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I. I NTRODUCTION

This article describes part of our contribution to the “Bell-
Kor’s Pragmatic Chaos” final solution, which won the Netflix
Grand Prize. The other portion of the contribution was created
while working at AT&T with Robert Bell and Chris Volinsky,
as reported in our 2008 Progress Prize report [3]. The final
solution includes all the predictors described there. In this
article we describe only the newer predictors.

So what is new over last year’s solution? First we further im-
proved the baseline predictors (Sec. III). This in turn improves
our other models, which incorporate those predictors, likethe
matrix factorization model (Sec. IV). In addition, an extension
of the neighborhood model that addresses temporal dynamics
was introduced (Sec. V). On the Restricted Boltzmann Ma-
chines (RBM) front, we use a new RBM model with superior
accuracy by conditioning the visible units (Sec. VI). The final
addition is the introduction of a new blending algorithm, which
is based on gradient boosted decision trees (GBDT) (Sec. VII).

II. PRELIMINARIES

The Netflix dataset contains more than 100 million date-
stamped movie ratings performed by anonymous Netflix cus-
tomers between Dec 31, 1999 and Dec 31, 2005 [4]. This
dataset gives ratings aboutm= 480,189 users andn= 17,770
movies (aka, items).

The contest was designed in a training-test set format. A
Hold-out set of about 4.2 million ratings was created consisting
of the last nine movies rated by each user (or fewer if a
user had not rated at least 18 movies over the entire period).
The remaining data made up the training set. The Hold-out
set was randomly split three ways, into subsets called Probe,
Quiz, and Test. The Probe set was attached to the training
set, and labels (the rating that the user gave the movie) were
attached. The Quiz and Test sets made up an evaluation set,
which is known as the Qualifying set, that competitors were
required to predict ratings for. Once a competitor submits pre-
dictions, the prizemaster returns the root mean squared error
(RMSE) achieved on the Quiz set, which is posted on a public
leaderboard (www.netflixprize.com/leaderboard).
RMSE values mentioned in this article correspond to the Quiz
set. Ultimately, the winner of the prize is the one that scores
best on the Test set, and those scores were never disclosed by
Netflix. This precludes clever systems which might “game” the
competition by learning about the Quiz set through repeated
submissions.

Compared with the training data, the Hold-out set contains
many more ratings by users that do not rate much and are
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therefore harder to predict. In a way, this represents real
requirements for a collaborative filtering (CF) system, which
needs to predict new ratings from older ones, and to equally
address all users, not just the heavy raters.

We reserve special indexing letters to distinguish users from
movies: for usersu,v, and for moviesi, j. A rating rui indicates
the preference by useru of movie i. Values are ranging from
1 (star) indicating no interest to 5 (stars) indicating a strong
interest. We distinguish predicted ratings from known ones,
by using the notation ˆrui for the predicted value ofrui.

The scalartui denotes the time of ratingrui. Here, time is
measured in days, sotui counts the number of days elapsed
since some early time point. About 99% of the possible ratings
are missing, because a user typically rates only a small portion
of the movies. The(u, i) pairs for whichrui is known are stored
in the training setK = {(u, i) | rui is known}. Notice thatK
includes also the Probe set. Each useru is associated with a
set of items denoted by R(u), which contains all the items
for which ratings byu are available. Likewise, R(i) denotes
the set of users who rated itemi. Sometimes, we also use
a set denoted by N(u), which contains all items for which
u provided a rating, even if the rating value is unknown.
Thus, N(u) extends R(u) by also considering the ratings in
the Qualifying set.

Models for the rating data are learned by fitting the pre-
viously observed ratings (training set). However, our goalis
to generalize those in a way that allows us to predict future,
unknown ratings (Qualifying set). Thus, caution should be ex-
ercised to avoid overfitting the observed data. We achieve this
by regularizing the learned parameters, whose magnitudes are
penalized. The extent of regularization is controlled by tunable
constants. Unless otherwise stated, we use L2 regularization.

This is a good place to add some words on the constants
controlling our algorithms (including step sizes, regularization,
and number of iterations). Exact values of these constants
are determined by validation on the Probe set. In all cases
but one (to be mentioned below), such validation is done in
a manual greedy manner. That is, when a newly introduced
constant needs to get tuned, we execute multiple runs of the
algorithms and pick the value that yields the best RMSE on
the Netflix Probe set [4]. This scheme does not result in
optimal settings for several reasons. First, once a constant is
set we do not revisit its value, even though future introduction
of other constants may require modifying earlier settings.
Second, we use the same constants under multiple variants
of the same algorithm (e.g., multiple dimensionalities of a
factorization model), whereas a more delicate tuning would
require a different setting for each variant. We chose this
convenient, but less accurate method, because our experience
showed that over tuning the accuracy of a single predictor does
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not deliver a real contribution after being incorporated within
the overall blend.

III. B ASELINE PREDICTORS

Collaborative filtering models try to capture the interactions
between users and items that produce the different rating
values. However, many of the observed rating values are due
to effects associated with either users or items, independently
of their interaction. A prime example is that typical CF data
exhibit large user and item biases – i.e., systematic tendencies
for some users to give higher ratings than others, and for some
items to receive higher ratings than others.

We will encapsulate those effects, which do not involve
user-item interaction, within thebaseline predictors. Because
these predictors tend to capture much of the observed signal,
it is vital to model them accurately. This enables isolatingthe
part of the signal that truly represents user-item interaction,
and subjecting it to more appropriate user preference models.

Denote byµ the overall average rating. A baseline predic-
tion for an unknown ratingrui is denoted bybui and accounts
for the user and item effects:

bui = µ +bu +bi (1)

The parametersbu andbi indicate the observed deviations of
useru and itemi, respectively, from the average. For example,
suppose that we want a baseline estimate for the rating of the
movie Titanic by user Joe. Now, say that the average rating
over all movies,µ , is 3.7 stars. Furthermore, Titanic is better
than an average movie, so it tends to be rated 0.5 stars above
the average. On the other hand, Joe is a critical user, who tends
to rate 0.3 stars lower than the average. Thus, the baseline
estimate for Titanic’s rating by Joe would be 3.9 stars by
calculating 3.7−0.3+0.5.

A way to estimate the parameters is by decoupling the
calculation of thebi ’s from the calculation of thebu’s. First,
for each itemi we set

bi =
∑u∈R(i)(rui −µ)

λ1 + |R(i)|
. (2)

Then, for each useru we set

bu =
∑i∈R(u)(rui −µ −bi)

λ2 + |R(u)|
. (3)

Averages are shrunk towards zero by using the regularization
parameters,λ1,λ2, which are determined by validation on the
Probe set. We were using:λ1 = 25,λ2 = 10. Whenever this
work refers to baseline predictors estimated in this decoupled
fashion, they are denoted byb̃ui.

A more accurate estimation ofbu and bi will treat them
symmetrically, by solving the least squares problem

min
b∗

∑
(u,i)∈K

(rui −µ −bu−bi)
2 +λ3(∑

u
b2

u +∑
i

b2
i ) . (4)

Hereinafter, b∗ denotes all user and item biases (bus and
bis). The first term∑(u,i)∈K (rui − µ + bu + bi)

2 strives to
find bu’s and bi ’s that fit the given ratings. The regularizing
term, λ3(∑ub2

u + ∑i b
2
i ), avoids overfitting by penalizing the

magnitudes of the parameters. This least square problem can

be solved fairly efficiently by the method of stochastic gradient
descent. In practice, we were using more comprehensive
versions of (4), to which we turn now.

A. Time changing baseline predictors

Much of the temporal variability in the data is included
within the baseline predictors, through two major temporal
effects. The first addresses the fact that an item’s popularity
may change over time. For example, movies can go in and
out of popularity as triggered by external events such as the
appearance of an actor in a new movie. This is manifested in
our models by treating the item biasbi as a function of time.
The second major temporal effect allows users to change their
baseline ratings over time. For example, a user who tended to
rate an average movie “4 stars”, may now rate such a movie
“3 stars”. This may reflect several factors including a natural
drift in a user’s rating scale, the fact that ratings are given in
the context of other ratings that were given recently and also
the fact that the identity of the rater within a household can
change over time. Hence, in our models we take the parameter
bu as a function of time. This induces a template for a time
sensitive baseline predictor foru’s rating of i at daytui:

bui = µ +bu(tui)+bi(tui) (5)

Here,bu(·) andbi(·) are real valued functions that change over
time. The exact way to build these functions should reflect
a reasonable way to parameterize the involving temporal
changes.

A major distinction is between temporal effects that span
extended periods of time and more transient effects. We do
not expect movie likeability to fluctuate on a daily basis, but
rather to change over more extended periods. On the other
hand, we observe that user effects can change on a daily
basis, reflecting inconsistencies natural to customer behavior.
This requires finer time resolution when modeling user-biases
compared with a lower resolution that suffices for capturing
item-related time effects.

We start with our choice of time-changing item biasesbi(t).
We found it adequate to split the item biases into time-based
bins, using a constant item bias for each time period. The
decision of how to split the timeline into bins should balance
the desire to achieve finer resolution (hence, smaller bins)with
the need for enough ratings per bin (hence, larger bins). In
fact, there is a wide variety of bin sizes that yield about the
same accuracy. In our implementation, each bin corresponds
to roughly ten consecutive weeks of data, leading to 30 bins
spanning all days in the dataset. A dayt is associated with an
integer Bin(t) (a number between 1 and 30 in our data), such
that the movie bias is split into a stationary part and a time
changing part:

bi(t) = bi +bi,Bin(t) (6)

While binning the parameters works well on the items,
it is more of a challenge on the users’ side. On the one
hand, we would like a finer resolution for users to detect
very short lived temporal effects. On the other hand, we
do not expect enough ratings per user to produce reliable
estimates for isolated bins. Different functional forms can be
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considered for parameterizing temporal user behavior, with
varying complexity and accuracy.

One simple modeling choice uses a linear function to
capture a possible gradual drift of user bias. For each user
u, we denote the mean date of rating bytu. Now, if u rated
a movie on dayt, then the associated time deviation of this
rating is defined as

devu(t) = sign(t − tu) · |t − tu|
β
.

Here|t− tu| measures the number of days between datest and
tu. We set the value ofβ by validation on the Probe set; in our
implementationβ = 0.4. We introduce a single new parameter
for each user calledαu so that we get our first definition of a
time-dependent user-bias:

b(1)
u (t) = bu +αu ·devu(t) (7)

This simple linear model for approximating a drifting behavior
requires learning two parameters per user:bu andαu.

The linear function for modeling the user bias meshes well
with gradual drifts in the user behavior. However, we also
observesudden driftsemerging as “spikes” associated with
a single day or session. For example, we have found that
multiple ratings a user gives in a single day, tend to concentrate
around a single value. Such an effect need not span more than
a single day. This may reflect the mood of the user that day,
the impact of ratings given in a single day on each other, or
changes in the actual rater in multi-person accounts. To address
such short lived effects, we assign a single parameter per user
and day, absorbing the day-specific variability. This parameter
is denoted bybut.

In the Netflix data, a user rates on 40 different days on
average. Thus, working withbut requires, on average, 40
parameters to describe each user bias. It is expected thatbut

is inadequate as a standalone for capturing the user bias, since
it misses all sorts of signals that span more than a single day.
Thus, it serves as an additive component within the previously
described schemes. The user bias model (7) becomes

b(3)
u (t) = bu +αu ·devu(t)+but . (8)

The discussion so far leads to the baseline predictor

bui = µ +bu +αu ·devu(tui)+bu,tui +bi +bi,Bin(tui) . (9)

If used as a standalone predictor, its resulting RMSE would
be 0.9605.

Another effect within the scope of baseline predictors is
related to the changing scale of user ratings. Whilebi(t) is
a user-independent measure for the merit of itemi at time
t, users tend to respond to such a measure differently. For
example, different users employ different rating scales, and a
single user can change his rating scale over time. Accordingly,
the raw value of the movie bias is not completely user-
independent. To address this, we add a time-dependent scaling
feature to the baseline predictors, denoted bycu(t). Thus, the
baseline predictor (9) becomes

bui = µ +bu +αu ·devu(tui)+bu,tui +(bi +bi,Bin(tui)) ·cu(tui) .

(10)

All discussed ways to implementbu(t) would be valid for
implementingcu(t) as well. We chose to dedicate a separate
parameter per day, resulting in:cu(t) = cu +cut. As usual,cu

is the stable part ofcu(t), whereascut represents day-specific
variability.

Adding the multiplicative factorcu(t) to the baseline pre-
dictor (as per (10)) lowers RMSE to 0.9555. Interestingly, this
basic model, which captures just main effects disregarding
user-item interactions, can explain almost as much of the data
variability as the commercial Netflix Cinematch recommender
system, whose published RMSE on the same Quiz set is
0.9514 [4].

B. Frequencies

It was brought to our attention by our colleagues at the
Pragmatic Theory team (PT) that the number of ratings a user
gave on a specific day explains a significant portion of the
variability of the data during that day. Formally, denote by
Fui the overall number of ratings that useru gave on daytui.
The value ofFui will be henceforth dubbed a “frequency”,
following PT’s notation. In practice we work with a rounded
logarithm ofFui, denoted byfui = ⌊logaFui⌋.1

Interestingly, even thoughfui is solely driven by useru,
it will influence the item-biases, rather than the user-biases.
Accordingly, for each itemi we introduce a termbi f , capturing
the bias specific for the itemi at log-frequencyf . Baseline
predictor (10) is extended to be

bui = µ +bu+αu ·devu(tui)+bu,tui +(bi +bi,Bin(tui))·cu(tui)+bi, fui .

(11)
We note that it would be sensible to multiplybi, fui by cu(tui),
but we have not experimented with this.

The effect of adding the frequency term to the movie bias is
quite dramatic. RMSE drops from 0.9555 to 0.9278. Notably,
it shows a baseline predictor with a prediction accuracy
significantly better than that of the original Netflix Cinematch
algorithm.

Here, it is important to remind that a baseline predictor, no
matter how accurate, cannot yield personalized recommenda-
tions on its own, as it misses all interactions between usersand
items. In a sense, it is capturing the portion of the data thatis
less relevant for establishing recommendations and in doing
so enables deriving accurate recommendations by subjecting
other models to cleaner data. Nonetheless, we included two of
the more accurate baseline predictors in our blend.

Why frequencies work?:In order to grasp the source of
frequencies contribution, we make two empirical observations.
First, we could see that frequencies are extremely powerful
for a standalone baseline predictor, but as we will see, they
contribute much less within a full method, where most of their
benefit disappears when adding the user-movie interaction
terms (matrix factorization or neighborhood). Second is the
fact that frequencies seem to be much more helpful when used
with movie biases, but not so when used with user-related
parameters.

1Notice thatFui is strictly positive whenever it is used, so the logarithm is
well defined.
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Frequencies help in distinguishing days when users rate a
lot in a bulk. Typically, such ratings are given not closely to
the actual watching day. Our theory is that when rating in
a bulk, users still reflect their normal preferences. However,
certain movies exhibit an asymmetric attitude towards them.
Some people like them, and will remember them for long
as their all-time favorites. On the other hand, some people
dislike them and just tend to forget them. Thus, when giving
bulk ratings, only those with the positive approach will mark
them as their favorites, while those disliking them will not
mention them. Such a behavior is expected towards most
popular movies, which can be either remembered as very good
or just be forgotten. A similar phenomenon can also happen
with a negative approach. Some movies are notoriously bad,
and people who did not like them always give them as negative
examples, indicating what they do not want to watch. However,
for the other part of the population, who liked those movies,
they are not going to be remembered long as salient positive
examples. Thus, when rating in bulk, long after watching the
movie, only those who disliked the movie will rate it.

This explains why such biases should be associated with
movies, not with users. This also explains why most of
the effect disappears when adding the interaction terms,
which already “understand” that the user is of the type that
likes/dislikes the movie. In other words, we hypothesize that
high frequencies (or bulk ratings) do not represent much
change in people’s taste, but mostly a biased selection of
movies to be rated – some movies are natural candidates as
“bad examples”, while others are natural “good examples”. We
believe that further validating our hypothesis bears practical
implications. If, indeed, frequencies represent biased selection,
they should be treated as capturing noise, which needs to get
isolated out when making recommendations.

Finally, we should comment that a movie renter such as
Netflix, might have additional data sources that complement
frequencies. For example, data on time pased since actual
watching date, or on whether ratings were entered in response
to a given questionnaire or initiated by the user.

C. Predicting future days

Our models include day-specific parameters. We are often
asked how these models can be used for predicting ratings in
the future, on new dates for which we cannot train the day-
specific parameters? The simple answer is that for those future
(untrained) dates, the day-specific parameters should taketheir
default value. In particular for (11),cu(tui) is set tocu, and
bu,tui is set to zero. Yet, one wonders, if we cannot use the
day-specific parameters for predicting the future, why are they
good at all? After all, prediction is interesting only when it is
about the future. To further sharpen the question, we should
mention the fact that the Netflix Qualifying set includes many
ratings on dates for which we have no other rating by the same
user and hence day-specific parameters cannot be exploited.

To answer this, notice that our temporal modeling makes
no attempt to capture future changes. All it is trying to do is
to capture transient temporal effects, which had a significant
influence on past user feedback. When such effects are identi-
fied they must be tuned down, so that we can model the more

enduring signal. This allows our model to better capture the
long-term characteristics of the data, while letting dedicated
parameters absorb short term fluctuations. For example, if
a user gave many higher than usual ratings on a particular
single day, our models discount those by accounting for a
possible day-specific good mood, which does not reflects
the longer term behavior of this user. This way, the day-
specific parameters accomplish a kind of data cleaning, which
improves prediction of future dates.

D. What’s in the blend?

The RMSE=0.9555 result of model (10) is included
in the blend. To learn the involved parameters,
bu, αu, but, bi , bi,Bin(t), cu, and cut one should minimize
the regularized squared error on the training set. Learning
is done by a stochastic gradient descent algorithm running
for 30 iterations. We use separate learning rate (step size)
and regularization (weight decay) on each kind of learned
parameter, by minimizing the cost function

min
b∗,c∗,α∗

∑
(u,i)∈K

(

rui −µ −bu−αu ·devu(tui)−bu,tui− (12)

(bi +bi,Bin(tui)) · (cu +cu,tui)
)2

+λab2
u +λbα2

u+

λcb
2
u,tui

+λdb2
i +λeb

2
i,Bin(tui)

+λ f (cu−1)2 +λgc2
u,tui

.

Actual values of the learning rates and regularization con-
stants (λa,λb, . . . ,λg) are as follows:

bu but αu bi bi,Bin(t) cu cut

lrate×103 3 25e-1 1e-2 2 5e-2 8 2
reg×102 3 5e-1 5000 3 10 1 5e-1

Notice that regularization shrinks parameters towards
zero, with one exception. The multipliercu is shrunk towards
1, i.e., we penalize(cu − 1)2, rather thanc2

u. Similarly, all
learned parameters are initialized to zero, exceptcu that is
initialized to 1.

The blend also includes the result of the more accurate
baseline predictor (11). In fact, this is the only case where
we resorted to an automatic parameter tuner (APT) to find the
best constants (learning rates, regularization, and log basis).
Specifically, we were using APT1, which is described in [13].
The reason we used APT here is twofold. First, this baseline
predictor component is embedded in our more comprehensive
models (described later). Therefore, it is worthwhile to highly
optimize it. Second, this is a small quickly-trained model.So
we could easily afford many hundreds of automatic executions
seeking optimal settings. Still, it is worth mentioning the
benefit of APT was an RMSE reduction of (only) 0.0016 over
our initial manual settings.

The parameters of the RMSE=0.9278 result of
model (11) were learned with a 40-iteration stochastic
gradient descent process, with the following constants
governing the learning of each kind of parameter:

bu but αu bi bi,Bin(t) cu cut bi, fui
lrate×103 2.67 2.57 3.11e-3 .488 .115 5.64 1.03 2.36
reg×102 2.55 .231 395 2.55 9.29 4.76 1.90 1.10e-6

The log basis,a, is set to 6.76. Later, we refer to this
model as [PQ1].
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IV. M ATRIX FACTORIZATION WITH TEMPORAL DYNAMICS

Matrix factorization with temporal dynamics was already
described in last year’s Progress Report [3], or with more detail
in a KDD’09 paper [8]. The major enhancement for this year is
the incorporation of the improved baseline predictors described
in Sec. III.

The full model, which is known as timeSVD++ [8] is based
on the prediction rule

r̂ui = bui +qT
i

(

pu(tui)+ |N(u)|−
1
2 ∑

j∈N(u)

y j

)

. (13)

Here, the exact definition of the time-dependent baseline
predictor,bui, follows (10).

As is typical for a SVD++ model [7], we employ two
sets of static movie factors:qi ,yi ∈ R

f . The first set (the
qis) is common to all factor models. The second set (the
yis) facilitates approximating a user factor through the set
of movies rated by the same user, using the normalized
sum |N(u)|−

1
2 ∑ j∈N(u) y j . Different normalizations of the form

|N(u)|−α could be employed. Our choice ofα = 1
2 attempts at

fixing the variance of the sum (see also [7] for more intuition
on this choice.)

User factors,pu(t) ∈ R
f are time-dependent. We modeled

each of the components ofpu(t)T = (pu1(t), . . . , pu f(t)) in the
same way that we treated user biases. In particular we have
found modeling after (8) effective, leading to

puk(t) = puk+αuk ·devu(t)+ pukt k = 1, . . . , f . (14)

Here puk captures the stationary portion of the factor,αuk ·
devu(t) approximates a possible portion that changes linearly
over time, andpukt absorbs the very local, day-specific vari-
ability.

We were occasionally also using a more memory efficient
version, without the day-specific portion:

puk(t) = puk+αuk ·devu(t) k = 1, . . . , f (15)

The same model was also extended with the aforementioned
frequencies. Since frequency affects the perception of movies,
we tried to inject frequency awareness into the movie factors.
To this end we created another copy of the movie factors, for
each possible frequency value. This leads to the model

r̂ui = bui +(qT
i +qT

i, fui
)

(

pu(tui)+ |N(u)|−
1
2 ∑

j∈N(u)

.y j

)

(16)

Here the definition ofbui is frequency-aware following (11).
Notice that while the transition to frequency-aware biaseswas
measurably effective, the introduction of frequency-dependent
movie factors was barely beneficial.

A. What’s in the blend?

We included multiple variations of the matrix factorization
models in the blend. All models are learned by stochastic
gradient descent applied directly on the raw data, no pre- or
post-processing are involved. In other words, all parameters
(biases, user-factors and movie-factors) are simultaneously

learned from the data. Constants (learning rates and regu-
larization to be specified shortly) are tuned to reach lowest
RMSE after 40 iterations. (Practically, one can give or take
around ten iterations without a meaningful RMSE impact).
However, for blending we have found that over-training is
helpful. That is, we often let the algorithm run far more than
40 iterations, thereby overfitting the train data, which happens
to be beneficial when blending with other predictors.

The first model is the one using rule (13), together with the
more memory efficient user-factors (15). The settings control-
ling the learning of bias-related parameters are as described in
Sec. III-D. As for learning the factors themselves (qi , pu and
y j ), we are using a learning rate of 0.008 and regularization
of 0.0015, where the learning rate decays by a multiplicative
factor of 0.9 after each iteration. Finally, forαuk the learning
rate is 1e-5 and the regularization is 50. These same settings
remain the same throughout this section. The three variants
within our blend are:

1) f = 20, #iterations=40, RMSE=0.8914
2) f = 200, #iterations=40, RMSE=0.8814
3) f = 500, #iterations=50, RMSE=0.8815

The next model still employs rule (13), but with the more
accurate user-factor representation (14). This adds one type of
parameter,pukt, which is learned with a learning rate of 0.004
and regularization of 0.01. The two variants within the blend
were both heavily over-trained to overfit the training data:

1) f = 200, #iterations=80, RMSE=0.8825
2) f = 500, #iterations=110, RMSE=0.8841

Finally we have our most accurate factor model, which
follows (16). While main novelty of this model (over the
previous one) is in the bias term, we also added the frequency-
specific movie-factorsqi, fui . Their respective learning rate is
2e-5, with regularization of 0.02. The blend includes six
variants:

1) f = 200, #iterations=40, RMSE=0.8777
2) f = 200, #iterations=60, RMSE=0.8787
3) f = 500, #iterations=40, RMSE=0.8769
4) f = 500, #iterations=60, RMSE=0.8784
5) f = 1000, #iterations=80, RMSE=0.8792
6) f = 2000, #iterations=40, RMSE=0.8762

Later, we refer to the model withf = 200 and #iterations=40
as [PQ2].

V. NEIGHBORHOOD MODELS WITH TEMPORAL DYNAMICS

The most common approach to CF is based on neigh-
borhood models. While typically less accurate than their
factorization counterparts, neighborhood methods enjoy pop-
ularity thanks to some of their merits, such as explaining the
reasoning behind computed recommendations, and seamlessly
accounting for new entered ratings. The method described in
this section is based on Sec. 5 of our KDD’09 paper [8].

Recently, we suggested an item-item model based on global
optimization [7], which will enable us here to capture time
dynamics in a principled manner. The static model, without
temporal dynamics, is centered on the following prediction
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rule:

r̂ui = bui + |R(u)|−
1
2 ∑

j∈R(u)

(ru j − b̃u j)wi j + |N(u)|−
1
2 ∑

j∈N(u)

ci j

(17)
Here, the n2 item-item weightswi j and ci j represent the
adjustments we need to make to the predicted rating of itemi,
given a rating of itemj. It was proven greatly beneficial to use
two sets of item-item weights: one (thewi j s) is related to the
values of the ratings, and the other disregards the rating value,
considering only which items were rated (theci j s). These
weights are automatically learned from the data together with
the biases. The constantsb̃u j are precomputed according to
(2)–(3).

When adapting rule (17) to address temporal dynamics,
two components should be considered separately. First, is the
baseline predictor portion,bui = µ + bi + bu, which explains
most of the observed signal. Second, is the part that captures
the more informative signal, dealing with user-item interaction
|R(u)|−

1
2 ∑ j∈R(u)(ru j − b̃u j)wi j + |N(u)|−

1
2 ∑ j∈N(u) ci j . For the

baseline part, nothing changes from the factor model, and
we make it time-aware, according to either (10), or (11).
The latter one adds frequencies and is generally preferred.
However, capturing temporal dynamics within the interaction
part requires a different strategy.

Item-item weights (wi j andci j ) reflect inherent item charac-
teristics and are not expected to drift over time. The learning
process should make sure that they capture unbiased long
term values, without being too affected from drifting aspects.
Indeed, the time-changing nature of the data can mask much
of the longer term item-item relationships if not treated ad-
equately. For instance, a user rating both itemsi and j high
in a short time period, is a good indicator for relating them,
thereby pushing higher the value ofwi j . On the other hand, if
those two ratings are given five years apart, while the user’s
taste (if not her identity) could considerably change, thisis less
evidence of any relation between the items. On top of this, we
would argue that those considerations are pretty much user-
dependent – some users are more consistent than others and
allow relating their longer term actions.

Our goal here is to distill accurate values for the item-
item weights, despite the interfering temporal effects. First we
need to parameterize the decaying relations between two items
rated by useru. We adopt an exponential decay formed by the
functione−βu·∆t , whereβu > 0 controls the user specific decay
rate and should be learned from the data. This leads to the
prediction rule

r̂ui =bui + |N(u)|−
1
2 ∑

j∈N(u)

e−βu·|tui−tu j |ci j + (18)

|R(u)|−
1
2 ∑

j∈R(u)

e−βu·|tui−tu j |((ru j − b̃u j)wi j ) .

The involved parameters are learned by minimizing the as-
sociated regularized squared error. Minimization is performed
by stochastic gradient descent for 20–30 iterations. The model
is applied directly to the raw data, so all parameters (biases and
movie-movie weights) are learned simultaneously. Learning

of bias-related parameters is governed by the same constants
discussed in Sec. III. As for the movie-movie weights (both
wi j and ci j ), their learning rate is 0.005 with regularization
constant of 0.002. Finally, the update of the exponentβu,
uses a particularly small step size of 1e-7, with regularization
constant equaling 0.01.

We also experimented with other decay forms, like the more
computationally-friendly(1+ βu∆t)−1, which resulted in the
same accuracy, with an improved running time. (No need to
change meta-parameters.)

As in the factor case, properly considering temporal dy-
namics improves the accuracy of the neighborhood model.
The RMSE decreases from 0.9002 [7] to 0.8870 (see next
subsection). To our best knowledge, this is significantly better
than previously known results by neighborhood methods. To
put this in some perspective, this result is even better than
those reported [1, 2, 11, 15] by using hybrid approaches such
as applying a neighborhood approach on residuals of other
algorithms. A lesson is that addressing temporal dynamics in
the data can have a more significant impact on accuracy than
designing more complex learning algorithms.

A. What’s in the blend?

We ran the time-aware neighborhood model, with biases
following (10) for 20, 25, and 30 iterations of stochastic
gradient descent. The resulting RMSEs were 0.8887, 0.8885
and 0.8887, respectively. The results with 20 and 30 iterations
are in the blend.

We also tried extending (18) with a non-normalized term.
This involved adding a third set of movie-movie weights,di j ,
as follows:

r̂ui =bui + |N(u)|−
1
2 ∑

j∈N(u)

e−βu·|tui−tu j |ci j +

|R(u)|−
1
2 ∑

j∈R(u)

e−βu·|tui−tu j |((ru j − b̃u j)wi j )+

∑
j∈R(u)

e−γu·|tui−tu j |((ru j − b̃u j)di j ) .

Here, we also tried to emphasize the very adjacent ratings
made by the user. Therefore, the new decay-controlling con-
stants, theγus, were initialized with a relatively high value
of 0.5 (compared to initializingβu with zero.) In addition,
for di j we used a slower learning rate of 1e-5. Learning was
done by 25 iterations of stochastic gradient descent. The result
with RMSE=0.8881 is included in the blend. In retrospect, we
believe that such a miniscule RMSE reduction does not justify
adding a third set of movie-movie weights.

Finally, we ran the time-aware neighborhood model, with
biases following (11) for 20 iterations of stochastic gradient
descent. (The third set of movie-movie weights was not used.)
The result of RMSE=0.8870 is included in the blend. Note that
the RMSE reduction from 0.8885 to 0.8870 is solely attributed
to the frequency bias term. Later, we refer to this model as
[PQ3].
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VI. EXTENSIONS TORESTRICTEDBOLTZMANN

MACHINES

A. RBMs with conditional visible units

We extended the Restricted Boltzmann Machines (RBM)
model suggested by [12]. The original work showed a signifi-
cant performance boost by making the hidden units conditional
on which movies the current user has rated. We have found
that a similarly significant performance boost is achieved by
conditioning the visible units.

Intuitively speaking, each of the RBM visible units corre-
sponds to a specific movie. Thus their biases represent movie-
biases. However, we know that other kinds of biases are more
significant in the data. Namely, user-bias, single-day userbias,
and frequency-based movie bias. Therefore, we add those
biases to the visible units through conditional connections,
which depend on the currently shown user and date.

Let us borrow the original notation [12], which uses a
conditional multinomial distribution for modeling each column
of the observed visible binary rating matrixV:

p(vk
i = 1|h) =

exp(bk
i +∑F

j=1h jWk
i j )

∑5
l=1exp(bl

i +∑F
j=1h jWl

i j )
(19)

We extend this conditional distribution as follows. Let the
current instance refer to useru and datet. We add a user/date
bias term:

p(vk
i = 1|h,u, t) =

exp(bk
ut +bk

u +bk
i +∑F

j=1h jWk
i j )

∑5
l=1exp(bl

ut +bl
u +bl

i +∑F
j=1h jWl

i j )
(20)

wherebk
u is a user-specific parameter, andbk

ut is a user×date-
specific variable. The learning rule is

∆bk
u = ε1(〈v

k
i 〉data−〈vk

i 〉T), ∆bk
ut = ε2(〈v

k
i 〉data−〈vk

i 〉T) .

We have found it convenient here to deviate from the mini-
batch learning scheme suggested in [12], and to learnbk

u
and bk

ut in a fully online manner. That is, we update each
immediately after observing a corresponding training instance.
The used learning rates are:ε1 = 0.0025 andε2 = 0.008.
Notice that unless otherwise stated, we use the same weight
decay suggested in the original paper, which is 0.001.

Considering the significant effect of frequencies, we can
further condition on them here. Let the current instance refer
to useru and datet with associated frequencyf . The resulting
conditional distribution is as follows:

p(vk
i = 1|h,u, t, f )=

exp(bk
i f +bk

ut +bk
u +bk

i +∑F
j=1h jWk

i j )

∑5
l=1exp(bl

i f +bl
ut +bl

u +bl
i +∑F

j=1h jWl
i j )

(21)
wherebk

i f is a movie×frequency-specific variable. Its learning
rule will be

∆bk
i f = ε3(〈v

k
i 〉data−〈vk

i 〉T) .

whereε3 = 0.0002. Online learning is used as well.
When using frequencies we also employed the following

modification to the visible-hidden weights, which was brought
to our attention by our colleagues at the Pragmatic Theory

team. Instead of using the original weightsWk
i j , we will use

frequency-dependent weightsWk
i j f , which are factored as

Wk
i j f = Wk

i j · (1+Cf j) .

We use online learning for the new parametersCf j , with
learning rate of 1e-5.

As it turned out, this extension of the weights barely
improves performance when frequency-biases are already
present, while being somewhat onerous in terms of running
time. Thus, we are unlikely to recommend it. Still, it is part
of our frequency-aware RBM implementation.

B. RBMs with day-specific hidden units
2Motivated by the day-specific user factor (14), we also

tried to create day-specific RBM hidden units. On top of the
F hidden units, we also addG day-specific units. For a user
that rated onr different days, we creater parallel copies of
the G day-specific units. All those parallel copies share the
same hidden-visible weights, hidden biases, and conditional
connections. Also, each parallel copy is connected only to the
visible units corresponding to the ratings given in its respective
day.

To put this formally, for a day-specific hidden unit indexed
by j, with a corresponding rating datet, we use the indicator
vector rt ∈ {0,1}n to denote which movies the current user
rated on datet. Then, the Bernoulli distribution for modeling
hidden user features becomes

p(h j = 1|V, rt) = σ(b j +
n

∑
i=1

5

∑
k=1

rt
i v

k
i W

k
i j +

n

∑
i=1

rt
i Di j ) . (22)

In our implementation we used this model together with
the frequency-biased RBM. All parameters associated with the
day-specific units were learned in mini-batches, as their non
day-specific counterparts, but with a learning rate of 0.005
and a weight decay of 0.01. Results were not encouraging,
and further refinement is still needed. Still a single variant of
this scheme contributes to the blend.

C. What’s in the blend?

First a note on over-training. Our parameter setting made
the RBM typically converge at lowest Quiz RMSE with 60–90
iterations. However, for the overall blend it was beneficialto
continue overfitting the training set, and let the RBM run for
many additional iterations, as will be seen in the following.

We include in the blend four variants of the RBM model
following (20):

1) F = 200, #iterations=52, RMSE=0.8951
2) F = 400, #iterations=62, RMSE=0.8942
3) F = 400, #iterations=82, RMSE=0.8944
4) F = 400, #iterations=100, RMSE=0.8952

There are also two variants of the RBM with frequencies
(21):

1) F = 200, #iterations=90, RMSE=0.8928
2) F = 200, #iterations=140, RMSE=0.8949

2An idea developed together with Martin Piotte



8

Later, we refer to these two models as [PQ4] and [PQ5].
Interestingly, the RMSE=0.8928 result is the best we know

by using a pure RBM. If our good experience with postpro-
cessing RBM by kNN [2] is repeatable, one can achieve a
further significant RMSE reduction by applying kNN to the
residuals. However, we have not experimented with this.

Finally, there is a single predictor RBM with 50 hidden
units and 50 day-specific hidden units, which ran 70 iterations
to produce RMSE=0.9060. Later, we refer to this model as
[PQ6].

VII. GBDT B LENDING

A key to achieving highly competitive results on the Net-
flix data is usage of sophisticated blending schemes, which
combine the multiple individual predictors into a single final
solution3. This significant component was managed by our
colleagues at the Big Chaos team [14]. Still, we were produc-
ing a few blended solutions, which were later incorporated as
individual predictors in the final blend.

Our blending techniques were applied to three distinct sets
of predictors. First is a set of 454 predictors, which represent
all predictors of the BellKor’s Pragmatic Chaos team for which
we have matching Probe and Qualifying results [14]. Second,
is a set of 75 predictors, which the BigChaos team picked out
of the 454 predictors by forward selection [14]. Finally, a set
of 24 BellKor predictors for which we had matching Probe
and Qualifying results. Details of this set are given at the end
of this section.

A. Gradient Boosted Decision Trees

While major breakthroughs in the competition were
achieved by uncovering new features underlying the data,
those became rare and very hard to get. As we entered the
final 30 days of the competition (“last call for grand prize
period”), we realized that individual predictors, even if novel
and accurate, are unlikely to make a difference to the blend.
We speculated that the most impact during a short period
of 30 days would be achieved by exploring new blending
techniques or improving the existing ones. Blending offersa
lower risk path to improvement in a short time. First, unlike
individual predictors, better blending is directly connected to
the final result. Second, blending simultaneously touches many
predictors, rather than improving one at a time. This led to the
idea of employing Gradient Boosted Decision Trees, which
was raised together with Michael Jahrer and Andreas Töscher.
Eventually, it did indeed make a contribution to the blend,
though we hoped for a more significant impact.

Gradient Boosted Decision Trees (GBDT) are an additive
regression model consisting of an ensemble of trees, fitted to
current residuals in a forward step-wise manner. In the tra-
ditional boosting framework, the weak learners are generally
shallow decision trees consisting of a few leaf nodes. GBDT
ensembles are found to work well when there are hundreds
of such decision trees. Standard references are [5, 6], and a
known implementation is Treenet [16].

3While we use here the generic term “blending”, the more accurate term
would be “stacked generalization”.

GBDT combine a few advantages, including an ability
to find non-linear transformations, ability to handle skewed
variables without requiring transformations, computational ro-
bustness (e.g., highly collinear variables are not an issue)
and high scalability. They also naturally lend themselves to
parallelization. This has made them a good choice for several
large scale practical problems such as ranking results of a
search engine [9, 17], or query-biased summarization of search
results [10]. In practice we had found them, indeed, very
flexible and convenient. However, their accuracy lags behind
that of Neural Network regressors described in [13].

There are four parameters controlling GBDT, which are:
(1) number of trees, (2) size of each tree, (3) shrinkage (or,
“learning rate”), and (4) sampling rate. Our experiments did
not show much sensitivity to any of these parameters (exact
choices are described later.)

Since GBDT can handle very skewed variables, we added
to the list of predictors four additional features: user support
(number of rated movies), movie support (number of rating
users), frequency and date of rating (number of days passed
since earliest rating in the dataset).

We applied GBDT learning on the aforementioned sets
of 454 and 75 predictors. The Probe set is used for train-
ing the GBDT, which is then applied on the Qualifying
set. Parameter settings are: #trees=200, tree-size=20, shrink-
age=0.18, and sampling-rate=0.9. The results, which are in-
cluded in the blend, are of RMSE=0.8603 (454 predictors)
and RMSE=0.8606 (75 predictors).

When working with the much smaller set of 24 BellKor pre-
dictors, we used the settings: #trees=150, tree-size=20, shrink-
age=0.2, and sampling-rate=1.0. The result of RMSE=0.8664
was included in the blend.

It is also beneficial to introduce a clustering of users
or movies, which will allow GBDT to treat all users (or
movies) of a certain kind similarly. In the past [2], we touted
splitting users into bins based on their support, and applying
an equal blending strategy for all users in the same bin. This
is already addressed in the GBDT implementation described
above, thanks to adding the user support variable to the
blended features. However we can introduce additional kinds
of user relationships to the scheme. For example, a matrix
factorization model computes a short vector characterizing
each user (a user factor). Like-minded users are expected to
get mapped to similar vectors. Hence, adding such vectors to
the blended feature sets will effectively allow GBDT to slice
and dice the user base into subsets of similar users on which
the same blending rules should be applied. The same can be
done with movies.

We included in the blend three forms of this idea, all applied
on the set of 24 BellKor predictors. First we added to the
blended predictors features from the timeSVD++ model (16)
of dimensionality f = 20. This way, all individual bias terms
were added as features. In addition, for each movie-user pair
u− i, we added the 20-D movie factor(qi + qi, fui), and the
20-D user factorpu(tui)+ |R(u)|−

1
2 ∑ j∈R(u) y j . This resulted in

RMSE=0.8661.
Second, we used the 20 hidden units of an RBM as a

20-D user representation (in lieu of the timeSVD++ user
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representation). The movie representation is still based on the
timeSVD++ model. The resulting RMSE is also 0.8661.

Finally, we added k-NN features on top of the timeSVD++
features. That is, for eachu− i pair, we found the top 20
movies most similar toi, which were rated byu. We added the
movie scores, each multiplied by their respective similarities
as additional features. Similarities here were shrunk Pearson
correlations [1]. This slightly reduces the RMSE to 0.8660.

Another usage of GBDT is for solving a regression problem
per movie. For each user we computed a 50-D characteristic
vector formed by the values of the 50 hidden units of a
respective RBM. Then, for each movie we used GBDT for
solving the regression problem of linking the 50-D user
vectors to the true user ratings of the movie. The result, with
RMSE=0.9248, will be denoted as [PQ7] in the following
description.

B. List of BellKor’s Probe-Qualifying pairs

We list the 24 BellKor predictors which participated in the
GBDT blending. Notice that many more of our predictors
are in the final blend of Qualifying results (as mentioned
earlier in this article). However, only for those listed below
we possess corresponding Probe results, which require extra
computational resources to fully re-train the model while
excluding the Probe set from the training set.

Post Progress Prize 2008 predictors
Those were mentioned earlier in this document:

1) PQ1
2) PQ2
3) PQ3
4) PQ4
5) PQ5
6) PQ6
7) PQ7

Progress Prize 2008 predictors
The following is based on our notation in [3]:

8) SVD++(1) ( f = 200)
9) Integrated (f = 100, k = 300)

10) SVD++(3) ( f = 500)
11) First neighborhood model of Sec. 2.2 of [3]

(RMSE=0.9002)
12) A neighborhood model mentioned towards the end of

Sec. 2.2 of [3] (RMSE=0.8914)
Progress Prize 2007 predictors
The following is based on our notation in [2]:
13) Predictor #40
14) Predictor #35
15) Predictor #67
16) Predictor #75
17) NNMF (60 factors) with adaptive user factors
18) Predictor #81
19) Predictor #73
20) 100 neighbors User-kNN on residuals of all global

effects but the last 4
21) Predictor #85
22) Predictor #45

23) Predictor #83
24) Predictor #106
One last predictor with RMSE=0.8713 is in the final blend.

It is based on the blending technique described in page 12 of
[3]. The technique was applied to the four predictors indexed
above by: 2, 9, 12, and 13.

VIII. C ONCLUDING REMARKS

Granting the grand prize celebrates the conclusion of the
Netflix Prize competition. Wide participation, extensive press
coverage and many publications all reflect the immense suc-
cess of the competition. Dealing with movies, a subject close
to the hearts of many, was definitely a good start. Yet, much
could go wrong, but did not, thanks to several enabling factors.
The first success factor is on the organizational side – Netflix.
They did a great service to the field by releasing a precious
dataset, an act which is so rare, yet courageous and important
to the progress of science. Beyond this, both design and
conduct of the competition were flawless and non-trivial. For
example, the size of the data was right on target. Much larger
and more representative than comparable datasets, yet small
enough to make the competition accessible to anyone with a
commodity PC. As another example, I would mention the split
of the test set into three parts: Probe, Quiz, and Test, which
was essential to ensure the fairness of the competition. Despite
being planned well ahead, it proved to be a decisive factor at
the very last minute of the competition, three years later.

The second success factor is the wide engagement of many
competitors. This created positive buzz, leading to further
enrollment of many more. Much was said and written on the
collaborative spirit of the competitors, which openly published
and discussed their innovations on the web forum and through
scientific publications. The feeling was of a big community
progressing together, making the experience more enjoyable
and efficient to all participants. In fact, this facilitatedthe na-
ture of the competition, which proceeded like a long marathon,
rather than a series of short sprints.

Another helpful factor was some touch of luck. The most
prominent one is the choice of the 10% improvement goal.
Any small deviation from this number, would have made the
competition either too easy or impossibly difficult. In addition,
the goddess of luck ensured most suspenseful finish lines in
both 2007 Progress Prize and 2009 Grand Prize, matching best
sports events.

The science of recommender systems is a prime beneficiary
of the contest. Many new people became involved in the
field and made their contributions. There is a clear spike
in related publications, and the Netflix dataset is the direct
catalyst to developing some of the better algorithms known in
the field. Out of the numerous new algorithmic contributions, I
would like to highlight one – those humble baseline predictors
(or biases), which capture main effects in the data. While
the literature mostly concentrates on the more sophisticated
algorithmic aspects, we have learned that an accurate treatment
of main effects is probably at least as significant as coming
up with modeling breakthroughs.

Finally, we were lucky to win this competition, but recog-
nize the important contributions of the many other contestants,
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from which we have learned so much. We would like to thank
all those who published their results, those who participated
in the web forum, and those who emailed us with questions
and ideas. We got our best intuitions this way.
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