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A Generalized Family-Based Association Test
for Dichotomous Traits

Wei-Min Chen,1,2,* Ani Manichaikul,3 and Stephen S. Rich1

Recent advances in genotyping technology make it possible to utilize large-scale association analysis for disease-gene mapping. Powerful

and robust family-based association methods are crucial for successful gene mapping. We propose a family-based association method,

the generalized disequilibrium test (GDT), in which the genotype differences of all discordant relative pairs are utilized in assessing

association within a family. The improvement of the GDT over existing methods is threefold: (1) information beyond first-degree

relatives is incorporated efficiently, yielding substantial gains in power in comparison to existing tests; (2) the GDT statistic is imple-

mented via a robust technique that does not rely on large sample theory, resulting in further power gains, especially at high levels of

significance; and (3) covariates and weights based on family size are incorporated. Advantages of the GDT over existing methods are

demonstrated by extensive computer simulations and by application to recently published large-scale genome-wide linkage data

from the Type 1 Diabetes Genetics Consortium (T1DGC). In our simulations, the GDTconsistently outperforms other tests for a common

disease and frequently outperforms other tests for a rare disease; the power improvement is > 13% in 6 out of 8 extended pedigree

scenarios. All of the six strongest associations identified by the GDT have been reported by other studies, whereas only three or four

of these associations can be identified by existing methods. For the T1D association at gene UBASH3A, the GDT resulted in a

genome-wide significance (p ¼ 4.3 3 10�6), much stronger than the published significance (p ¼ 10�4).
Introduction

Recent advances in genotyping technology make it

possible to utilize large-scale association analysis for

disease-gene mapping. In comparison to commonly used

case-control genome-wide association (GWA) studies, the

genome-wide family-based design is also attractive for its

convenience in making use of existing family-based

phenotype data that were previously collected for linkage

scans or other purposes. When family information is prop-

erly incorporated in analysis of family-based association

data, the resulting inference is robust to population strati-

fication.1,2

Powerful and robust family-based association methods

are crucial for successful gene mapping. One of the influen-

tial association methods is the transmission/disequilibrium

test (TDT).3 This method examines the allele transmission

disparity from heterozygote parents to their affected

offspring. Excess transmission of an allele suggests associa-

tion between that allele and the disease. The TDT was

originally proposed as a test of linkage in the presence of

association. It was later viewed as the standard of associa-

tion tests4 in which the null hypothesis is ‘‘no linkage and

no association.’’ Properties of the TDT and its extensions

have been studied previously.2,5,6

The TDT has been extended to accommodate various

family-ascertainment schemes in nuclear families. One

extension is the inclusion of missing parental data.

Because the TDT can suffer from inflated type I errors under

direct use of one-parent family data7 or a naive imputation

of missing parental data,8 only families with complete
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parental data can be included in the TDT analysis. The

1-TDT9 was proposed to address one-parent family data.

The S-TDT10 and equivalent tests11,12 were developed for

no-parent sibship data, and the power in this scenario

can be further improved by imputing missing parental

data.13,14 Another extension to the TDT is the incorpora-

tion of general nuclear family data, for which there are

two widely used methods: the pedigree disequilibrium

test (PDT)15,16 and the family-based association test

(FBAT).14,17–19 The PDT combines parent-child transmis-

sion-disequilibrium information with discordant sibling

pair association information, whereas the FBAT presents

a general class of family-based association tests. Special

features such as haplotype analysis20 have also been devel-

oped in the context of the TDT. Simulation studies were

performed for comparing the performance of various

family-based association tests in nuclear families, and

none of the methods was found to be uniformly the

most powerful.2

In contrast to TDT extensions that test association

within a family, some recent method developments

involve examining both within- and between-family asso-

ciations. The MQLS (‘‘more-powerful’’ or ‘‘modified’’ quasi-

likelihood score) method21 considers linear regression of

genotypes on affection status while taking into account

genotype correlations among family members through

kinship coefficients. This method outperforms the stan-

dard generalized estimating equations (GEE) model22

with an independent working covariance matrix when

the population prevalence of a disease is used in the

mean model of the MQLS. Here, we focus mainly on
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family-based association tests that examine within-family

association.

Although many association methods for dichotomous

traits have been applied to large, well-powered, family-

based studies, none of the existing methods has taken

advantage of pedigree structural information, as with

quantitative trait association methods.23 Extended pedi-

grees are typically treated as multiple nuclear families

and, consequently, information is not utilized fully.

Another weakness of some previously proposed test statis-

tics is the dependence on large-sample approximations

due to the robust estimator built into the test statistic. In

such cases, p values can be quite unreliable if they are

much smaller than 0.05.24

In this report, we propose the generalized disequilibrium

test (GDT) for generalization of TDT-like family-based asso-

ciation methods. This method assesses the genotype differ-

ence of all discordant relative pairs in a family and makes

use of information beyond first-degree relative pairs. In

doing so, we extend the transmission-based TDT statistic

used for examination of parent-offspring pairs to a compar-

ison-based statistic more broadly applicable to different

types of relative pairs. Covariates and missing parental

information are incorporated. Unlike many other test

statistics that rely on large samples for their asymptotic

distributions, a robust technique involving the kinship

coefficients has been implemented in the GDT, so the

test remains valid even with a relatively small number of

families of unequal size. We examine the performance of

our method by comparing it with several other association

tests through extensive computer simulations. We also

apply our method to a recently published genome-wide

linkage scan data set25 consisting of 5212 genotyped cases

with type 1 diabetes (T1D [MIM 222100]) and 4998 geno-

typed nondiabetic relatives in 2496 families.

Material and Methods

Suppose we have a set of general pedigrees. Each individual j in

family i has a binary trait, covariates in vectors Zij, and genotypes

at a series of loci. For a locus with two alleles, A and a, we define a

genotype score Xij, for the jth individual in the ith family, by the

number of A alleles. When there are more than two alleles, the allele

under test is labeled as A and other alleles are labeled as a. Without

loss of generality, we assume that in the ith family with Ni geno-

typed individuals in total, the first NA
i genotyped individuals are

affected and the other NU
i ¼ Ni �NA

i genotyped individuals are

unaffected. We consider the following score for the ith family:

SGDT
i ¼

XNA
i

j¼1

XNi

k¼NA
i
þ1

�
Xij � Xik

�
Cijk, (Equation 1)

in which Cijk is 1/Ni if no covariates are modeled and

Cijk ¼
8

Ni

exp
��

Zij � Zik

�0
a
��

1þ expf
�
Zij � Zik

�0
ag
�3

(Equation 2)

when covariates are available. Parameters in vector a are log odds

ratios for association between the covariates and the trait, and
The American
they can be estimated from a standard logistic regression model

with only phenotypes and covariates. The specific form (Equation

2) for covariate modeling is derived from the quasi-likelihood22 for

a conditional logistic regression model.26 Appendix A shows that,

without covariates, the score (Equation 1) can be derived from a

conditional logistic regression model.

The test statistic of GDT has the following form:

ZGDT ¼

P
i

SGDT
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var

�P
i

SGDT
i

�s : (Equation 3)

The statistic (Equation 3) follows a standard normal distribution

approximately under the null hypothesis of no association.

The score (Equation 1) is essentially a summation of genotype

differences between all phenotypically discordant relative pairs.

Under the null hypothesis of no association between allele A

and the trait, the affected and unaffected individuals should

have the same genotype score expectations; i.e., E[Xij-Xik] ¼ 0 in

Equation 1. If no covariates are modeled, or covariates are modeled

independent of the genetic effect, the score (Equation 1) is

expected to be zero under the null hypothesis.

The GDT can be viewed as a generalization of the TDT, 1-TDT,

and PDT. We can see this relationship by comparing their scores

(i.e., numerator of the test statistic), because all four tests are

score tests. The score of the TDT,27 or the difference of the total

number of alleles transmitted versus not transmitted from

heterozygote parents to affected offspring, can be rewritten asP
i

P
j

P2
k¼1ðXO

ij �XP
ikÞ, in which XO

ij and XP
ik are the genotype

scores for the jth affected offspring and the kth parent, respec-

tively, in the ith family. This TDT score is a summation of genotype

differences between all discordant relative pairs in nuclear families

in which both parents are unaffected and all offspring are affected,

which is exactly the definition of the GDT score in the absence of

a covariate term (Equation 2). The 1-TDT examines all heterozy-

gote parent-homozygote offspring pairs and homozygote parent-

heterozygote offspring pairs, the same as that which the GDT

does in nuclear families in which available parents are unaffected

and all offspring are affected. The PDT combines the TDT score

with the discordant sibling pair score, which is essentially exam-

ining all discordant relative pairs in nuclear families in which

parents are unaffected.

One standard way to estimate the variance of the score is to use

an empirical moment estimator:

Var

 X
i

SGDT
i

!
¼
X

i

�
SGDT

i

�2
: (Equation 4)

This variance estimator is a consistent estimator under the null

hypothesis of no association, and has been used in a number of

association tests.9,15,16 Although straightforward, the accuracy of

the estimator depends on a large number of families of comparable

sizes and similarly distributed affection status.

Here, we present a more precise way to estimate the score vari-

ance without relying on the use of large-sample theory. Under

the null hypothesis of no association, each genotype score in

a family has the same mean and variance, regardless of the affec-

tion status. Suppose mi is the mean of genotype scores in the ith

family and s2
i is the variance of Xij - mi, or the within-family vari-

ance. Let p
ðiÞ
jk denote the proportion of alleles shared identically

by descent (IBD) and f
ðiÞ
jk the kinship coefficient between the jth

and kth individual of the ith family. The p values can usually be
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estimated from a multipoint IBD computation28 in genome scans

with a dense SNP panel. In Appendix B, we show the within-

family genotype covariance CovðXij � mi,Xik � miÞ is equal to

p
ðiÞ
jk s2

i or 2f
ðiÞ
jk s2

i , depending on whether the IBD information is

known. This leads to VarðXij � miÞ ¼ 2f
ðiÞ
jj s2

i and to

E
�
Xij �Xik

�2

¼ Var
�
Xij � mi

�
þ VarðXik � miÞ � 2Cov

�
Xij � mi,Xik � mi

�
:

¼
2
	

f
ðiÞ
jj þ f

ðiÞ
kk � p

ðiÞ
jk



s2

i when IBD is known

2
	

f
ðiÞ
jj þ f

ðiÞ
kk � 2f

ðiÞ
jk



s2

i when IBD is unknown

8<:
This suggests that within-family variance s2

i can be estimated by

a moment estimator,

bs2
i ¼

PNA
i

j¼1

PNi

k¼NA
i
þ1

�
Xij �Xik

�2

PNA
i

j¼1

PNi

k¼NA
i
þ1

2
	

f
ðiÞ
jj þ f

ðiÞ
kk � p

ðiÞ
jk


 or

~s2
i ¼

PNA
i

j¼1

PNi

k¼NA
i
þ1

�
Xij �Xik

�2

PNA
i

j¼1

PNi

k¼NA
i
þ1

2
	

f
ðiÞ
jj þ f

ðiÞ
kk � 2f

ðiÞ
jk


, ðEquation 5Þ

and that the variance of the score (Equation 1) is

Because in many cases it is not trivial to compute the IBD

sharing because of the large number of markers and/or the large

size of pedigrees, such as in a GWA scan, we consider the use of

the kinship coefficients as the default option in the GDT method.

The GDT statistic can be written as

ZGDT¼

P
i

PNA
i

j¼1

PNi

k¼NA
i
þ1

�
Xij �Xik

�
CijkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

PNA
i

j¼1

PNi

k¼NA
i
þ1

PNA
i

l¼1

PNi

m¼NA
i
þ1

2~s2
i

	
f
ðiÞ
jl þ f

ðiÞ
km � f

ðiÞ
jm � f

ðiÞ
kl



CijkCilm

vuut :

(Equation 7)

The GDT statistic (Equation 7) applies to both noninbred and

inbred families and to both autosomal and X-linked genes (with

the use of X chromosome-specific kinship coefficients29,30).

In the presence of strong linkage, the IBD sharing is expected to

be larger than twice the kinship coefficient among affected relative

pairs and unaffected relative pairs, and smaller among discordant

relative pairs. Therefore, the variance (Equation 6) with the

kinship coefficients used as a default is expected to be smaller

than the variance with IBD estimates modeled, and thus linkage

contributes to the inflation of the test statistic. For a GWA scan,

this potential inflation due to strong linkage is beneficial for

gene mapping. For candidate gene or fine mapping studies in

which strong linkage exists and estimating IBD is more feasible,

the GDT with IBD estimates modeled should be used.

The GDT test statistic is robust in the sense that its statistical

distribution under the null hypothesis does not depend on the

genetic model of the disease. In a conditional logistic regression

model from which the GDT statistic is derived, no polygenic effect

is assumed. The GDT method remains valid in the presence of

polygenes because the variance of the score in Equation 3 under

the null hypothesis involves only genotype data at a single locus.

Because the variance of the score is computed within families, the

GDT method is also robust to confounding factors that exist

between families, such as population stratification.

Simulation
We evaluate the performance of our method in a variety of simu-

lated scenarios. We consider two types of pedigrees: nuclear fami-

lies and cousin families. Each nuclear family consists of four

siblings and one or two parents. Each cousin family has three

generations, with two children in each of the three nuclear fami-

lies. In total, we consider 12 scenarios with different combinations

of affection status, missing data pattern, and pedigree types, as

shown in Figure 1. We consider a common disease with a preva-

lence of 0.3 and a rare disease with a prevalence of 0.01. The

disease allele frequency is set at 0.3. A multiplicative genetic model

with genotypic relative risk of 1.5 is assumed, which corresponds

to penetrances 0.51, 0.34, and 0.227 for the common disease and

penetrances 0.017, 0.0113, and 0.0076 for the rare disease.

We investigate six family-based association methods: the GDT,

FBAT (using the default setting14,17), PDT, GDT-PO (a variation

of GDT that considers only discordant parent-offspring pairs),

1-TDT, and TDT. We investigate performance of the FBAT with

the offset18 and empirical variance options19 in analysis of the

T1DGC data. (We considered the pedigree-based association test

(PBAT)31 method, but we do not include it in our extensive simu-

lations. Although this method was identical to the FBAT method

in nuclear families, it was consistently less powerful than the

FBAT in extended pedigrees. Comparisons of these two software

implementations are shown in Supplemental Data, available on-

line.) All methods are applied to the same simulated data sets,

composed of either 200 nuclear families or 100 cousin pedigrees

(each simulated 10,000 times). We developed an algorithm to

simulate genotypes of ascertained pedigrees efficiently conditional

on a particular set of known phenotypic values, such as those

shown in Figure 1. We first simulated all founders’ genotypes at

Var
�
SGDT

i

�
¼ Var

0@PNA
i

j¼1

PNi

k¼NA
i
þ1

�
Xij � Xik

�
Cijk

1A
¼
PNA

i

j¼1

PNi

k¼NA
i
þ1

PNA
i

l¼1

PNi

m¼NA
i
þ1

CijkCilmCov
�
Xij � Xik, Xil � Xim

�

¼

PNA
i

j¼1

PNi

k¼NA
i
þ1

PNA
i

l¼1

PNi

m¼NA
i
þ1

CijkCilm

	
p
ðiÞ
jl þ p

ðiÞ
km � p

ðiÞ
jm � p

ðiÞ
kl


bs2
i when IBD is known

PNA
i

j¼1

PNi

k¼NA
i
þ1

PNA
i

l¼1

PNi

m¼NA
i
þ1

CijkCilm

	
2f
ðiÞ
jl þ 2f

ðiÞ
km � 2f

ðiÞ
jm � 2f

ðiÞ
kl



~s2

i when IBD is unknown :

8>>>>><>>>>>:

(Equation 6)
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the disease SNP according to conditional probabilities given all

levels of affection status. We then simulated inheritance vectors

at the disease SNP according to conditional probabilities given

all levels of affection status and founders’ genotypes. Finally, we

simulated two marker SNPs for all individuals: one SNP that was

completely linked but in linkage equilibrium to the disease and

a second SNP that was not linked. Both SNPs have an allele

frequency of 0.5. The simulation algorithm has been newly imple-

mented in our computer program, Linkage Explorer.32 More

rigorous details are shown in Appendix C.

In order to examine behaviors of GDT in the presence of popu-

lation stratification across families or population admixture

within families, we performed 10,000 simulation replicates of

200 nuclear families with four offspring, each of which has at least

one affected offspring. We compare the validity of the GDT with

the MQLS, which was not designed to be robust to population

heterogeneity. Disease penetrances of 0.2, 0.3, and 0.45 are due

to a disease SNP that is independent of a marker SNP. To examine

the effect of population stratification across families, we simulated

100 families with an MAF ¼ 0.1 for both disease and marker SNPs

and another 100 families with an MAF ¼ 0.5 for both SNPs. To

examine the effect of population admixture within families, for

each of the 200 simulated families, one parent has an MAF ¼ 0.1

for both SNPs and the other parent has an MAF ¼ 0.5 for both

SNPs. This simulation was implemented in the R package.

T1DGC Data
We applied our methods to a recently published T1D data set from

the Type 1 Diabetes Genetic Consortium (T1DGC).25 A total of

10,394 individuals from 2496 families were genotyped by the

Center for the Inheritance of Disease Research (CIDR) with their

Illumina 6K linkage panel (~6K SNPs). The affected sibling pair

(ASP) families consisted of 5212 affected and 4998 unaffected

subjects. The samples, all of European descent, were recruited

from nine geographic regions. A template informed consent was

provided for adaptation in each country. The ethics committees

of each study site approved the study protocol, and all participants

or their surrogates gave written informed consent and assent.

N1 N2 N3 N4

C1 C2 C3 C4

C5 C6 C7 C8

Figure 1. Pedigrees Used in 12 Simula-
tion Scenarios

Concannon et al.33 identified a previ-

ously unreported association with T1D in

the UBASH3A gene (MIM 605736); this

finding was replicated in two other case-

control populations. Although this study

was designed for ASP linkage analysis,

these data also provided 3737 discordant

sibling pairs, 9391 discordant parent-

offspring pairs, and hundreds of other

discordant relative pairs. Among the 2657

ASPs in total, both parents were available

for 69.6% of the ASPs, 18.9% of the ASPs

had only a single parent, and 11.6% had

neither parent available.

We applied the GDT, GDT-PO, FBAT

(two implementations: default14,17 and

with the use of an offset18), PDT (both

PDT-SUM16 and PDT-AVG15), 1-TDT,9 and

TDT to 5638 SNPs on the 22 autosomes. Although the tests PDT-

SUM and PDT-AVG are identical in our simulated data sets in

which all families are of the same structure, these two tests differ

in the T1DGC data as a result of the distinct weights assigned to

each of the families, as denoted by C in the score (Equation 1). C

is 1 in the PDT-SUM and the inverse of the total number of trios

and discordant sibling pairs in the PDT-AVG. We calculated the

estimated genomic control (GC)34 for each scan in order to assess

the inflation of type I errors for each of the methods.

Results

Simulation Studies

Figure 2 shows type I error rates for five association tests at

significance levels 0.01 and 0.001, under the null hypoth-

esis of no linkage and no association. Note that the stan-

dard errors for estimates of type I error rates in 10,000

simulations are 0.001 and 0.00032, respectively. At the

0.01 significance level in all 12 simulation scenarios, the

GDT has type I error rates % 0.011 and all other tests

have type I error rates % 0.0123. At a significance level of

0.001, the GDT, FBAT, and PDT have type I error rates

% 0.0011, whereas the GDT-PO and 1-TDT each have

one out of 12 type I error rates larger than 0.0013 (the infla-

tion is still less than two standard errors). These results

show that all tests have proper type I error rates.

Figure S1 shows that all tests also have proper type I error

rates under the null hypothesis of no association in the

presence of linkage.

Figure 3 and Figure 4 show the power comparison of five

association tests for a common disease with a prevalence of

0.3 and a rare disease with a prevalence of 0.01. In our

simulations, the power of the TDT is the same as that of

the FBAT when parents or founders are available in

scenarios N1, N2, C2, and C8 and is 0 otherwise, so the

TDT results are not included in the figure. In all simulation
The American Journal of Human Genetics 85, 364–376, September 11, 2009 367
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Figure 2. Type I Error Rates for Five Association Tests
The prevalence of the disease is set at 0.3. The SNP under test is not linked to the disease. Either 200 nuclear families or 100 cousin
families were simulated 10,000 times.
scenarios, we observed the following for both a common

and a rare disease:

(1) The GDT has the highest power, except in scenarios

N1, N2, and C8 (with complete parental data), in

which either the GDTor the GDT-PO has the highest

power; the GDT is > 13% more powerful than non-

GDT methods in scenarios C2, C4, C5, C6, and C7.

(2) The GDT consistently outperforms the PDT:

although the GDT and the PDT differ only in the

variance estimator (i.e., denominator of the

statistic) in scenario N2, the GDT outperforms the

PDT by > 3.1% at a level of 0.001 and < 1.4% at

a level of 0.01.

(3) The GDT-PO is consistently as or more powerful

than the 1-TDT and TDT: although the GDT-PO

and 1-the TDT differ only in the variance estimator

in all scenarios except C4, C5, and C7, the power

improvement of the GDT-PO over the 1-TDT can

be > 5.7% at a level of 0.001 and < 4% at a level

of 0.01 in scenario C2.

(4) When both parents are available (scenarios N1, N2,

C2, and C8), the FBAT has a power very similar to
368 The American Journal of Human Genetics 85, 364–376, Septem
that of the GDT-PO and the TDT; the 1-TDT is

slightly less powerful than the three other tests.

(5) The FBAT’s performance is similar to that of the PDT

for six scenarios; in all such cases, there are two

siblings per sibship with one parent missing.

(6) In contrast to the GDT, the FBAT and the PDT do

not apply to some simulation scenarios, including

C5 and C6, in which affected sibling pair families

have incomplete parental data; the GDT handles

one-parent families better than the FBAT and the

PDT.

For a common disease, the GDT performs uniformly best

among all six tests; in addition to the five scenarios in

which the GDT consistently outperforms non-GDT

methods (by > 13% in simulations), the GDT is also >

19% more powerful than non-GDT methods in scenarios

C1 and C3 and is > 45% more powerful than the FBAT

and the PDT in scenario N4. For a rare disease, the GDT still

frequently outperforms other tests, except in nuclear fami-

lies with complete parental data, in which the TDT and its

equivalent tests, such as the FBAT and the GDT-PO, are

slightly more powerful.
ber 11, 2009
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Figure 3. Power to Map a Common Disease with a Prevalence of 0.3
The power of the TDT is the same as that of the FBAT under scenarios N1, N2, C2, and C8 and is 0 otherwise.
Our simulations show that the GDT statistic is robust to

population stratification across families but is somewhat

inflated in the presence of population admixture within

families. In the presence of population stratification, the

type I error rates of the GDT are maintained at 5.0% and

0.9%, respectively, for significance levels of 0.05 and

0.01, whereas the type I error rates of the MQLS method

are 18.1% and 6.6%, respectively. In the presence of popu-

lation admixture, the type I error rates of the GDT are 8.9%

and 2.1%, respectively at significance levels of 0.05 and

0.01, which are comparable to the type I error rates of

7.2% and 1.8% for the MQLS method.

T1DGC Data

Table 1 lists all significant associations in the T1DGC

linkage data with p % 10�4 with the use of seven associa-

tion tests. Although the use of the p % 10�4 threshold is

somewhat arbitrary, it may be sufficient to permit compar-

ison of the different methods. A Bonferroni correction

based upon 5638 SNPs requires a genome-wide signifi-

cance threshold of p % 8.9 3 10�6 and a marginal

genome-wide significance level of p % 1.8 3 10�5.

The FBAT and PDT-SUM tests have a somewhat inflated

GC (1.053 and 1.075, respectively). Because GC inflation
The American
is not adjusted in association findings in Table 1, the re-

ported association results obtained with the use of these

two methods are inflated. In contrast, the GDT and

GDT-PO have a much lower GC (< 1.01). Although the

FBAT, with an ‘‘optimal’’ offset used,18 has a GC similar

to the default FBAT, none of the p values obtained with

the use of this method achieved our cutoff of 10�4. For

this reason, we focus the remainder of our discussion on

FBAT results obtained with the use of the default setting.

The strongest SNP associated with T1D is in the Insulin

gene (INS [MIM 176730]) on chromosome 11p,35 reported

consistently across all methods, with p ¼ 1.4 3 10�8 to

p ¼ 1.2 3 10�11. The second most significant association

identified by the GDT, GDT-PO, and PDT methods is

with a SNP in UBASH3A on chromosome 21.33 In compar-

ison to the published p value of 10�4, the reanalysis of this

SNP with the use of the GDT resulted in a stronger associ-

ation result, with p ¼ 5.9 3 10�6, a value that reaches

genome-wide significance. This association was not identi-

fied by the FBAT, TDT, or 1-TDT. The third most associated

SNP is in SH2B3 (MIM 605093) on chromosome 12.36 This

association was identified by the GDT, GDT-PO and 1-TDT,

with significance ranging from p ¼ 1.6 3 10�5 to p¼ 9.9 3

10�6 (all marginally significant). Two other consistent
Journal of Human Genetics 85, 364–376, September 11, 2009 369



Power at Significance Level .01
0
20

40
60

80
10

0

P
ow

er
 (%

)

N1 N2 N3 N4 C1 C2 C3 C4 C5 C6 C7 C8

GDT
FBAT
PDT
GDT−PO
1−TDT

0
20

40
60

80
10

0

Power at Significance Level .001

P
ow

er
 (%

)

N1 N2 N3 N4 C1 C2 C3 C4 C5 C6 C7 C8

GDT
FBAT
PDT
GDT−PO
1−TDT

Figure 4. Power to Map a Rare Disease with a Prevalence of 0.01
The power of the TDT is up to 0.3% lower than that of the FBAT under scenarios N1, N2, C2, and C8 and is 0 otherwise.
association results were observed at CLEC16A (KIAA0350

[MIM 611303]) on chromosome 16,35,36 with a GDT p ¼
7.9 3 10�5, and at SNP rs714027, with a GDT p ¼ 7.5 3

10�5 on chromosome 2237. The sixth most associated

SNP from the GDT analysis is at rs169679 in the HLA

(MIM 142800) region,38 with p ¼ 1.2 3 10�4. This associa-

tion is surprisingly weak, considering that the HLA is the

most well-known genetic factor contributing to T1D. Over-

all, all of the top six T1D-associated SNPs from the GDT

analysis (as well as from the GDT-PO analysis) have been

reported previously,37 with p < 2 3 10�9. However, only

3, 2, 3, 3, and 4 of these previously reported associations

were identified by the FBAT, PDT-SUM, PDT-AVG, TDT,

and 1-TDT methods, respectively. We also tested two

methods that examined the presence of population-level

association beyond within-family associations. The MQLS

method21 incorporating the population prevalence of

T1D (0.005) was able to identify INS, SH2B3, rs714027,

and HLA at p % 10�4, consistent with the six top SNPs

from the GDT analysis, whereas the GEE method22 identi-

fied INS, UBASH3A, rs714027, and an unknown variant on

chromosome 4. We conclude that the GDT and GDT-PO

are more powerful than several other tests for the identifi-

cation of variants responsible for T1D.
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Chromosome 6 has a ~100 cM region in linkage with

T1D, and the HLA region has a high LOD score of 213.2

for linkage.25 This strong linkage could potentially

contribute to the inflation of an association test. The GC

from the analysis of chromosome 6 for the GDT, FBAT,

PDT-SUM, PDT-AVG, TDT, GDT-PO, and 1-TDT are 1.15,

1.33, 1.18, 1.05, 1.38, 1.42, and 1.11, respectively. This

indicates that the statistics of most tests are very inflated.

Given that linkage disequilibrium exists only throughout

the HLA complex but in only a small portion of chromo-

some 6p, inflation of the test statistics at a majority of

loci may be due to linkage. When IBD information is

modeled in the GDT instead of the default of kinship coef-

ficients being used, the GC reduces to 1.00 from 1.15, and

the significance of the strongest association at rs169679

with the use of the GDT is reduced from p ¼ 1.2 3 10�4

to p ¼ 9.1 3 10�4. When an empirical variance is used

for the FBAT in testing association in the presence of

linkage,19 the GC reduces from 1.33 to 1.18 and the stron-

gest association on chromosome 6 has a p> 5 3 10�4. Both

of these methods are developed for testing association in

the presence of linkage, and neither detected notable asso-

ciation on chromosome 6. The substantial inflation of the

GC on chromosome 6 for the FBAT method with an
ber 11, 2009



Table 1. Comparison of Top Association Hits in the T1DGC Data with the Use of Seven Family-Based Association Tests

Chr SNP MAF Gene
Position
(bp)

GDT:
1.008 GC

GDT-PO:
1.002 GC

FBAT:
1.053 GC

PDT-SUM:
1.075 GC

PDT-AVG:
1.025 GC

TDT:
1.030 GC

1-TDT:
1.014 GC

11 rs1004446 0.310 INS 2126719 3.6 3 10�10 1.2 3 10�11 1.3 3 10�11 1.4 3 10�8 2.5 3 10�9 1.8 3 10�11 6.0 3 10�11

21 rs876498 0.453 UBASH3A 42714896 5.9 3 10�6 3.3 3 10�5 1.0 3 10�5 1.0 3 10�4

12 rs737280 0.265 SH2B3 110679359 1.6 3 10�5 9.9 3 10�6 1.1 3 10�5

16 rs887864 0.327 CLEC16A 11066386 7.9 3 10�5 2.9 3 10�5 4.8 3 10�5 7.1 3 10�5 1.0 3 10�4

22 rs714027 0.441 (multiple) 28902325 7.5 3 10�5 8.0 3 10�5 2.2 3 10�5

6 rs1011094 0.475 HLA 28883961 5.0 3 10�5 4.3 3 10�5 4.1 3 10�5 8.7 3 10�5

2 rs1990760 0.365 IFIH1 162949558 9.7 3 10�5 4.1 3 10�5 9.3 3 10�5

6 rs169679 0.453 HLA 28964551 2.4 3 10�5 3.7 3 10�5 9.1 3 10�5

6 rs11908 0.405 HLA 33052724 6.7 3 10�5 9.9 3 10�5

6 rs1003979 0.477 HLA 33222149 7.1 3 10�5

7 rs1543851 0.374 64250422 8.4 3 10�5

Only associations with a p value % 0.0001 are listed, and associations that have been reported by other studies are indicated in bold. Genomic control (GC)
numbers are indicated below each test, and there is no adjustment for GC inflation in the presented association results. The FBAT method is used under the default
setting.
empirical variance suggests that the GDT with IBD

modeled is a more robust association test in the presence

of linkage.

Inclusion of Covariates

The flexibility of modeling in the GDT for the accommoda-

tion of environmental and genetic factors is shown in

Table 2. Four models are considered: (1) no covariates,

modeled as in Table 1; (2) sex as a covariate; 3) both sex

and INS SNP rs1004446 as covariates; and (4) sex and the

INS SNP as covariates, with IBD information incorporated

as in Equation 6. With more covariates modeled, associa-

tions become stronger at known genes. Although in theory
The American
the modeling of IBD leads to a more precise test statistic,

the association results do not significantly change, par-

tially due to weak linkage in these regions. These results

demonstrate that it is sufficient to use kinship coefficients

to approximate IBD estimates in the GDT statistic.

One interesting observation from our sequential

modeling analysis is that significance of the association of

CLEC16A (KIAA0350) with T1D is weakened from p¼ 7.9 3

10�5 to p ¼ 1.1 3 10�4 when sex is included as a covariate.

However, the significance is p ¼ 5.7 3 10�5 when the INS

gene is added to sex as a covariate in the model. CLEC16A

also exhibits evidence for paternal imprinting on T1D

risk. When only mother-offspring pairs are examined in
Table 2. Modeling in the GDT with Environmental and Genetic Factors

Adjusted

Chr SNP MAF Position (bp) Gene Ref
None:
1.008 GC

Sex:
1.010 GC

Sex, INS:
1.002 GC

Sex, INS, IBD:
0.987 GC

11 rs1004446 0.310 2126719 INS 35 3.6 3 10�10 3.1 3 10�10 N/A N/A

21 rs876498 0.453 42714896 UBASH3A 33 5.9 3 10�6 5.3 3 10�6 5.2 3 10�6 4.3 3 10�6

12 rs737280 0.265 110679359 SH2B3 36 1.6 3 10�5 1.5 3 10�5 1.1 3 10�5 1.1 3 10�5

22 rs714027 0.441 28902325 (multiple) 37 7.5 3 10�5 7.9 3 10�5 7.5 3 10�5 7.1 3 10�5

16 rs887864 0.327 11066386 CLEC16A 35 7.9 3 10�5 1.1 3 10�4 5.7 3 10�5 5.4 3 10�5

6 rs169679 0.453 28964551 HLA 38 1.2 3 10�4 1.1 3 10�4

7 rs1543851 0.374 64250422 1.3 3 10�4 1.5 3 10�4 1.1 3 10�4 1.2 3 10�4

10 rs942434 0.368 7277013 1.7 3 10�4

6 rs11908 0.405 33052724 HLA 38 2.0 3 10�4

Only associations with a p value % 0.0002 are listed, and associations that have been reported by other studies are indicated in bold. Genomic control numbers are
indicated below each model. Abbreviations are as follows: Chr, chromosome; MAF, major allele frequency; Ref, reference; GC, genomic control; IBD, identity by
descent.
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the GDT-PO, p ¼ 6.9 3 10�5. However, when father-

offspring pairs are examined, p ¼ 0.35 and the association

is no longer significant. The analysis by 1-TDTshows similar

results (p ¼ 1.2 3 10�4 for mother only versus p ¼ 0.71 for

father only). To our knowledge, this is the first report of

a potential paternal imprinting effect at CLEAC16A. We

also carried out an association scan for the X chromosome,

using both the GDT and GDT-PO methods, and no associa-

tion stronger than p ¼ 2 3 10�4 was identified.

Implementation

All methods are computationally efficient for analysis of

this data set. Two software packages with implementations

of the GDT and FBAT were compared, and we found that

the GDT offered a computational advantage. It took the

FBAT 22 MB of computer memory and 11 min on our

Linux system, whereas it took the GDT 13 MB of computer

memory and 2 min to analyze the same data set on the

same system.

Discussion

We propose a general association method that makes use

of extended pedigree structure, accommodates covariates

including known associated SNPs, appropriately handles

missing parental data, and protects from population

stratification between families. The method, GDT,

utilizes the genotype differences of all discordant relative

pairs to assess association within a family. The GDT

consistently outperforms all other association tests in

our simulations for a common disease, and it outper-

forms other association tests in many scenarios for a

rare disease. Extensive computer simulations and the

analysis of a large-scale genome scan data set demon-

strate advantages of our method over existing family-

based association methods.

The improvement of the GDT in comparison to existing

methods is threefold: (1) information beyond first-degree

relatives is incorporated efficiently, yielding substantial

gains in power in comparison to existing tests; (2) the

GDTstatistic has been implemented with the use of a robust

technique that does not rely on large-sample theory, result-

ing in further power gains, especially at high levels of sig-

nificance in data sets consisting of a modest number of

families; and (3) covariates and weights based on family

size are incorporated directly.

The GDT statistic can be presented as a robust score test

that is derived from a conditional logistic regression

model. When the assumption of no polygenic effect does

not hold, the GDT remains valid as a robust score test,

and when the model assumption holds approximately,

the GDT enjoys superior power as a maximum-likeli-

hood-based test. The conditional logistic regression model

suggests a single weight in the test statistic for each family.

Although the PDT is a special case of the GDT in certain

nuclear families, inflated GC numbers for the PDT-SUM
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and PDT-AVG and the large differences in p values reported

by these two PDT tests in the T1DGC data analysis may

reflect poor assignment of weights for each family in the

PDT statistic. The PDT-SUM gives too much weight to

larger families, and the PDT-AVG gives too little weight

to larger families. The weight used by the GDT is the

inverse of the total number of informative (genotyped

and phenotyped) individuals, and its value is between

the weights used by the two PDT methods. The presented

analysis of the T1DGC data demonstrates the advantage of

this weight.

The ability of the GDT to incorporate covariates makes it

a powerful tool for the analysis of complex traits. Markers

with significant association can be adjusted as covariates,

facilitating the search for additional variants. This feature

is particularly important for diseases, such as T1D, with

known susceptibility loci (such as HLA and INS), which

should be accounted for in all T1D GWA analyses.

Although the PDT does not take covariates in its current

form, this feature can be adapted into the PDT via the

same approach that we have used for the GDT. The FBAT

method incorporates covariates by analyzing a quantitative

trait defined by residuals from a logistic regression model

fit, similar to the incorporation of offsets.18 Given that

the FBAT method fails to detect any of the T1DGC associ-

ation signals with the offset option used, the FBAT covari-

ate adjustment for a similar data set may not help the

association scan.

Although in theory, a robust association method that is

based on a full likelihood model can be more powerful

than the GDT, which is based on a conditional logistic

regression model, such a uniformly powerful method has

yet to be developed. Extensive simulations and a real data

analysis demonstrate that our method has better overall

performance than several existing methods. The GDT

outperforms the PDT in all simulations and in the T1DGC

data analysis. The GDT also outperforms the FBAT in the

case of a common disease, in extended pedigrees, and in

the case of missing parental data. For mapping genetic vari-

ants associated with a rare disease, a TDT-type method that

discards unaffected sibling data remains useful. To address

this scenario, we proposed a GDT variation, GDT-PO, effec-

tively extending the TDT to handle missing parental data.

The GDT-PO outperforms the 1-TDT and TDT in all of our

simulations and in the T1DGC data analysis.

Our method, GDT, examines within-family association

and thus is robust to population stratification across fami-

lies. Although population admixture within families may

lead to modest inflation of type I error rates, any inflation

of GDT statistics can be detected via standard techniques,

such as genomic control.34 Our simulations (unpublished

data) suggest that methods that include between-family

associations (such as the MQLS) can offer higher power

than methods that examine only within-family associa-

tions (such as the GDT). However, this power advantage

may not be substantial in data sets with identical pedigree

structures and affection status across families (as seen in
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the analysis of affected sibling pairs), because the small

variation of phenotypes across families contributes little

to estimation of between-family association. Furthermore,

the locus heterogeneity of polygenes that tends to occur

between families could decrease the power more substan-

tially for methods that include between-family association.

This may explain why the GDT method was able to iden-

tify more variants than both the MQLS and GEE methods

for the T1DGC data set.

We have developed a robust technique that ensures

proper type I error rates and power. This robust estimator

for the score variance involves precise calculation of the

covariance of genotype scores among family members

with the use of kinship coefficients or IBD estimates. In

comparison to an asymptotic robust estimator, such as

that being implemented in the PDT and 1-TDT, our robust

estimator relies less on large numbers of families or similar

family structures. Our simulations show that a test con-

structed with the use of our precise variance estimator

consistently outperforms existing tests that use asymptotic

variance estimators, especially at a lower level of signifi-

cance. A similar robust technique has been successfully

applied to robust quantitative trait linkage analysis.32,39,40

It is straightforward to extend our robust technique to

family-based quantitative trait association tests. We have

implemented such a robust test for a quantitative trait

association analysis (see details in Appendix D) that

improved a previously reported association test,30 and

preliminary simulations (unpublished data) show that

our robust test can maintain proper type I error rates and

power even when individuals do not have identical pheno-

typic distributions. We also implemented an extension of

the GDT method that allows testing association of haplo-

types, in which case a haplotype is coded in the same

way as an allele for a marker with multiple alleles.

Although our robust technique in its current form does

not apply to imputed genotypes that carry uncertainty,30

a standard robust technique that uses the asymptotic vari-

ance estimator (Equation 4) allows imputed genotypes and

may provide substantial gains in power when applied to

family-based association analysis.

The GDT and variations such as GDT-PO have been im-

plemented in a user-friendly software package called the

GDT. This software shares many nice features, as well as

Cþþ source code, with the widely used software package

Merlin.28 The GDT is similar to Merlin in many aspects,

such as the capacity to handle large and complex pedi-

grees. In addition, each allele is coded with 4 bits (i.e.,

a half byte) in the GDT package, so that thousands of indi-

viduals genotyped at hundreds of thousands of SNPs from

a GWAS can be analyzed rapidly on a standard workstation

with 2 GB of computer memory, and gene mapping that

uses genetic markers with up to 15 alleles can still be

carried out. This software package runs on multiple plat-

forms, including Linux, UNIX, and Windows operating

systems, and is freely available at the authors’ website to

facilitate its use in analysis of current and future GWAS.
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Appendix A: GDT as a Robust Score Test

of a Conditional Logistic Regression Model

We show that the score (Equation 1) is the score for the

likelihood of a conditional logistic regression model under

the null hypothesis of no association.

To simplify presentation, we focus on the likelihood of a

single family without covariates. Suppose that in this

family there are N individuals in total, among which the

first A individuals are affected and the remaining U individ-

uals are unaffected. Let Yi denote an indicator of whether

the ith individual is affected and Xi denote the count of

a certain allele at the marker under test for the ith indi-

vidual. A logistic regression model is

log
PrðYi ¼ 1Þ

1� PrðYi ¼ 1Þ ¼ mþ bXi,

in which b is the odds ratio for association between the

allele and the disease. Throughout this appendix, we

assume that disease statuses of family members are uncor-

related, conditional on genotypes at the marker being

tested; i.e., we assume no polygenic effect. The likelihood

that the first A individuals are affected, conditional upon

the fact that there are N affected individuals in total, is

Pr
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in which elements of a set Sk index affected individuals in

the kth possible scenario that A out of N individuals are

affected. The log-likelihood is

l ¼ 1
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Under the null hypothesis of no association, the likeli-

hood score is
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The summation of the above statistics over all families

yields exact expression, as in Equation 1.

Note that the validity of the score test (Equation 7)

depends only on the variance estimator of the score.

Even if the assumption of the conditional logistic regres-

sion model does not hold, our score test (Equation 7)

remains valid. When the conditional logistic regression

model holds approximately, our score test statistic (Equa-

tion 7) enjoys many ‘‘optimal’’ properties as a maximum-

likelihood-based test.

Appendix B: Within-Family Genotype Covariance

between a Pair of Relatives

The genotype score Xij is coded as the allele counts for the

jth individual in the ith family. Each Xij in the ith family

has the same mean mi, and each Xij - mi has the same vari-

ance s2
i . Because the genotype score Xij can be represented

as the sum of two allelic effects, X
ð1Þ
ij and X

ð2Þ
ij , we have:P2

s¼1

Var
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¼ Var

�
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i :

Thus, the within-family covariance between genotype

scores from a pair of relatives is:
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:

When IBD information is known or can be estimated, we

have the following covariance at autosomal genes in non-

inbred families:

Cov
�
Xij � mi,Xik � mi

�
¼ p

ðiÞ
jk s2

i :

Because the kinship coefficient is the probability

that two identical alleles will be sampled from a pair of

individuals when we select one allele at random from
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each when IBD information is unknown, we have

CovðXij � mi,Xik � miÞ ¼ 2f
ðiÞ
jk s2

i , for both noninbred and

inbred families and for both autosomal and X-linked genes.

Appendix C: An Algorithm for Simulating

Genotypes for a Given Pedigree

For a given pedigree with known affection status, genotypes

can be simulated with the following algorithm. Suppose

a family consists of N genotyped individuals, among which

the first F individuals are founders. Let Xi and Di denote the

genotype score and affection status for the ith individual of

the family, and V denote the inheritance vector of the pedi-

gree. Suppose penetrances of the disease and the frequency

of the disease allele are specified prior to the simulation.

The probability of phenotype data conditional on

founders’ genotypes is

PrðD1/DN jX1/XFÞ
¼
P

v PrðV ¼ vÞPr
�
D1/DN jX1/XF , Xnf ¼ GðX1/XF ,vÞ

�
,

in which genotypes of nonfounders Xnf are uniquely deter-

mined by founders’ genotypes and the inheritance vector.

The probability of each inheritance vector is the inverse of

2 to the 2 3 (N-F)th power. On the basis of this conditional

probability and the Hardy-Weinberg equilibrium assump-

tion, it is straightforward to obtain the probability of the

complete phenotype data, PrðD1/DNÞ.
We first simulate genotypes of founders at the disease

locus according to a conditional probability distribution

given all levels of affection status:

PrðX1 ¼ x1/XF ¼ xF jD1/DNÞ

¼
QF

f¼1Pr
�
Xf ¼ xf

�
PrðD1/DN jX1 ¼ x1/XF ¼ xFÞP

gf

QF
f¼1Pr

�
Xf ¼ gf

�
PrðD1/DN jX1¼ g1/XF¼ gFÞ

:

We then simulate genotypes of nonfounders according

to the conditional probability distribution of inheritance

vectors, given the already simulated founder genotypes

as well as the complete phenotype data:

PrðV ¼ v jX1/XF, D1/DNÞ

¼
PrðV ¼ vÞPr

�
D1/DN jX1/XF , Xnf ¼ GðX1/XF,vÞ

�
PrðD1/DN jX1/XFÞ

:

Thesimulationof markers follows immediately onthebasis

of simulated genotypes at the disease locus and specification

of recombination fraction and linkage disequilibrium param-

eters. This algorithm has been implemented in a computer

program, the TDT Power Calculator,5 for the empirical power

calculation of the TDT method in nuclear families.

Appendix D: A Robust Quantitative Trait

Association Test

We propose a robust score statistic for family-based quanti-

tative trait association analysis. Following the same
ber 11, 2009



notation used in Chen and Abecasis,30 let yi and gi denote

vectors of the observed traits and genotypes at a marker,

respectively, for individuals in family i. The variance-

covariance matrix for family i is Ui. When a polygenic

model is fitted to the phenotype data (without the use of

the genotype data), a vector of fitted trait values is denoted

as E(yi)
(base), and the estimate of the variance-covariance

matrix is denoted as Ui
(base). We define the following score

statistic:

in which the matrix Cov(gi) consists of elements

Covðgij,gikÞ ¼ 2f
ðiÞ
jk s2

W þ s2
B. Estimation of the within-family

genotype variance s2
W is described in Appendix B and

Equation 5, and the total genotype variance (the sum of

s2
W and s2

B) can be estimated as 2p(1-p), in which p is the

frequency estimate of the tested allele. This statistic is

approximately distributed as c2 with one degree of

freedom, and the score test can be shown to be robust to

nonnormality of the phenotypes (unpublished data).

Supplemental Data

Supplemental Data inclue one figure and one table and can be

found with this article online at http://www.ajhg.org/.
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Web Resources

The URLs for data presented herein are as follows:

Software implementation of the GDT, http://people.virginia.edu/

~wc9c/GDT

Simulation of pedigree data, http://people.virginia.edu/~wc9c/LE

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/omim/
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