panels A—C): no missing data; right column (panels D—F): 20% of genotypes missing. First row
(panels AandD): Ry =2, R, =3, S; =1, S, = 1; second row (panels Band E): R; =1, R, =3, S; = 1, S, = 1; third row (panels Cand F): Ry =1,
R, =8, S =2, S, = 2. Curves for a case-mother/control-mother design with 150 case-mother pairs and 150 control-mother pairs: logistic
regression using all pairs (solid line: —), logistic regression omitting pairs with missing genotypes (short-dashed line: ——— (panels D—F only)), log-
linear Poisson regression using all pairs and imposing only the family relationship constraint (dotted line: - - -), similar analysis that additionally
imposes mating symmetry (dashed-dotted line: — - —), and similar analysis that additionally imposes parental allelic exchangeability (long-dashed
line: — — —). Curve for a case-parent triad design with 150 triads: log-linear Poisson regression using all triads (dashed-dotted-dotted line: — - - —).
For panels A and D, curves for the model imposing mating symmetry (dashed-dotted line: — - —) and the model imposing parental allelic
exchangeability (long-dashed line: — — —) overlap.

scenario, the power of the triad design exceeded that of the has a recessive effect and the maternal genotype has a dom-
unconstrained case-mother/control-mother analysis and inant effect (R, R,, S;, and S, are 1, 3, 2, and 2, respec-
even exceeded that of some constrained analyses at low tively), power again increased as more constraints were
allele frequency. In a scenario where the fetal genotype imposed on the analysis (figure 1, panel C). In this scenario,
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however, the case-parent triad design with 150 cases had
lower power than the unconstrained case-mother/control-
mother analysis. These results indicate that, when justified,
imposing these plausible constraints can markedly improve
analysis for case-mother/control-mother studies.

We revisited the same three risk scenarios when 20 per-
cent of the genotypes were missing (figure 1, panels D, E,
and F, respectively). Although power was predictably lower
when genotypes were missing, the relations among different
case-mother/control-mother analyses that used the EM al-
gorithm to include pairs with some genotypes missing was
much the same as the relations observed when no genotypes
were missing. In essence, missing genotypes reduce the
effective sample size by a constant fraction for those anal-
yses, but the EM algorithm assures that the loss will be less
than the full 20 percent. Also predictably, the unconstrained
analysis that included pairs with some missing genotypes
was more powerful than the unconstrained analysis that in-
cluded only pairs with complete genotypes. With 20 percent
missing genotypes but all families included in the analysis,
the efficiency of the case-parents design suffered markedly.
This decline may reflect the fact that, when genotypes are
missing at random, the proportion of triads missing at least
one genotype is larger than the proportion of mother-child
pairs missing at least one genotype, leading to a greater loss
of efficiency. Again, even with no additional assumptions,
exploiting the family relationship markedly improves the
power when some genotypes are missing.

DISCUSSION

By undertaking a case-control study, the investigator
commits to some key assumptions required for valid analy-
sis. The case-control comparison is only free of bias in the
absence of genetic population structure or, in its presence, if
the allele frequencies and baseline risks do not covary with
baseline risks across subpopulations (4). Otherwise, bias
remains a threat and one should consider the more robust
case-parent triad design. Even with a triad design, however,
one still must assume parental mating symmetry in order to
assess maternally mediated genetic effects. In the context of
a case-mother/control-mother design, one can assess mater-
nally mediated effects without this parental symmetry
assumption or, as we have shown, exploit this same assump-
tion to improve efficiency. To take advantage of the implicit
constraints this assumption imposes on parameters, one can
use a log-linear Poisson regression analysis in combination
with the EM algorithm instead of the usual logistic regres-
sion analysis. Parental allele exchangeability can addition-
ally be imposed to gain even more efficiency. Surprisingly,
even if one only imposes the family relationship, with no
additional assumptions, the improvement in efficiency can
be marked.

The power for the case-mother/control-mother design is
then comparable to and often much better than that of the
case-parent triad design with the same number of cases,
although slightly more genotyping is required (genotyping
four people instead of three people for each case if the
case:control ratio is 1). The case-mother/control-mother

design requires participation of control pairs, who may be
hard to recruit, but it offers an additional advantage in that
the main effects of covariates can also be studied.

The inclusion of covariates in the log-linear analysis is
a bit trickier than it would be with logistic regression. For
a categorical exposure, one can stratify, ideally allowing
parental mating type parameters to be different at different
levels of the exposure. For a simple dichotomy, a constrained
analysis would build on the approach described previously
(3) but with separate imposition of the desired constraints
for each exposure-specific control-mother multinomial.

Although the assumptions we have entertained are natural
and plausible and thus seem widely applicable, they might
be incorrect for certain genes in some populations. If the
assumptions are imposed inappropriately, estimated relative
risks will be biased. Because these assumptions imply con-
straints on the expected counts of table 1, they can be probed
by means of statistical tests. However, we have not investi-
gated the operating characteristics of such tests.

In summary, several plausible assumptions arise from
considering mother-offspring pairs in the context of nuclear
families. Here we have shown how constraints derived from
those assumptions can be enforced in the analysis of case-
mother/control-mother studies. Whether genotype data are
missing or not, use of the log-linear Poisson model enables
one to enforce constraints that exploit the mother-offspring
relationship in order to inform the expectation step of the
EM algorithm and thereby improve the efficiency of analy-
sis, even without any additional assumptions. If additional
assumptions are adopted, the power advantages for the con-
strained analyses are even greater.
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