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1 Introduction 
Recommender systems give companies a way to effectively target their products and services, thus 

improving their potential for revenue. These systems are also interesting from the customer standpoint 

because they are presented with alternatives focused on their likes and dislikes, thus lowering the 

number of unwanted propositions. One of the keys to building a good recommender system is to find 

meaningful and systematic patterns in the data, in order to identify the concrete tastes of customers. 

When Netflix sought out to improve their Cinematch recommender system, this is the part of their 

solution that they targeted. They put together an open, online, competition where participants are given 

a set of their customers’ movie ratings and are asked to predict the ratings that these customers would 

give on a different set of movies. While this is not the only component that controls the quality of their 

recommender system, improving the accuracy of these predicted ratings will certainly indicate that the 

customers’ tastes are better captured. 

Team BellKor’s Pragmatic Chaos was the first to achieve a prediction accuracy improvement of more 

than 10% over Cinematch. This team is an international coalition comprised of teams BellKor, Big Chaos 

and Pragmatic Theory. The joined team includes three participants from BellKor: Yehuda Koren, Robert 

Bell and Chris Volinsky; two participants from Big Chaos: Andreas Töscher and Michael Jahrer; and two 

participants from Pragmatic Theory, the authors of this document: Martin Piotte and Martin Chabbert. 

The complete solution, as included in the winning July 26
th

 2009 submission which yielded a 0.8554 quiz 

set RMSE, is described over three papers, one for each of the joined teams. This document presents the 

solution from team Pragmatic Theory. It includes all methods and techniques, from the most innovative 

and complex aspects to some of the more naive early efforts. As the name of our team implies, our 

strategy in this competition was to try anything and everything; to leave no stone unturned. Although 

we have always tried to choose our methods logically, some of the resulting predictors may not have a 

proper theoretical or psychological grounding; they were instead selected for their contribution to the 

blended prediction accuracy. Also, because of this pragmatic approach, not all of the concepts 

presented here will be usable in a real world recommender system. Still, we believe that our approach 

has allowed us to find original and creative ideas and to bring known algorithms to a new level, which 

should, in turn, allow for significant improvement to recommendation engines.  

The first section presents some general concepts that are used across multiple models. The second 

section gives detailed explanations on all of the models that were included as part of the final blend, 

focusing on the more crucial and innovative models. When relevant, the parameter values that were 

used for each predictor instance are given. The third section presents the different blending techniques 

that were used. The final section discusses how the models and techniques presented here can be used 

to build a more accurate and efficient recommender system. Note that the list of all predictors, with 

their respective RMSE, is provided in an annex section. 

It is assumed the reader is familiar with and understands the content of the Progress Prize papers for 

2007 and 2008. 
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2 Common Concepts 
This section describes concepts, methods and results that are reused across multiple models and 

algorithms we have developed. To avoid repetition, these elements are described once here, while the 

following sections simply refer to the appropriate element when needed. 

2.1 Time variables 

It has become obvious over the duration of the Netflix Prize competition that the date data contained 

useful information for the generation of accurate models. However, values derived from the date are 

often more useful than the raw date itself. 

One derived value that we found most useful is the number of ratings a user has made on a given day. 

We call this measure frequency, as it measures a number of events occurring in fixed amount of time. 

We speculate that the usefulness of this measure comes from the fact that Netflix subscribers use the 

rating interface in two different ways. Users are initially invited to rate movies they have seen in the 

past to enable the recommender to learn their preference. After this initial period, users will often only 

rate movies they have just seen. We believe that ratings provided immediately after having seen the 

movie and ratings provided months or years afterwards have different characteristics. When a user 

selects a rating, we cannot know how long ago he has seen this movie. However, the number of ratings 

provided on a given day provides a hint: a large number of ratings clearly indicates that at least some of 

the movies have not been seen in the immediate past
1
. Similarly, users initializing the system are 

unlikely to rate only one movie at a time, so single ratings are a good hint that the movie was seen in the 

recent past.  

In addition to the frequency measure, we also use the following time related variables in different 

models: 

• Elapsed time between a given rating and the first rating of the user; 

• Elapsed time between a given rating and the mean rating date of the user; 

• Elapsed time between a given rating and the median rating date of the user; 

• Elapsed time between a given rating and the first rating of the movie; 

• Elapsed time between a given rating and the mean rating date of the movie; 

• Elapsed time between a given rating and the median rating date of the movie; 

• Absolute date value. 

Time is always measured in number of days. 

2.2 Baselines 

Some models require a simple approximation of the ratings as an element of the model. We developed 

two such simple approximations, which we called baseline1 and baseline2. 

                                                           
1
 There is an instance in the dataset of a user rating 5446 movies in a single day. It is clearly not possible that all 

these movies have been seen by a single person in the recent past.  
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2.2.1 Baseline1 

In Baseline1, a rating is approximated as: 

���������(
, �) = � + ����������,�(�) + ����������,�(
) (1) 

Where: 

• u is the user; 

• m is the movie 

• baseline1 is the value of the baseline 

• � is the global mean 

• bbaseline1,m is a movie bias 

• bbaseline1,u is a user bias 

bbaseline1,m and bbaseline1,u are chosen to minimize the following expression over the training set: 

� � (� − ���������(
, �))� + � � + !�"�(�)# ����������,�� (�)  � $�%�& �' �� +  � � + !�"�(
)# ����������,�� (
) 

(2) 

Where: 

• r is a rating from the training set; 

•  �, !�,  
 and !
 are regularization parameters; 

• Nm is the number of ratings of movie m; 

• Nu is the number of ratings of user u. 

The model is trained using alternating least squares regression for three iterations, starting with the user 

parameters. This method is described in [12] Section 4. The regularization parameters were chosen 

using the assisted manual selection (see Section 2.4.2) to minimize the error on the probe set: 

 � 0.0987708 !� 4.65075  � 0 !� 0 

Note that the zero values for  � and !� actually means that no regularization is applied to the movie 

coefficients. 

2.2.2 Baseline2 

Baseline2 is similar to baseline1; however the movie bias term is multiplied by a user scale factor to 

model the user rating variance: 

���������(
, �) = � + ����������,�(�)(1 +  ����������(
)* + ����������,�(
) (3) 

Where: 
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• u is the user; 

• m is the movie 

• baseline2 is the value of the baseline 

• � is the global mean 

• bbaseline2,m is a movie bias 

• bbaseline2,u is a user bias 

• 1+sbaseline2 is the scale applied to the movie bias 

The +1 offset in the scale factor ensures the scale remains close to 1 for users with very few ratings. 

sbaseline2 , bbaseline1,m and bbaseline1,u are chosen to minimize the following expression over the training set: 

(� − ���������(
, �))� + � � + !�"�(�)# ����������,�� (�)  +  � � + !�"�(
)# ����������,�� (
)
+  � � + !�"�(
)# ����������� (
) 

(4) 

Where: 

• r is a rating from the training set; 

•  �,  !�,  �, !�,   
 and !
 are regularization parameters; 

• Nm is the number of ratings of movie m; 

• Nu is the number of ratings of user u. 

The model is trained using alternating least squares regression for three iterations, starting with the 

movie parameters. The regularization parameters were optimized using Nelder-Mead simplex method 

to minimize the error on the probe set: 

 � 0.00234879  !� 0.0610418  � 0.0903385 !� 4.91299  � 0.0753211 !� 3.11288 

2.3 Non-linear envelopes 

Model accuracy can often be improved by transforming the output through a non-linear transformation 

that limits output between 1 and 5. Such a transformation has been suggested in [3], where the 

transformation is a sigmoid type function limited between 1 and 5. 

The principal problem with this function is that its inflection point occurs at the middle of the range, i.e. 

at 3. However, this is significantly below the training data average. Better accuracy can be achieved by 

shifting the inflection point, as in the following function: 
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+,(-) =
./0
/1 1 +  2(+3 − 1)

1 + �4�(,456)564� �7 - < +3
2+3 − 5 +  2(5 − +3)

1 + �4�(,456):456
�7 - ≥ +3

< (5) 

Where: 

• +0 is a parameter defining the level of the inflection point. 

+- has the following properties: 

• +-(+0) = +0 

• +′-(+0) = 1 

• +"-(+0) = 0 

We define variants by selecting different expressions for +0: 

+3(-) +3 = 3 Symmetrical sigmoid type function +�(-) +3 = � Inflection point shifted to the global average �. +�(-) +3 = � +  ����������,�(
) Inflection point shifted to a user-specific bias 

based on Baseline1. +B(-) +3 = � + ����������,�(�)< ����������(
)< + ����������,�(
) Inflection point shifted to a sample specific 

bias based on Baseline2.
2
 +C(-) +3 = ���������(
, �) Inflection point shifted to Baseline2. 

It is interesting to note that any "linear" model can be transformed by wrapping it through one of the 

proposed envelope functions. Often, regularization that was optimized for the linear model is still 

adequate for the non-linear version. For models learned through various type of gradient descent, the 

increase in program complexity required to compute the derivative of the envelope function is very 

small. 

2.4 Parameter selection 

All statistical models used in our solution require some form of meta-parameter selection, often to 

reach proper regularization. We used the following methodology to select these meta-parameters. 

We train all our models twice. The first time, we train our model on the training data set where the 

probe set has been removed. When a model uses feedback from movies with unknown ratings, we use 

the probe set and a random half of the qualifying set for the feedback. We select meta-parameters to 

optimize the accuracy on the probe set. 

The second pass involves retraining the model with the selected meta-parameters, after including the 

probe set in the training data. The complete qualifying set is used for feedback from rated movies with 

unknown ratings. 

                                                           
2
 The intent was to use Baseline2, but the expression provided was used by mistake. +C(-) corrects this error. 
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Every time parameter selection or validation on the probe set is mentioned in this document, it always 

refers to optimizing the probe set accuracy of a model or combination of models trained on data 

excluding the probe set. 

We experimented with several approaches to determine optimal meta-parameters. 

2.4.1 Nelder-Mead Simplex Method 

The simplest and most successful way of selecting meta-parameters has been to use the Nelder-Mead 

Simplex Method (see [13] and [14]). It is a well known multivariable unconstrained optimization method 

that does not require derivatives. The algorithm suggests meta-parameter vectors to be tested, the 

model is then evaluated and the accuracy measured on the probe set. The Nelder-Mead algorithm 

requires only the measured accuracy on the probe set as feedback. This is repeated until no more 

significant improvement in accuracy is observed. 

2.4.2 Assisted manual selection 

While the Nelder-Mead Simplex Method is very simple to use and very powerful, it requires many model 

evaluations, typically ten times the number of meta-parameters being selected which leads to long 

execution time for large and complex models. We used different ways to manually shorten the meta-

parameter selection time: 

• We reused meta-parameters values between similar models (which could be slightly sub-

optimal); 

• We evaluated meta-parameters on models with smaller dimension, then reused the value found 

for the larger models; 

• We used some of the meta-parameters from another model, while running the Nelder-Mead on 

the remaining meta-parameters. 

• We used the Nelder-Mead algorithm to select a few multiplication constants we applied to the 

meta-parameters selected for a different variant. 

This was used only as a time saving measure. Better results can always be obtained by running the 

Nelder-Mead algorithm on all meta-parameters simultaneously. 

2.4.3 APT2 

We also used the APT2 automatic parameter tuning described in [4] in one instance.  

2.4.4 Manual selection with hint 

Another approach that we experimented with applies only to models defined as a sum of multiple 

terms: 

�̂ =  � 7�(
, �, E)�
�F�  (6) 

For one such model, it is possible to extend it by multiplying each term by a factor: 
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�′G =  � �1 + �� + ��"� + H�"�#  7�(
, �, E)�
�F�  (7) 

Where: 

• �̂ is the initial estimate 

• �′G is the extended estimate 

• "�is the number of movies rated by user u 

• "�is the number of users rating movie m 

• u, m, d are the user, movie and date 

• a, b, c are coefficients assigned to each term f 

The values of a, b, c are estimated by computing a linear regression to minimize the error of �′G  over the 

probe set. The values of a, b and c are then used as a hint on how to manually adjust the regularization 

parameters used to estimate the terms 7�(
, �, E). 

The idea is that for the correct regularization, the values of a, b, c should be close to zero. If different 

from zero, the sign of a, b, c suggests the direction the regularization should change, and gives some 

idea of the change magnitude. 

We can use the following example to illustrate the methodology, using the following simple model: 

�̂(
, �) = � I(
, �)J(�, �)�  (8) 

Where: 

• �̂(
, �) is the predicted rating; 

• p(u) is a vector representing latent features for each user; 

• q(m) is a vector representing latent features for each movie. 

The model is trained by minimizing the following error function over the rated user-movie pairs in the 

dataset. 

���K� = � � LM�(
, �) − � I(
, �)J(�, �)� N� +  O � I(
, �)�
� +  P � J(�, �)�

� Q� $�%�& �' ��  (9) 

When trained using alternating least squares (see [1]), we found that the best accuracy is achieved by 

making  Oand  Pvary according to the number of observations of a given parameter: 

 O = !O"� + RO (10) 

 P = !P"� + RP (11) 
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Where: 

• ! is the part that varies inversely with the number of observations; 

• R is a fixed value 

N is the number of observations using the parameter. In this example "�is the number of movies rated 

by u, while "�is the number of users having rated m. 

For the example above, the regularization hints work in the following way: 

• �� > 0 suggests to decrease the value of RO and RP 

• �� < 0 suggests to increase the value of RO and RP 

• �� > 0 suggests to decrease the value of !O 

• �� < 0 suggests to increase the value of !O 

• H� > 0 suggests to decrease the value of !P 

• H� < 0 suggests to increase the value of !P 

Overall, we found that the Nelder-Mead algorithm is simpler to use and converges faster, but we 

included a description of the hint method since it was used in part of the final submission. 

2.4.5 Manual 

For most of the early models, the meta-parameters were simply chosen through trial and error to 

optimize (roughly) the probe set accuracy. 

2.4.6 Blend optimization 

The ultimate goal of the Netflix Prize competition is to achieve highly accurate rating predictions. The 

strategy we have followed, which has been followed by most participants, is to blend multiple 

predictions into a single, more accurate prediction. Because of this, the quality of a model or prediction 

set is not determined by its individual accuracy, but by how well it improves the blended results. 

Accordingly, during automatic parameter selection with the Nelder-Mead simplex method, we 

sometimes used as objective function the result of a linear regression of the model being optimized with 

the set of our best predictors. This induced the parameter selection algorithm to find parameters that 

might not provide the best model accuracy, but would lead a better blending result. This is most helpful 

with the neighbourhood models. 

When this technique was used, we indicate it in the appropriate section. When not indicated, 

optimization was made on the individual model accuracy. 

2.5 Regularized metrics 

Several of our algorithms use an estimate of a user's (or movie's) metrics, like the rating average or 

standard deviation. Because of sparseness, using the user statistic without regularization is often 

undesirable. We estimate a regularized statistic by adding, to the user rating set, the equivalent to n 
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ratings taken from the training set population. If we take the rating average and rating standard 

deviation as example, we obtain: 

�̂ = ���� + ���� + �  
(12) 

+T = U�����VVV + ���VVV�� + � − �̂� 

(13) 

Where: 

• �̂ is the regularized average 

• +T is the regularized standard deviation; 

• nu is the number of movies rated by user u; 

• n is the regularization coefficient, i.e. the equivalent of drawing n typical samples from the 

global population; 

• �� is the average rating of the user u; 

• � is the average rating of the training set; 

• ���VVVis the average of the user ratings squared; 

• ��VVV is the average of the training set ratings squared. 

The same methodology can be used to compute regularized higher moments, like the skew, or the 

fraction of ratings given as 1, 2, 3, 4 or 5, etc. 

2.6 Iterative training 

Model parameters are typically learned through an iterative process: gradient descent or alternating 

least squares. 

Typically, model parameters are seeded with zero values. If this causes a singularity (zero gradient), then 

small random values are used instead. When some special seeding procedure was used, it is described in 

the appropriate section. 

Typically, training is performed until maximum accuracy on the probe set is obtained. When a different 

stopping rule is used, for example a fixed number of iterations, it is indicated in the appropriate section. 

Unless specified otherwise, L2 regularization is used for all models. It is often described as weight decay 

as this is how it appears when the model is trained using gradient descent. When the method described 

in Section 2.5 is used, it is referred to explicitly. Special regularization rules are specified with each 

model when appropriate. 
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3 Models 
This section of the document describes each model included in the solution one by one. Many of these 

models are very similar. Also, some of them are early versions that were naive, poorly motivated or even 

simply incorrect. However, it was in the nature of the competition that the best winning strategy was to 

include many of these deficient models, even if to obtain only a very small marginal improvement. We 

would expect a commercial recommender system to use only the best fraction of the model presented 

here, and to achieve almost the same accuracy. Note that we have not described our failed attempts. 

This explains some missing algorithms in numbered model families. 

3.1 BK1/BK2 integrated models 

This model is an integrated model based on the model described in Section 2.3 of [2]. 
3
 

In [2], the user latent features have a time component that varies smoothly around the average rating 

date for a user. We augment this smooth variation by a parameter h(u, t) that allows for per day 

variation of the time component, which can give a user-specific correction to the time-dependent latent 

feature. Interestingly, it also helps to model a user that is in reality a group of two persons sharing an 

account. If we assume that only one person enters ratings on a given day, then h(u, t) can act as a 

selector between which of the persons is actually providing the ratings on that day. 

 In some instances we also added a non-linear envelope which improves accuracy, as described in the 

Common Concepts section. 

The model is described by the following equations: 

E�W(
, X)Y = Z�(X − X�[ )\] − E�W�VVVVVV 

 

(14) 

 ^(
, �, X) = � + ��(�, XB3) + ��(
) + ���(
)E�W(
, X)Y + Z����(X)
+ � J�(�) LI�(
) + I��(
)(E�W(
, X)Y + ℎ(
, X)) + Z:I��(
, X) + 1`|"(
)| � b�(c)d∈f(�) Q�

�+ 1`|g\(�; 
)| � (�(
, c) − ���������(
, c))
d∈ij(�;�) k�,d + 1`|"\(�; 
)| � H�,dd∈fj(�;�)  

 

(15) 

 

�̂(
, �, X) = l ^(
, �, X) ������ �KE��+�(^(
, �, X)) �K�-������ �KE��< (16) 

Where: 

• E�W(
, X)Y  is the time varying function described in [2] to model time-dependent ratings; 

• k1 is a scaling factor used to stabilize the regularization, and thus allows the same regularization 

parameters for similar terms of the model; 

• t is the date of the rating; 

                                                           
3
 The acronym BK was chosen as the name of a number of integrated model variants because they were inspired 

from the model described by team BellKor in [2]. 
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• X�[  is the mean rating date for user u; 

• k4 is an exponent applied to the date deviation; 

• E�W�VVVVVV is an offset added to make the mean value of E�W(
, X)Y  equals to zero (but in some 

experiments we left devqVVVVVV = 0) 

• � is the global rating average in the training data; 

• t30 is the date value mapped to an integer between 1 and 30 using equal time intervals; 

• bm is the movie bias (same as bi in [2]); 

• bu is the user time independent bias (same as in [2]); 

• bu1 is the time-dependent part of the user bias (same as bu
(1)

 in [2]); 

• bu2 is the per-day user bias (same as bu
(2)

 in [2]); 

• n  is the length of the latent feature vectors; 

• q is the movie latent feature vector of length n; 

• p is the time independent user latent feature vector of length n; 

• p1 is the time-dependent user latent feature vector of length n; 

• p2 is the per-day user latent feature vector of length n; 

• h is a per user and per day correction to E�W(
, X)Y  for user latent features; 

• y(j)  is the implicit feedback vector of length n  for movie j rated by user u as in [2]; 

• N(u) is the set of movies rated by u, including movies for which the rating is unknown; 

• R
k
(m; u) is the subset of movies with known ratings by u that are among the k neighbours of 

movie m; 

•  N
k
(m; u) is the subset of movies rated by u (rating known or not) that are among the k 

neighbours of movie m; 

• r(u, j) is the rating given by user u to movie j; 

• Baseline1 is defined in the Common Concepts section; 

• wm,j is the weight given to the rating deviation from the baseline for the movie pair (m, j); 

• cm,j is an offset given to the movie pair (m, j). 

• +� is a non-linear function described in the Common Concepts section. 

The neighbouring movies of movie m are selected as the set of movies that maximize the following 

expression: 

r�,d��,d��,d + !s (17) 

Where: 

• r�,d is the Pearson’s correlation between the ratings of movies m and j computed over users 

having rated both; 

• nm,j is the number of occurrences of movies m and j rated by the same user; 

• !s is a shrinkage coefficient set to 100. 
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The parameters are learned through stochastic gradient descent by minimizing the squared error over 

the training set. The training samples for each user are sorted by date, so that earlier dates are 

evaluated first during training. bm, bu, bu1 and bu2 are trained using a learning rate t� and a weight decay 

of  u. q, p, p1, p2 and y are trained using a learning rate t� and a weight decay of  v. w and c are trained 

using a learning rate tB and a weight decay of  w. h is trained using a learning rate tx and a weight decay 

of  x. t values are decreased by a factor Δt at each iteration, i.e. t values are multiplied by (1 - Δt). All 

the meta-parameters are selected by validation on the probe set. The values were selected using a 

combination of manual selection, APT2 (described in [4]) and Nelder-Mead Simplex Method. During the 

selection of the meta-parameters, the maximum number of iterations is limited to 30. 

The following table shows the combinations used in the solution. Many of these models differ only in 

their regularization parameters, because they were intermediate steps in the search for optimal meta-

parameters. We found that keeping some of these intermediate attempts provided a small 

improvement to the blend. Note that, in all these variants, p2 is forced to zero. 

Variant n k +� E�W�VVVVVV k1 k2 k4 k5 Δt 

bk1-a50
4
 50 n/a no 0 0.0363636 0.909091 0.4 1 0.0785714 

bk1-a50-2 50 n/a no 0 0.0363636 0.909091 0.4 1 0.0785714 

bk1-a200 200 n/a no 0 0.0363636 0.909091 0.4 1 0.0785714 

bk1-a1000 1000 n/a no mean 0.0363636 0.909091 0.4 1 0.0785714 

bk1-b200-1 200 300 no 0 0.04 1 0.4 1 0.1 

bk1-b200-2 200 300 no 0 0.0363636 0.909091 0.4 1 0.0785714 

bk1-b200-5 200 300 no mean 0.0341776 1.07444 0.4 1 0.085444 

bk1-b200-6 200 300 no mean 0.0362749 0.951543 0.4 1 0.0845112 

bk1-b1000 1000 300 no mean 0.0362749 0.951543 0.4 1 0.0845112 

bk1-c200 200 1000 no mean 0.0362749 0.951543 0.4 1 0.0845112 

bk2-b200h 200 300 no mean 0.0425157 0.994899 0.4 1 0.0918146 

bk2-b200hz 200 300 yes mean 0.0425157 0.994899 0.4 1 0.0918146 

 

Variant  u  v  w  x t� t� tB tx 

bk1-a50 0 0.015 0 0 0.007 0.007 0 0 

bk1-a50-2 0 0.015 0 0 0.007 0.007 0 0 

bk1-a200 0 0.015 0 0 0.007 0.007 0 0 

bk1-a1000 0 0.015 0 0 0.007 0.007 0 0 

bk1-b200-1 0.005 0.015 0.015 0 0.007 0.007 0.001 0 

bk1-b200-2 0 0.015 0.015 0 0.007 0.007 0.001 0 

bk1-b200-5 0.0042722 0.0138561 0.0218166 0 0.00598108  0.0074641 0.00085444 0 

bk1-b200-6 0.000330738  0.0159766 0.031863 0 0.00753674  0.00774446 0.000152311 0 

bk1-b1000 0.000330738  0.0159766 0.031863 0 0.00753674  0.00774446 0.000152311 0 

bk1-c200 0.000330738  0.0159766 0.031863 0 0.00753674  0.00774446 0.000152311 0 

bk2-b200h 0.00342766 0.0141807 0.0256555 0.000373603 0.00765716 0.00770752 0.000134346 0.0406664 

bk2-b200hz 0.00342766 0.0141807 0.0256555 0.000373603 0.00765716 0.00770752 0.000134346 0.0406664 

Learning p2 simultaneously with all other parameters requires a huge amount of memory storage. 

Typically, this cannot be done in a home computer main memory, and disk storage must be used. 

Instead of doing this, we used the following alternative. We first train the model without the p2 term. 

After convergence, the model is retrained using the movie parameters learned during pass #1 and 

learning only the user parameters including p2 this time in pass #2. The idea is that during pass #2, the 

                                                           
4
 Due to a bug, sorting of the training sample per date was incorrect for this variant. 
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users become independent from each other (since the movie parameters are now fixed), and thus is 

necessary to store the p2 values only for one user at a time. 

The following table shows the retraining parameters for the sets included in the solution: 

Variant Pass #1 k5 Δt  x t� t� tx 

bk1-a50-2x bk1-a50-2 0.901726 0.0743765   0.00219152 0.00861301 0.00636511 0.0235341 

bk1-a200x bk1-a200 0.901726 0.0743765   0.00219152 0.00861301 0.00636511 0.0235341 

bk1-a1000x bk1-a1000 0.901726 0.0743765   0.00219152 0.00861301 0.00636511 0.0235341 

bk1-b200-5x bk1-b200-5 0.85359 0.0837099 0.00265673 0.00805462  0.00595674 0.0209891 

bk1-b200-6x bk1-b200-6 0.89084 0.0699494  0.00239747 0.00798123 0.00615092 0.021551 

bk1-c200x bk1-c200 0.850717  0.0728293 0.00240786 0.00831418 0.00639189 0.0205951 

 

3.2 BK3 integrated model 

This model extends BK1/BK2 by including movie latent features that are time-dependent. The movie 

bias is also modified to include a time invariant bias and a frequency dependent correction. The 

frequency measure is defined in the Common Concepts section. 

The model is described by the following equations: 

E�W(
, X)Y = Z�(X − X�[ )\] − E�W�VVVVVV (18) ^(
, �, X) = � + ��(�) +��%(�, XB3) +��z(�, 7B3)  +  ��(
) + ���(
)E�W(
, X)Y + Z����(X)
+ �{J�(�) + J%,�(�, Xw) + Jz,�(�, 7w)| LI�(
) + I��(
)(E�W(
, X)Y + ℎ(
, X))�

�+ 1`|"(
)| � b�(c)d∈f(�) } + 1`|g\(�; 
)| � (�(
, c) − ���������(
, c))
d∈ij(�;�) k�,d

+ 1`|"\(�; 
)| � H�,dd∈fj(�;�)  

(19) 

�̂(
, �, X) = l ^(
, �, X) ������ �KE��+�(^(
, �, X)) �K� − ������ �KE��< (20) 

Where: 

• E�W(
, X)Y  is the time varying function described in [2] to model time-dependent ratings; 

• k1 is a scaling factor used to stabilize the regularization, and thus allow the same regularization 

parameters for similar terms of the model; 

• t is the date of the rating; 

• X�[  is the mean rating date for user u; 

• k4 is an exponent applied to the date deviation; 

• E�W�VVVVVV is an offset added to make the mean value of E�W(
, X)Y  equals to zero; 

• � is the global rating average in the training data; 

• t30 (t8) is the date value mapped to an integer between 1 and 30 (8): mapping boundaries are 

selected so that each one contains roughly the same number of samples from the data set; 
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• f30 (f8) is the frequency value mapped to an integer between 1 and 30 (8): mapping boundaries 

are selected so that each one contains roughly the same number of samples from the data set; 

• bm is the movie bias; 

• bmt is the date dependent movie bias correction; 

• bmf is the frequency dependent movie bias correction; 

• bu is the user time independent bias; 

• bu1 is the time-dependent part of the user bias; 

• bu2 is the per-day user bias; 

• q is the movie latent feature vector of length n; 

• qt is the date dependent correction vector of length n for the movie latent features; 

• qf is the frequency dependent correction vector of length n for the movie latent features; 

• p is the time independent user latent feature vector of length n; 

• p1 is the time-dependent user latent feature vector of length n; 

• h is a per-day correction to E�W(
, X)Y  for user latent features; 

• y(j)  is the implicit feedback vector of length n  for movie j rated by a user; 

• N(u) is the set of movies rated by u, including movies for which the rating is unknown; 

• R
k
(m; u) is the subset of movies with known ratings by u  that are among the k neighbours of 

movie m; 

•  N
k
(m; u) is the subset of movies rated by u (rating known or not) that are among the k 

neighbours of movie m; 

• r(u, j) is the rating given by user u to movie j; 

• Baseline1 is defined in the Common Concepts section; 

• wm,j is the weight given to the rating deviation from the baseline for the movie pair (m, j); 

• cm,j is an offset given to the movie pair (m, j). 

• +� is a non-linear function described in the Common Concepts section. 

The neighbouring movies are selected as in BK1/BK2.  

The parameters are learned through stochastic gradient descent by minimizing the squared error over 

the training set. The training samples for each user are sorted by date. bm, bmt, bmf, bu, bu1 and bu2 are 

trained using a learning rate t� and a weight decay of  u. q, p, p1, p2 and y are trained using a learning 

rate t� and a weight decay of  v. qt is trained using a learning rate t�� and a weight decay of  ��. qf is 

trained using a learning rate t�� and a weight decay of  ��. w and c are trained using a learning rate tB 

and a weight decay of  w. h is trained using a learning rate tx and a weight decay of  x. t values are 

decreased by a factor Δt at each iterations. All the meta-parameters are selected by validation on the 

probe set. The values were selected using a combination of manual selection and the Nelder-Mead 

Simplex Method. During the selection of the meta-parameters, the maximum number of iterations is 

limited to 30. 

The following table shows the combinations used in the solution.  
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Variant n k +� k1 k2 k4 Δt 

bk3-a0z 0 n/a yes 0.0362749 0.951543 0.4 0.0845112 

bk3-a50 50 n/a no 0.042979 1.0 0.4 0.11587 

bk3-b200 200 300 no 0.042979 1.0 0.4 0.11587 

bk3-c50 50 n/a no 0.036 1.0 0.4 0.085121 

bk3-c50x
5
 50 n/a no 0.0362749 0.951543 0.4 0.0845112 

bk3-c100
6
 100 n/a no 0.0362749 0.951543 0.4 0.0845112 

bk3-d200 200 300 no 0.0362749 0.951543 0.4 0.0845112 

bk3-d200z 200 300 yes 0.0362749 0.951543 0.4 0.0845112 

 

Variant  u  v  w t� t� tB 

bk3-a0z 0.000330738 0 0 0.00753674 0 0 

bk3-a50 0.00138669 0.0092125 0 0.00790541 0.00525646 0 

bk3-b200 0.00138669 0.0092125 0.030711 0.00790541 0.00525646 0.000199005 

bk3-c50 0.0010603 0.0192911 0 0.00747126 0.00733103 0 

bk3-c50x 0.000330738 0.0192911 0 0.00753674 0.00733103 0 

bk3-c100 0.000330738 0.0192911 0 0.00753674 0.00733103 0 

bk3-d200 0.000330738 0.0192911 0.031863 0.00753674 0.00733103 0.000152311 

bk3-d200z 0.000330738 0.0192911 0.031863 0.00753674 0.00733103 0.000152311 

 

Variant  x  ��  �� tx t�� t�� 

bk3-a0z 0 0 0 0 0 0 

bk3-a50 0.000373603 0.0092125 0 0.0406664 0.00525646 0 

bk3-b200 0.000373603 0.0092125 0 0.0406664 0.00525646 0 

bk3-c50 0.000373603 0.040012 0.0216398 0.0406664 1.48091x10
-5

 0.000106117 

bk3-c50x 0.000373603 0.040012 0.0216398 0.0406664 1.48091x10
-5

 0.000106117 

bk3-c100 0.000373603 0.040012 0.0216398 0.0406664 1.48091x10
-5

 0.000106117 

bk3-d200 0.000373603 0.040012 0.0216398 0.0406664 1.48091 x10
-5

 0.000106117 

bk3-d200z 0.000373603 0.040012 0.0216398 0.0406664 1.48091 x10
-5

 0.000106117 

3.3 BK4 integrated model 

This model is our most sophisticated time-dependent integrated model. It uses a very rich time 

modeling and precise regularization. 

One of the significant differences of this model compared to the BK1/BK2/BK3 is that several time 

effects are modeled as low rank matrix factorizations. For example, a time-dependent user bias bu(u, t) 

can be approximated as the inner-product of a user vector and a time vector. 

Another significant difference is the introduction of a time-dependent scale factor s(u, t) inspired from 

[9]. Scaling is important to capture the difference in rating behaviour from different users. Some users 

will rate almost all movies with the same rating, while other will use the full scale more uniformly. Terms 

in the model that include only movie and time cannot reflect this spectrum of behaviour unless they are 

scaled by a user-specific parameter. These include the movie bias, the implicit feedback contribution to 

                                                           
5
 This variant uses the 2006 ratings from the KDD cup 

(http://www.netflixprize.com/community/viewtopic.php?pid=6555) 
6
 This variant is not used in the solution, but it is included here because it is referred to in the Logistic 

Transformation section. 
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the latent features and the implicit feedback contribution of the neighbourhood model. It is important 

to note that the same scale value is used for all three. The other terms do not require explicit scaling as 

they already contain an implicit per-user scaling factor. 

The time-dependent latent features are weighted by a sigmoid function in this model, which offers the 

advantage of being restricted to [0, 1]. This sigmoid function is offset for each user so that the 

expression has a mean of zero for the user or movie it applies to. The sigmoid captures the main time-

dependent correction, but it is used in conjunction with a finer grain correction term. It is interesting to 

note that even the implicit feedback vector y also becomes date dependent in the model (see also 

Section 3.12.4 Milestone). 

The neighbourhood part is modified to underweight ratings far apart in time. 

The model is defined by the following equations: 

^(
, �, X) = � + ��(
, X) + ��(�, X) �(
, X)
+ �<J�(�, X)<  LI�(
, X) + �(
, X)`|"(
)| � b�(c, X)d∈f(�) Q�

�+ � k~(�, c)(�(
, c) − ���������(
, c))
d∈ij(�;�)

k�,d
+ � k�(�, c)�(
, X)H�,dd∈fj(�;�)

 

(21) 

��(
, X) = ��3(
) + � ���,�(
)���
� {��z,�(7) + ��%,�(X�)| + ���(
, X) (22) 

��(�, X) = ��3(�) + � ���,�(�)���
� {��z,�(7) + ��%,�(X�)| (23) 

�(
, X) = 1 + �3(
) + � ��,�(
)���
� {�z,�(7) + �%,�(X�)| + ��(
, X) (24) 

J(�, X) = J3(�) + J�(�){+(7!P + RP* + J%(�, XBu) + Jz(�, 7Bu)| (25) I(
, X) = I3(
) + I�(
){+(X�!O + RO* + I�(
, X)| (26) b(c, X) = b3(c) + b�(c){+(7!' + R'* + b%(c, XBu) + bz(c, 7Bu)| (27) +(-) = 11 + �4,  (28) 

k~(�, c) = 11 + R~X∆(�, c)
U∑ � 11 + R~X∆(�, �)#��∈ij(�;�)

 
(29) 

k�(�, c) = 11 + R~X∆(�, c)
U∑ � 11 + R~X∆(�, �)#��∈fj(�;�)

 
(30) 
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�̂(
, �, X) = .0
1 ^(
, �, X) ������ �KE��+�(^(
, �, X))+B(^(
, �, X)) �K� − ������ �KE���K� − ������ �KE��+C(^(
, �, X)) �K� − ������ �KE��

< (31) 

Where: 

• ^(
, �, X) is the linear approximation of the user u rating for movie m at time t; 

• � is the global rating average in the training data; 

• bu(u, t) is the time-dependent user bias; 

• bm(m, t) is the time-dependent movie bias; 

• s(u, t)  is the time-dependent scale factor for user u; 

• q(m, t) is the time-dependent movie latent feature vector of length n; 

• p(u, t) is the time-dependent user latent feature vector of length n; 

• y(j, t)  is the time-dependent implicit feedback vector of length n for movie j; 

• N(u) is the set of all movies rated by u, including movies for which the rating is unknown; 

• R
k
(m; u) is the subset of movies with known ratings by u that are among the k neighbours of 

movie m; 

• N
k
(m; u) is the subset of movies rated by u (rating known or not) that are among the k 

neighbours of movie m; 

• ww(m, j) is the weight associated with the neighbourhood relation between movies m and j 

rated by user u; 

• r(u, j) is the rating provided by u for movie j; 

• baseline2 is described in the Common Concepts section; 

• wm, j is the weight given to the movie pair (m, j) to the rating deviation from the baseline; 

• cm,j is an offset given to the movie pair (m, j). 

• bu0(u) is the time independent user bias; 

• bu1(u) is a vector of length nbu which form the user part of the low rank matrix factorization of 

the time-dependent part of the user bias; 

• buf  and but are vectors of length nbu which form the time part of the low rank matrix factorization 

of the time-dependent part of the user bias: buf is selected based on frequency, but based on the 

deviation from the median date; 

• f is the frequency (see the Common Concepts section for a definition); 

• tu is the difference in days between the current day and the median day for the user; 

• bu2 is a per user and per day user bias correction, as explained in [2]; 

• bm0(u) is the time independent movie bias; 

• bm1(u) is a vector of length nbm which form the movie part of the low rank matrix factorization of 

the time-dependent part of the movie bias; 

• bmf  and bmt are vectors of length nbm which form the time part of the low rank matrix 

factorization of the time-dependent part of the movie bias: bmf is selected based on frequency, 

bmt based on the deviation from the median date; 

• tm is the difference in days between the current day and the median rating day for the movie; 
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• s0(u) is the time independent user scale; 

• s1(u) is a vector of length nsu which form the user part of the low rank matrix factorization of the 

time-dependent part of the user scale; 

• sf  and st are vectors of length nsu which form the time part of the low rank matrix factorization 

of the time-dependent part of the user scale: sf  is selected based on frequency, st based on the 

deviation from the median date; 

• s2 is a per user and per day user scale correction, similar in concept to b2; 

• q0 is a vector of length n representing the time independent movie latent features; 

• q1  is a vector of length n representing the time-dependent movie latent features; 

• +(7!P + RP* is the weight given to q1 based on the frequency (!P and RP are constants found 

by validation on the probe set), the sigmoid value is offset per movie to have a zero mean over 

the movie ratings. 

• qt is an adjustment to the q1 weight for a given movie within a certain date range identified by 

t36; 

• qf is an adjustment to the q1 weight for a given movie within a certain frequency range identified 

by f36; 

• t36 identifies one of 36 time intervals chosen uniformly between the first and last date of the 

training data; 

• f36 identifies one of 36 frequency intervals according to a logarithmic scale between 1 and 5446 

(the maximum of ratings made by one user on a single day in the training data); 

• p0 is a vector of length n representing the time independent user latent features; 

• p1  is a vector of length n representing the time-dependent user latent features; 

• +(X�!O + RO* is the weight given to p1 based on the date deviation from the user median date 

(!O and RO are constants found by validation on the probe set) ), the sigmoid value is offset per 

user to have a zero mean over the user ratings; 

• p2 is an adjustment to the p1 weight for a given user on a given day (note that p2 is the same as h 

in BK3: it is not a vector, but a weight scaling a vector, which keeps the number of free 

parameters smaller); 

• y0(j) is a vector of length n representing the time independent implicit feedback for movie j; 

• y1(j)  is a vector of length n representing the time-dependent implicit feedback for movie j; 

• +(7!' + R'* is the weight given to y1 based on the frequency (!' and R' are constants found 

by validation on the probe set) , the sigmoid value is offset per movie to have a zero mean over 

the movie ratings; 

• yt is an adjustment to the y1 weight for a given movie within a certain date range identified by t36 

(the date considered here is the date of movie j); 

• yf is an adjustment to the y1 weight for a given movie within a certain frequency range identified 

by f36 (the date considered here is the date of movie j); 

• X∆  is the absolute value of the number of days between the ratings of movies m and j (or l) in 

the neighbourhood model; 
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• R~ is a constant that determines how the neighbour weight decays when X∆ increases (R~is 

determined by validation on the probe set); 

• +�, +B and +C are non-linear envelope functions described in the Common Concepts section. 

The neighbouring movies of movie m are selected as the set of k movies that maximize the following 

expression: 

r�,d��,d��,d + !s (32) 

Where: 

• r�,d is the similarity measure described in Appendix 1 of [7]; 

• nm,j is the number of occurrences of movies m and j rated by the same user; 

• !s is a shrinkage coefficient determined through validation on the probe set. 

The parameters are learned through stochastic gradient descent by minimizing the squared error over 

the training set. In some instances, the training data was sorted by date, in others it was in random 

order. This model uses a very extensive number of meta-parameters to control learning rate and weight 

decay (regularization). Learning rates are decreased by a factor Δt at each iteration. All the meta-

parameters are selected by validation on the probe set. The values were selected using a combination of 

manual selection and the Nelder-Mead Simplex Method. During the selection of the meta-parameters, 

the maximum number of iterations is limited to 30. 

Parameter Learning rate Weight decay Parameter Learning rate Weight decay 

bu0 t�  � q0 t�:  �: 

bu1 t�  � p0 t�u  �u 

but tB  B y0 t�v  �v 

buf tC  C q1 t�w  �w 

bu2 t:  : p1 t�x  �x 

bm0 tu  u y1 t�3  �3 

bm1 tv  v wm, j t��  �� 

bmt tw  w cm, j t��  �� 

bmf tx  x p2 t�B  �B 

s0 t�3  �3 qt t�C  �C 

s1 t��  �� qf t�:  �: 

st t��  �� yt t�u  �u 

sf t�B  �B yf t�v  �v 

s2 t�C  �C    

We also used this model to post-process the residual of other models. In these instances, � takes the 

value of the baseline model, instead of the global average. 

The following tables show the combinations used in the solution.  
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Variant Baseline n nbu nbm nsu k envelope sorted Δt 

bk4-bias n/a 0 4 20 4 0 no no 0.085
7
 

bk4-biasZ n/a 0 4 20 4 0 +B no 0.085
7
 

bk4-a50 n/a 50 4 20 4 0 no no 0.085
7
 

bk4-b200 n/a 200 4 20 4 0 no no 0.085 

bk4-c50 n/a 50 4 20 4 0 no yes 0 

bk4-c200
8
 n/a 200 4 20 4 0 no yes 0 

bk4-c500 n/a 500 4 20 4 0 no yes 0 

bk4-c200z n/a 200 4 20 4 0 +� yes 0 

bk4-e50a n/a 50 4 20 4 0 no yes 0 

bk4-e200 n/a 200 4 20 4 0 no yes 0 

bk4-d50 n/a 50 4 20 4 445 no yes 0 

bk4-d50B128
9
 n/a 50 4 20 4 445 no yes 0 

bk4-d500 n/a 500 4 20 4 445 no yes 0 

bk4-f200z4 n/a 200 4 20 4 445 +C yes 0 

drbm160-640-bk4 drbm160-640
10

 0 4 20 4 0 no no 0.085
7
 

frbm300-bk4 frbm300
10 

0 4 20 4 0 no no 0.085
7
 

 

Variant !P !O !' RP RO R' !s R~ 

bk4-bias n/a n/a n/a n/a n/a n/a n/a n/a 

bk4-biasZ n/a n/a n/a n/a n/a n/a n/a n/a 

bk4-a50 n/a n/a n/a n/a n/a n/a n/a n/a 

bk4-b200 0.121418  0.00792848 0.17656 -8.89293 220.309 11.8247 n/a n/a 

bk4-c50 0.0602044  0.00689306 0.118019 -6.42095 253.658 7.21242 n/a n/a 

bk4-c200 0.0602044  0.00689306 0.118019 -6.42095 253.658 7.21242 n/a n/a 

bk4-c500 0.0602044  0.00689306 0.118019 -6.42095 253.658 7.21242 n/a n/a 

bk4-c200z 0.0602044  0.00689306 0.118019 -6.42095 253.658 7.21242 n/a n/a 

bk4-e50a 0.0602044  0.00689306 0.118019 -6.42095 253.658 7.21242 n/a n/a 

bk4-e200 0.0602044  0.00689306 0.118019 -6.42095 253.658 7.21242 n/a n/a 

bk4-d50 0.0539445 0.00597875 0.131885 -5.65647 228.851 7.91665 556.041 0.00147446 

bk4-d50B128 0.0539445 0.00597875 0.131885 -5.65647 228.851 7.91665 556.041 0.00147446 

bk4-d500 0.0539445 0.00597875 0.131885 -5.65647 228.851 7.91665 556.041 0.00147446 

bk4-f200z4 0.0602044  0.00689306 0.118019 -6.42095 253.658 7.21242 556.041 0.00147446 

drbm160-640-bk4 n/a n/a n/a n/a n/a n/a n/a n/a 

frbm300-bk4 n/a n/a n/a n/a n/a n/a n/a n/a 

 

                                                           
7
 Δtis applied only to  � ...  x in this variant. 

8
 This variant is not used in the solution, but it is included here because it is referred to in section 3.17.1 Logistic 

transformation models. 
9
 Same as bk4-d50, but training passed the optimal score by 4 iterations to optimize blend. 

10
 Described later. 



23 

Variant t� t� tB tC t: tu tv tw tx 

bk4-bias 0.00927732 0.00383994 0.00413388 0.00112172 0.00785357 0.000565172 0.00348556 0.00135257 0.000550582 

bk4-biasZ 0.00949966 0.00423486 0.00408419 0.00145721 0.00893363 0.00065001 0.00399963 0.00132472 0.000584056 

bk4-a50 0.00928386 0.00390146 0.00455574 0.00105276 0.00790387 0.000560385 0.00333075 0.00180471 0.000663343 

bk4-b200 0.00926881 0.00386355 0.00395821 0.00110231 0.00791167 0.00062045 0.00348421 0.00144601 0.00047121 

bk4-c50 0.000977427 0.00246524 0.00247907 0.00024348 0.00255845 0.000249488 0.000801197 0.000488952 0.000283411 

bk4-c200 0.000977427 0.00246524 0.00247907 0.00024348 0.00255845 0.000249488 0.000801197 0.000488952 0.000283411 

bk4-c500 0.000977427 0.00246524 0.00247907 0.00024348 0.00255845 0.000249488 0.000801197 0.000488952 0.000283411 

bk4-c200z 0.000977427 0.00246524 0.00247907 0.00024348 0.00255845 0.000249488 0.000801197 0.000488952 0.000283411 

bk4-e50a 0.000977427 0.00246524 0.00247907 0.00024348 0.00255845 0.000249488 0.000801197 0.000488952 0.000283411 

bk4-e200 0.000977427 0.00246524 0.00247907 0.00024348 0.00255845 0.000249488 0.000801197 0.000488952 0.000283411 

bk4-d50 0.000977427 0.00246524 0.00247907 0.00024348 0.00255845 0.000249488 0.000801197 0.000488952 0.000283411 

bk4-d50B128 0.000977427 0.00246524 0.00247907 0.00024348 0.00255845 0.000249488 0.000801197 0.000488952 0.000283411 

bk4-d500 0.000977427 0.00246524 0.00247907 0.00024348 0.00255845 0.000249488 0.000801197 0.000488952 0.000283411 

bk4-f200z4 0.001051047 0.00265092 0.00266579 0.00026182 0.00275115 0.000268279 0.000861543 0.00052578 0.000304758 

drbm160-640-

bk4 

6.81554x10
-5

 0.00637472 0.00742226 0.00075181 0.00621834 0.000762552 0.00436458 0.00284615 0.000612556 

frbm300-bk4 0.00327814 0.00637155 0.0070985 0.000263037 0.00638937 0.000652377 0.00410398 0.00275532 0.000545367 

 
Variant t�3 t�� t�� t�B t�C t�: t�u t�v t�w 

bk4-bias 0.00069273 0.00195445 0.000242657 0.00258124 0.00125313 0 0 0 0 

bk4-biasZ 0.000721524 0.00218922 0.000276723 0.00260608 0.002015 0 0 0 0 

bk4-a50 0.000723742 0.00192782 0.000380401 0.00201626 0.00126792 0.000579691  0.0126334 0.00134527 0 

bk4-b200 0.00314745 0.00530448 0.00029168 0.00422727 0.00251472 0.00196582 0.0313884 0.00438109 0.00125546 

bk4-c50 0.000756619 0.00215928 0.000134043 0.00311735 0.00111064 0.000630419 0.0111556 0.00145574 0.000583831 

bk4-c200 0.000756619 0.00215928 0.000134043 0.00311735 0.00111064 0.000630419 0.0111556 0.00145574 0.000583831 

bk4-c500 0.000756619 0.00215928 0.000134043 0.00311735 0.00111064 0.000630419 0.0111556 0.00145574 0.000583831 

bk4-c200z 0.000756619 0.00215928 0.000134043 0.00311735 0.00111064 0.000630419 0.0111556 0.00145574 0.000583831 

bk4-e50a 0.000756619 0.00215928 0.000134043 0.00311735 0.00111064 0.000630419 0.0111556 0.00145574 0.000583831 

bk4-e200 0.000756619 0.00215928 0.000134043 0.00311735 0.00111064 0.000630419 0.0111556 0.00145574 0.000583831 

bk4-d50 0.000756619 0.00215928 0.000134043 0.00311735 0.00111064 0.00059987 0.0122602 0.0013921 0.00062067 

bk4-d50B128 0.000756619 0.00215928 0.000134043 0.00311735 0.00111064 0.00059987 0.0122602 0.0013921 0.00062067 

bk4-d500 0.000756619 0.00215928 0.000134043 0.00311735 0.00111064 0.00059987 0.0122602 0.0013921 0.00062067 

bk4-f200z4 0.000813608 0.00232192 0.000144139 0.00335215 0.001194293 0.000680015 0.0120332 0.00157026 0.00062976 

drbm160-640-bk4 0.00164907 0.0018943 0.000674635 0.00232701 0.00113583 0 0 0 0 

frbm300-bk4 0.00104467 0.00215025 0.000637943 0.00187727 0.000460018 0 0 0 0 

 

Variant t�x t�3 t�� t�� t�B t�C t�: t�u t�v 

bk4-bias 0 0 0 0 0 0 0 0 0 

bk4-biasZ 0 0 0 0 0 0 0 0 0 

bk4-a50 0 0 0 0 0 0 0 0 0 

bk4-b200 0.0132871 0.0050094 0 0 0 0 0 0 0 

bk4-c50 0.0109737 0.00186232 0 0 0 0 0 0 0 

bk4-c200 0.0109737 0.00186232 0 0 0 0 0 0 0 

bk4-c500 0.0109737 0.00186232 0 0 0 0 0 0 0 

bk4-c200z 0.0109737 0.00186232 0 0 0 0 0 0 0 

bk4-e50a 0.0109737 0.00186232 0 0 0.01319 1.48766x10
-5

 3.86391x10
-6

 0.0011758 0.000688992 

bk4-e200 0.0109737 0.00186232 0 0 0.01319 1.48766x10
-5

 3.86391x10
-6

 0.0011758 0.000688992 

bk4-d50 0.00984111 0.00216959 8.09761x10
-5

  0.000112904 0 0 0 0 0 

bk4-d50B128 0.00984111 0.00216959 8.09761x10
-5

  0.000112904 0 0 0 0 0 

bk4-d500 0.00984111 0.00216959 8.09761x10
-5

  0.000112904 0 0 0 0 0 

bk4-f200z4 0.011837 0.00200883 7.44038x10
-5

 0.00010374 0.01319 1.48766x10
-5

 3.86391x10
-6

 0.0011758 0.000688992 

drbm160-640-bk4 0 0 0 0 0 0 0 0 0 

frbm300-bk4 0 0 0 0 0 0 0 0 0 
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Variant  �  �  B  C  :  u  v  w  x 

bk4-bias 0.00215151 0.000215459 0.00488126 0.0075601 0.000698833 0.00217856 0.00217834 0.00284388 0.00157188 

bk4-biasZ 0.00205254 0.000286509 0.00439127 0.00718939 0.000619491 0.00215052 0.00223284 0.0021786 0.00137225 

bk4-a50 0.00148082 0.000232721 0.00490838 0.00757012 0.000497164 0.00143908 0.00231426 0.00312576 0.00157386 

bk4-b200 0.00334947 0.00009620 0.00487336 0.00741268 0.00095481 0.00281784 0.00229436 0.00274744 0.00151096 

bk4-c50 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

bk4-c200 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

bk4-c500 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

bk4-c200z 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

bk4-e50a 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

bk4-e200 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

bk4-d50 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

bk4-d50B128 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

bk4-d500 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

bk4-f200z4 0.00529725 0.000131135 0.00383613 0.00791377 0.000685716 0.00398966 0.00236947 0.0020634 0.0016331 

drbm160-640-bk4 0.00174661 0.00108155 0.00179546 0.00644488 0.000802785 0.00174711 0.00177352 0.00220636 0.00170485 

frbm300-bk4 0.00129218 0.000856816 0.00199904 0.00795527 0.000635279 0.0012216 0.00212088 0.00254123 0.00134286 

 

Variant  �3  ��  ��  �B  �C  �:  �u  �v  �w 

bk4-bias 0.000118224 0.000105524 0.000639624 0.0010123 0.00203708 0 0 0 0 

bk4-biasZ 0.000160765 0.000161589 0.000691343 0.000921905 0.00116509 0 0 0 0 

bk4-a50 0.00106633 0.000270373 0.000682861 0.000995583 0.00146076  0.0331818  0.0234497 0.00550681 0 

bk4-b200 0.00067067 0.00027107 0.00065076 0.00104658 0.00186581 0.0376026 0.0211866 0.00549095 0.0019437 

bk4-c50 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0359022 0.0217831 0.00508029 0.00422895 

bk4-c200 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0359022 0.0217831 0.00508029 0.00422895 

bk4-c500 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0359022 0.0217831 0.00508029 0.00422895 

bk4-c200z 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0359022 0.0217831 0.00508029 0.00422895 

bk4-e50a 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0359022 0.0217831 0.00508029 0.00422895 

bk4-e200 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0359022 0.0217831 0.00508029 0.00422895 

bk4-d50 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0345866 0.0254905 0.0053402 0.0034172 

bk4-d50B128 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0345866 0.0254905 0.0053402 0.0034172 

bk4-d500 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0345866 0.0254905 0.0053402 0.0034172 

bk4-f200z4 0.000496923 0.000184172 0.000802785 0.00111961 0.000696543 0.0359022 0.0217831 0.00508029 0.00422895 

drbm160-640-bk4 0.000973421 0.000461521 0.000469859 0.00299535 0.00129659 0 0 0 0 

frbm300-bk4 0.00113314 0.000867036 0.000723798 0.00252515 0.00116078 0 0 0 0 

 

Variant λ�x λ�3 λ�� λ�� λ�B λ�C λ�: λ�u λ�v 

bk4-bias 0 0 0 0 0 0 0 0 0 

bk4-biasZ 0 0 0 0 0 0 0 0 0 

bk4-a50 0 0 0 0 0 0 0 0 0 

bk4-b200 0.0946061 0.00769279 0 0 0 0 0 0 0 

bk4-c50 0.117364 0.00381951 0 0 0 0 0 0 0 

bk4-c200 0.117364 0.00381951 0 0 0 0 0 0 0 

bk4-c500 0.117364 0.00381951 0 0 0 0 0 0 0 

bk4-c200z 0.117364 0.00381951 0 0 0 0 0 0 0 

bk4-e50a 0.117364 0.00381951 0 0 0 0 0 0 0 

bk4-e200 0.117364 0.00381951 0 0 9.79141x10
-6

  0.0067143 0.00867617 0.000814275 0.000874146 

bk4-d50 0.092418 0.00560977 0.00864227 0.00819148 0 0 0 0 0 

bk4-d50B128 0.092418 0.00560977 0.00864227 0.00819148 0 0 0 0 0 

bk4-d500 0.092418 0.00560977 0.00864227 0.00819148 0 0 0 0 0 

bk4-f200z4 0.117364 0.00381951 0.00864227 0.00819148 9.79141e-006 0.0067143 0.00867617 0.000814275 0.000874146 

drbm160-640-bk4 0 0 0 0 0 0 0 0 0 

frbm300-bk4 0 0 0 0 0 0 0 0 0 

3.4 BK5 SVD++ model 

When a user provides a rating for a movie, he must first determine his own appreciation for this movie. 

Then, he must decide how to represent this appreciation with an integer rating between 1 and 5. It is 

interesting to model these two steps separately: the appreciation of the user for the movie, and the 

transfer function that maps appreciation to ratings. 

In this model, we estimate the appreciation z with the following function: 
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^ = ��(�) + � J�(�) LI�(
) + 1`|"(
)| � b�(c)d∈f(�) Q�
�  (33) 

Where: 

• ��(�) is a bias for movie m which represents the basic quality of a movie, independently from 

user preferences; 

• q(m) is a vector of length n representing the movie latent features; 

• p(u) is a vector of length n representing the user latent features; 

• N(u) is the set of all movies rated by u, including movies for which the rating is unknown; 

• y(j) is a vector of length n for movie j representing the implicit feedback associated with user u 

rating movie j. 

We then estimate the user rating using a third degree polynomial. This allows the model to capture non-

linearity in the scale that the user chooses to express his appreciations. 

�̂(
, �) = �3(
) + (��(
) + 1)^ + ��(
)^� + �B(
)^B (34) 

It is important to note that the +1 in (��(
) + 1)^  allows this term to approach z when there is 

insufficient ratings for a given user to learn ��(
) properly. 

The model is trained by minimizing the following error function through stochastic gradient descent, 

using  � to  w as weight decays: 

min�6,��,��,��,��,P,O,' �(�(
, �) − �̂(
, �))�
�,� +  ���� (�) +  ��J(�)�� +  B�I(
)�� +  C�b(c)�� +  :�3�(
)
+  u���(
) +  v���(
) +  w�B�(
) 

(35) 

The learning rates are chosen as t�for ��(�), t�for J(�), tBfor I(
), tCfor b(c), t:for �3(
), tufor ��(
), tvfor ��(
)and twfor �B(
). The learning rate is fixed during training. The dataset is sorted by 

date for each user. All the values of   and t are selected using a combination of manual selection and 

Nelder-Mead simplex method. During the selection of the meta-parameters, the maximum number of 

iterations is limited to 30. 

We used the following parameters: n=200, t� = 0.00221326, t� = 0.00460091,  tB = 0.00308307,  tC = 0.000336822,  t: = 0.00670341,  tu = 0.00262918, tv = 0.00106459, tw = 0.000239104,  � = 0.000690139,  � =0.00321717,  B = 0.000390205,  C = 0.00153138,  : = 0.000628539,  u = 0.00041564,  v = 0.00128092 and  w = 0.00337095. 

Two variants are included in the blend, which differ only by the number of iterations used. 

Variant Number of iterations Comment 

bk5-b200 12 Optimal score on probe set 

bk5-b200B089 21 Optimal score on blended results 
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3.5 Other integrated model variants 

This model is an earlier type of integrated model that proved inferior to the BKx models. It is 

documented here because some variants are included in the solution. Similarly to BK4, it uses a matrix 

factorization approach to model the time variant user and movie biases. It uses four time variables: the 

absolute date, the elapsed time from the first rating of the user, the elapsed time from the first rating of 

the movie and the frequency (number of ratings from the user on that day). All four variables are used 

for both the user and movie bias, although some correlations are weak, like the impact of the elapsed 

time from the first rating of the movie on the user bias. 

Latent user and movie features are kept time independent, which is probably the major weakness of this 

model. The neighbourhood part of the integrated model uses the factored neighbourhood approach 

described in [10]. 

^(
, �, X) = � + ��(
, X) + ��(�, X) + � J�,�(�)I�,�(
)��
� + � �J�,�(�) ��(
)`|"(
)| � b�(c)d∈f(�) ���

�
+ � �JB,�(�) �B(
)`|g(
)| � k�(c)(�(
, c) − ���������(
, c)d∈i(�) ���

�  

(36) 

��(
, X) = ��3(
) + � I�(
, �)-�(X� , �)i�
�F� +  � I�(
, �)-�(X�, �)i�

�F� +  � I3(
, �)-3(X3, �)i6
�F�

+  � Iz(
, �)-z(7, �)i�
�F�  

(37) 

��(�, X) = ��3(�) +  � J�(�, �)b�(X� , �)��
�F� +  � J�(�, �)b�(X�, �)��

�F� +  � J3(�, �)b3(X3, �)�6
�F�

+  � Jz(�, �)bz(7, �)��
�F�  

(38) 

�̂(
, �, X) = � ^ ������ �KE��+3(^) �K� − ������ �KE��+�(^) �K� − ������ �KE��<  

Where: 

• �̂ is the estimate for user 
 rating movie �; 

• z is the linear estimate for 
 rating �; 

• � is the global rating mean; 

• bU(u, t) is the time-dependent user bias; 

• bM(m, t) is the time-dependent movie bias; 

• X� is the number of days between the day 
 rated � and the first rating of 
; 

• X� is the number of days between the day 
 rated � and the first movie of �; 

• X3 is the absolute date of the rating; 
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• 7 is the number of ratings (frequency) made by 
 on day X3; 

• ��3(
) is a bias specific to 
; 

• ��3(�) is a bias specific to �; 

• I�(
) is a vector of length g� for user 
; 

• -�(X�) is a vector of length g� for time interval  X�; 

• I�(
) is a vector of length g� for user 
; 

• -�(X�) is a vector of length g� for time interval  X�; 

• I3(
) is a vector of length g3 for user 
; 

• -3(X3) is a vector of length g3 for date X3; 

• Iz(
) is a vector of length gz for user 
; 

• -z(7) is a vector of length gz for frequency 7; 

• J�(�) is a vector of length �� for movie � ; 

• b�(X�) is a vector of length �� for time interval  X�; 

• J�(�) is a vector of length �� for movie � ; 

• b�(X�) is a vector of length �� for time interval  X�; 

• J3(�) is a vector of length �3 for movie � ; 

• b3(X3) is a vector of length �3 for date X3; 

• Jz(�) is a vector of length �z for movie � ; 

• bz(7) is a vector of length �z for frequency 7; 

• q1, q2 and q3 are the movie latent feature vectors, respectively of length n1, n2 and n3 (3 sets of 

movie latent feature are used, one for regular matrix factorization, one for implicit feedback 

and one for factored neighbourhood); 

• p1 is the user latent feature vector of length n1; 

• y(j)  is the implicit feedback vector of length n  for movie j; 

• w(i) is the vector used in conjunction with p3 to obtain the neighbourhood weights; 

• N(u) is the set of movies rated by u, including movies for which the rating is unknown; 

• R(u) is the set of movies rated by u for which the rating is known; 

• r(u, j) is the rating given by user u to movie j; 

• Baseline1 is defined in the Common Concepts section; 

• s2(u) is a scaling factor for the implicit feedback: depending on the variant, it is either chosen as 

a) 1.0; b) the standard deviation of user u ratings, regularized as described in the Common 

Concepts section with a population weight of 50 (σu); or c) learned through gradient descent; 

• s3(u) is a scaling factor for the neighbourhood term: depending on the variant, it is either chosen 

as a) 1.0; or b) learned through gradient descent; 

• M(m) is the set of users having rated the movie m (used below). 

The model was trained using stochastic gradient descent. The weight decay parameters 

(regularization) were chosen to vary linearly with the number of movies rated by a user, or the 

number of users having rated a movie, as shown below. The learning rate was changed dynamically 

using the following algorithm: 
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• For each parameter, we compute the inner-product of the parameter variation during the 

last two iterations.  The inner-product is then normalized by dividing it by the product of the 

vector lengths. 

• If the result is greater than 0.5, meaning the variations were mostly collinear, than the 

learning rate is increased by 20%. 

• If the result is smaller than 0.5, meaning the variations were not collinear, than the learning 

rate is decreased by 20%. 

When the envelope is not used, convergence is accelerated by computing a least square regression on 

the user parameters at each iteration. This makes a hybrid approach where the movie and time factors 

are learned through gradient descent, but the user factors through linear regression.  

In some variants described below, some model parameters are forced to be non-negative. 

Training stopped when best accuracy was achieved on the probe set, or after 100 iterations. 

Parameter Initial learning rate Weight decay Parameter Initial learning rate Weight decay ��3(
) 0.01  � + !�|"(
)| -3(X3, �) 0.0001
11

  �� 

��3(�) 0.001  � + !�|�(�)| I�(
, �) 0.0001
11

  �B + !�B|"(
)| I�,�(
) 0.01  B + !B|"(
)| -�(X� , �) 0.0001
11

  �B 

J�,�(�) 0.001  B + !C|�(�)| I�(
, �) 0.0001
11

  �C + !�C|"(
)| ��(
) when learned 0.0001  : + !:|"(
)| -�(X�, �) 0.0001
11

  �C 

J�,�(�) 0.0001  : + !u|�(�)| Jz(�, �) 0.0001
11

  �: + !�:|�(�)| b�(c) 0.0001  : + !v|�(c)| bz(7, �) 0.0001
11

  �: 

�B(
) when learned 0.0001  w + !w|"(
)| J3(�, �) 0.0001
11

  �u + !�u|�(�)| JB,�(�) 0.0001  w + !x|�(�)| b3(X3, �) 0.0001
11

  �u 

k�(c) 0.0001  w + !�3|�(c)| J�(�, �) 0.0001
11

  �v + !�v|�(�)| Iz(
, �) 0.0001
11

  �� + !��|"(
)| b�(X�, �) 0.0001
11

  �v 

-z(7, �) 0.0001
11

  �� J�(�, �) 0.0001
11

  �w + !�w|�(�)| I3(
, �) 0.0001
11

  �� + !��|"(
)| b�(X�, �) 0.0001
11

  �w 

 

The meta-parameters were selected using the manual selection with hint methodology described in the 

Common Concepts section. 
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Variant Envelope Non-negative n1 n2 n3 R0 RU RM Rf S0 SU SM Sf 

integ0-0-0TZ σ1 n/a 0 0 0 2 2 2 4 20 20 20 40 

integ0-100-100TZ σ1 n/a 0 100 100 3 3 1 6 60 20 60 120 

integ0-200-200NT n/a w and q3 0 200 200 1 1 1 2 2 2 2 5 

integ0-200-200TZ σ1 n/a 0 200 200 1 1 1 2 2 2 2 5 

integ20-100-100NT n/a w and q3 20 100 100 1 1 1 2 2 2 2 5 

integ40-200-0ST σ0 n/a 40 200 0 1 1 1 2 2 2 2 5 

integ40-200-0T n/a n/a 40 200 0 1 1 1 2 2 2 2 5 

integ60-0-0TS σ0 n/a 60 0 0 1 1 1 2 2 2 2 5 

integ80-80-0TZM σ1 q1 80 80 0 1 1 1 2 2 2 2 5 

 

Variant s2(u) s3(u)  �  !�   � !�  B !B !C  : !: !u !v 

integ0-0-0TZ n/a n/a 0.005 8 0 1 n/a n/a n/a n/a n/a n/a n/a 

integ0-100-100TZ σu 1 0 6.3 0 1 n/a n/a n/a 0.005 n/a 50 0 

integ0-200-200NT learned learned 0.015 5.2 0 6.7 n/a n/a n/a 0.022 0 150 75 

integ0-200-200TZ σu 1 0 6.3 0 1 n/a n/a n/a 0.005 n/a 50 0 

integ20-100-100NT learned learned 0.034 5.4 0 6 0.028 3 40 0.025 0 100 10
12

 

integ40-200-0ST learned n/a 0.02 5 0 0 0.027 1.5 20 0.001 0 50 1
12

 

integ40-200-0T learned n/a 0.011 5.17 0 1.6 0.03 3 20 0.036 0 100 100
12

 

integ60-0-0TS n/a n/a 0 6.4 0 0 0.0235 2 8 n/a n/a n/a n/a 

integ80-80-0TZM 1 n/a 0.011 9 0 0 0.03 1 12 0.001 n/a 33 0 

 

Variant  w !w !x !�3  �� !��  �� !��  �B !�B 

integ0-0-0TZ n/a n/a n/a n/a 0.02 2.5 0.042 0 0.023 3 

integ0-100-100TZ 0.035 n/a 10 0 0.02 2.5 0.042 0 0.023 3 

integ0-200-200NT 0.18 0 115 95 0.027 3.25 0.043 0.85 0.018 3.75 

integ0-200-200TZ 0.035 n/a 10 0 0.01  1 0.02 1 0.01 1 

integ20-100-100NT 0.165 0 100 100 0.029 3.5 0.047 1 0.022 4 

integ40-200-0ST n/a n/a n/a n/a 0.011 0 0.027 0 0.012 0 

integ40-200-0T n/a n/a n/a n/a 0.028 2.8 0.045 0.7 0.024 2.5 

integ60-0-0TS n/a n/a n/a n/a 0.011 0.5 0.03 0 0.014 0 

integ80-80-0TZM n/a n/a n/a n/a 0.012 0 0.032 0 0.013 0 

 

Variant  �C !�C  �: !�:  �u !�u  �v !�v  �w !�w 

integ0-0-0TZ 0.029 4 0.001 0 0.01 1 0.01 0 0.002 60 

integ0-100-100TZ 0.029 5 0.002 0 0.01 5 0.01 1 0.003 50 

integ0-200-200NT 0.025 3.5 0.0003 0 0.0007 0.5 0.009 0 0.0008 20 

integ0-200-200TZ 0.02 4 0.001 0 0.001 1 0.01 0 0.001 10 

integ20-100-100NT 0.03 4 0.001 0 0.001 1 0.015 0 0.001 50 

integ40-200-0ST 0.022 2.8 0 0 0.006 20 0.009 0 0.002 1 

integ40-200-0T 0.034 2 0.001 2 0.001 10 0.013 1 0.001 20 

integ60-0-0TS 0.013 8 0.001 0 0.005 5 0.008 0 0.001 0 

integ80-80-0TZM 0.023 2.8 0 0 0.006 20 0.009 0 0.002 1 

With this model, we experimented with a number of concepts in order to facilitate the selection of 

meta-parameters (especially learning rate and regularization): 
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 A value of 0 is used by mistake for movies for which the rating is unknown. 
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• By making the learning adaptable, we expected that the initial learning rate would have little 

impact on the final outcome. This was relatively successful. 

• The manual regularization with hints was intended to evolve into a fully automated 

regularization, but we were never able to achieve this. 

With hindsight, we believe that the methodology used in models BK1 to BK5 is superior: 

• Select meta-parameters using the Nelder-Mead Simplex Method. 

• Use a fixed learning rates, or learning rates with constant decay factors: when combined with 

early stopping, this makes the usage of the αx regularization parameters unnecessary, thus 

reducing the total number of parameters to be selected. 

However, in this section, we documented the actual methodology used, as some of the predictions sets 

were included in the solution. 

3.6 Matrix Factorization 1 model 

This section describes a matrix factorization method that we used earlier in the competition. It is based 

on the alternating least squares matrix factorization method described in [12], but contains a number of 

extensions. 

The principal extension is the addition of time-dependent bias terms c, d and f. They form the equivalent 

of a matrix factorization of the user-time and movie-time interaction, where the matrix rank is limited to 

1. 

Another extension is that we augment the user latent features with a number of fixed properties y. 

These are multiplied by learned parameters z for each movie. This gives a model with a richer movie 

parameterization than the user, which is desirable because movies have greater support in the data set 

than users. 

In this model, a rating is approximated by the following equation: 

�T(
, �, X) = �
 + �� +  (H0(
) + E0(�)*70(X) + (H
(
) + E
(�)*7
(X
) + (H�(
) + E�(�)*7�(X�)
+ �H7(
) + E7(�)� 77(784* + � I�(
)J�(�)�1

�
+ � b�(
)^�(�)�2

�
 

(39) 

Where: 

• �̂ is the rating estimate; 

• u, m and t are respectively the user, the movie and the date of the rating; 

• bu is a user bias; 

• bm is a movie bias; 

• f0 is a function that associates each date with a learned value (the function is learned 

simultaneously with the other parameters during training); 
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• c0 is the weight given to f0 for user u, which allows the model to capture the fact that ratings 

may be affected by certain specific dates, like holidays;  

• d0 is the weight given to f0 for movie m; 

• tu is the number of days elapsed since the first rating of the user; 

• fu is a function that associates each tu with a learned value (typically initialized as `X��
 and 

updated during training); 

• cu is the weight given to fu for user u; 

• du is the weight given to fu for movie m; 

• tm is the number of days elapsed since the first rating of this movie; 

• fm is a function which associates each tm with a learned value (typically initialized as `X��
 and 

updated during training); 

• cm is the weight given to fm for user u; 

• dm is the weight given to fm for movie m; 

• f84 is the number of ratings provided by u on day t (frequency f), regrouped in 84 bins according 

to a logarithmic progression (f84 takes value between 1 for a frequency of 1, and 84 for the 

maximum frequency observed of 5446); 

• ff is a function which associates each f84 with a learned value (typically initialized as `7�
 and 

updated during training); 

• cf  is the weight given to ff for user u; 

• df  is the weight given to ff for movie m; 

• p  is a vector of length n1 representing the user latent features; 

• q is a vector of length n1 representing the movie latent features; 

• y is a vector of length n2 capturing a number of properties of user u. These properties are 

selected before the training starts and have fixed values. We will explain below how we select 

the values; 

• z is a vector of length n2 that captures the weight given to each property for movie m. 

The intent behind the y properties is to allow the model to have a richer representation of the movies, 

which have larger support in the training date. To this end, we optionally added n2 = 59 properties to 

each user y1, ..., y59 as follows: 

• The square root of the user number of ratings; 

• The average, variance and skew of the user ratings, regularized as described in the Common 

Concepts section and using a population weight of 40; 

• The fraction of the user ratings that are respectively a 1, 2, 3, 4 or 5, also regularized as 

described in the Common Concepts section and using a population weight of 40; 

• 50 values taken from the hidden units of the RBM model trbm50 described in Section 3.11.2 

Time RBM. 

The model is trained using alternating least squares regression in the following order: 

1. Update user coefficients; 
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2. Update movie coefficients; 

3. Update frequency function; 

4. Update calendar (absolute date) function; 

5. Update elapsed time from first user rating function; 

6. Update elapsed time from first movie rating function. 

In some variants, the time functions are left at their initial values and steps 3 to 6 are omitted. Results 

are generated when there is no more accuracy improvement measured on the probe set. Training stops 

after step 2 or step 6. 

Regularization is best explained by using the user coefficient update as an example. When updating the 

user coefficients for a specific user, all the ratings of the user are considered. Let's call X the vector 

composed of the collection of all the user coefficients (bu, c0, cu, cm, cf, and p). X is found by solving the 

linear problem A
T
AX=A

T
B where A and B are determined from the non-user coefficients frozen at a 

constant value during this step. 

First we compute an approximation  ¡ of the average of the diagonal elements of A
T
A over the whole 

training set. All non-diagonal elements of  ¡ are zero. We also compute the weighted average ¢V of X for 

all users before the update is computed, where the weight corresponds to the number of ratings of each 

user in the probe or qualifying set. The regularized solution for X is computed as: 

¢ = ( £  + k ¡)4�( £¤ + k ¡¢V) (40) 

k =∝ + �" (41) 

Where α and λu are regularization constants, and N is the number of training samples included in the 

evaluation of X (the number of ratings by user u for the user coefficient updates). 

The same process is repeated for the movie, frequency, calendar, elapsed from first user rating and 

elapsed from first movie rating coefficients. The value of w is computed similarly at all steps, the only 

difference being the value of λm, λf, λ0, λtu and λtm used instead of λu for the movie, frequency, calendar, 

elapsed time from first user rating and elapsed time from first movie rating respectively. 

In some variants, we force all coefficients to be non-negative (see [12] figure 1 for an example of a non-

negative solver). In some others, we invert ratings (1 with 5, 2 with 4) before computing a non-negative 

solution, which leads to different prediction distribution characteristics. In some variants, the bias (bu 

and bm) are not used (forced to zero), as well as the values of ff, f0, fu and fm.  This model is sometimes 

evaluated on the residual error of another model, which is useful to introduce a time correction to 

models that are not date aware. 
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The meta-parameters were selected manually. The following variants are included in the solution: 

Variant baseline bu bm ff f0 fu fm 

mf01-20 n/a learned zero zero zero zero 

mf01-40-3-80 n/a learned zero zero zero zero 

mf27-20 n/a learned learned zero learned learned 

mf27-20env50 n/a learned learned zero learned learned 

mf27-40-3-80 n/a learned learned zero learned learned 

mfc27-60-10-120 n/a learned fixed
13

 zero fixed fixed 

mfw31-00 n/a learned learned learned learned learned 

mfw31-05 n/a learned learned learned learned learned 

mfw31-10 n/a learned learned learned learned learned 

mfw31-40env50 n/a learned learned learned learned learned 

mfw31-60-10-120 n/a learned learned learned learned learned 

mfw31-60-x n/a learned learned learned learned learned 

mfw31-80-x n/a learned learned learned learned learned 

nmf40-60-10 n/a zero zero zero zero zero 

nmf80-120-20 n/a zero zero zero zero zero 

pmf80-120-20 n/a zero zero zero zero zero 

nmf80-120-20-mf27 nmf80-120-20 zero zero zero zero zero 

pmf80-120-20-mf27 pmf80-120-20 zero zero zero zero zero 

frbm200-mf27 frbm200 learned learned zero learned learned 

trbm50-mf27 trbm50 learned learned zero learned learned 

trbm50-asym3v250-mfw27 trbm50-asym3v250 learned learned zero learned learned 

trbm150-mf27 trbm150 learned learned zero learned learned 

 

 

                                                           
13

 'fixed' means the value is left to its initial value throughout the training. 
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Variant n1 n2 non-negative final step α λu λm λf λ0 λtu λtm 

mf01-20 20 0 no 2 50 0.01 0.01 0.01 0.01 0.01 0.01 

mf01-40-3-80 40 0 no 2 80 0.03 0.03 0.03 0.03 0.03 0.03 

mf27-20 20 0 no 6 50 0.01 0.01 0.01 0.01 0.01 0.01 

mf27-20env50 20 59 no 6 50 0.01 0.01 0.01 0.01 0.01 0.01 

mf27-40-3-80 40 0 no 6 80 0.03 0.03 0.03 0.03 0.03 0.03 

mfc27-60-10-120 60 0 no 2 120 0.1 0.1 0.1 0.1 0.1 0.1 

mfw31-00 0 0 no 2 50 0.01 0.01 0.01 0.01 0.01 0.01 

mfw31-05 5 0 no 2 50 0.01 0.01 0.01 0.01 0.01 0.01 

mfw31-10 10 0 no 2 50 0.01 0.01 0.01 0.01 0.01 0.01 

mfw31-40env50 40 59 no 2 80 0.03 0.03 0.03 0.03 0.03 0.03 

mfw31-60-10-120 60 0 no 2 120 0.1 0.1 0.1 0.1 0.1 0.1 

mfw31-60-x 60 0 no 2 80 0.20 0.10 0.20 0.60 0.20 0.30 

mfw31-80-x 80 0 no 2 90 0.40 0.17 0.21 1.00 0.14 0.10 

nmf40-60-10 60 0 yes 2 60 0.1 0.1 0.1 0.1 0.1 0.1 

nmf80-120-20 80 0 yes 2 120 0.2 0.2 0.2 0.2 0.2 0.2 

pmf80-120-20 80 0 inverted 2 120 0.2 0.2 0.2 0.2 0.2 0.2 

nmf80-120-20-mf27 80 0 yes 6 50 0.01 0.01 0.01 0.01 0.01 0.01 

pmf80-120-20-mf27 80 0 inverted 6 50 0.01 0.01 0.01 0.01 0.01 0.01 

frbm200-mf27 0 0 no 6 50 0.01 0.01 0.01 0.01 0.01 0.01 

trbm50-mf27 0 0 no 6 50 0.01 0.01 0.01 0.01 0.01 0.01 

trbm50-asym3v250-mfw27 0 0 no 2 50 0.01 0.01 0.01 0.01 0.01 0.01 

trbm150-mf27 0 0 no 6 50 0.01 0.01 0.01 0.01 0.01 0.01 

We also implemented a neighbourhood aware model as described in Section 4.4 of [12]. The idea 

consists of re-computing the user coefficients for each prediction being made, while giving more weight 

to ratings most similar to the rating being predicted. We defined two different movie proximity 

measures used when re-computing user coefficients. 

We also used the same logic while transposing users and movies, such that for each prediction being 

made, movie coefficients are recomputed according to a user proximity measure. 

The proximity measures are described by the following equations: 

¦�(��, ��) = 1
(1 + 0.0045§X�� − X��§* ∑ (J�(��) − J�(��)*�

J�̈VVV���
 

(42) 

¦�(��, ��) = 1(1 + 0.0055§X�� − X��§*����(��, ��) (43) 

¦B(
�, 
�) = 1
∑ (I�(
�) − I�(
�)*�

I�̈VVV���
 

(44) 

���(��, ��) = 100 ���VVVVVV + ∑ (�(
, ��) − �(
, ��)*�� $�%��© �� ��& ��100 + ���,��  (45) 

Where: 

• The functions P1 and P2 represent the weight to be given to the rating of m2 when predicting m1; 
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• t«� − t«�is the time difference between the ratings of m1 and m2; 

• q­�VVV is the average of the squared value of the corresponding movie latent feature over all 

movies; 

• mse(m1, m2) is the average squared difference between the ratings of m1 and m2 rated by a 

same user, the value is shrunk toward the average mean squared error (���VVVVVV ≅ 1.94). 

• n«�,«� is the number of users having rated both m1 and m2; 

• P3 represents the weight to be given to the rating of u2 when predicting u1.; 

• I­�VVV is the average of the squared value of the corresponding movie latent feature over all users. 

The proximity functions P1 and P3 are based on the distance between the latent feature vectors. The 

proximity function P2 is based on the mean squared error between movie ratings. 

The following variants were computed. The same parameters are used as when training the regular 

model, except for mfw31-80-x-m which uses α = 130 instead of α = 90. 

Variant Baseline Proximity function 

mf27-20-u mf27-20 P3 

mf27-20env50-m mf27-20env50 P1 

mfc27-60-10-120-m mfc27-60-10-120 P1 

mfw31-05-m mfw31-05 P1 

mfw31-40env50-m mfw31-40env50 P1 

mfw31-40env50-m2 mfw31-40env50 P2 

mfw31-60-10-120-m mfw31-60-10-120 P1 

mfw31-80-x-m mfw31-80-x P1 

nmf80-120-20-m nmf80-120-20 P1 

pmf40-60-10-m pmf40-60-10 P1 

drbm100-500-mfw31-m drbm100-500-mfw31 P1 

frbm100-mf27-m frbm100-mf27 P1 

trbm150-mf27-m trbm150-mf27 P1 

3.7 Matrix Factorization 2 model 

This section describes a matrix factorization method that is similar and simpler than Matrix Factorization 

1. It is based on the alternating least squares matrix factorization method described in [12], but contains 

a number of extensions. In this model, a rating is approximated by the following equation: 

�T(
, �, X) = � H�(
, �, X)b�(
)6
�=1

+ � E�(
, �, X)^�(�)6
�=1

+ � I�(
)J�(�)�
�

 (46) 

Where: 

• �̂ is the rating estimate; 

• u, m and t are respectively the user, the movie and the date of the rating; 

• c1 is set to 1.0, so that y1 acts as a user bias; 

• c2 is set to the cubic root of the time interval between t and the first rating of user u; 

• c3 is set to the cubic root of the time interval between t and the first rating of movie m; 

• c4 is set to the cubic root of the frequency (number of ratings made by user u on day t); 
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• c5 is set to the cubic root of the number of ratings of movie m; 

• c6 is set to the average rating of m in the training data, regularized toward the global mean with 

a population weight of 40 as explained in the Common Concepts section; 

• y is a vector of length 6 which holds the weight given to constants c1 to c6 for user u; 

• d1 is set to 1.0, so that z1 acts as a movie bias; 

• d2 is set to the cubic root of the time interval between t and the first rating of user u; 

• d3 is set to the cubic root of the time interval between t and the first rating of movie m; 

• d4 is set to the cubic root of the frequency (number of ratings made by user u on day t); 

• d5 is set to the cubic root of the number of ratings of user u; 

• d6 is set to the average rating of u in the training data, regularized toward the global mean with 

a population weight of 40 as explained in the Common Concepts section. 

• z is a vector of length 6 which holds the weight given to constants d1 to d6 for movie m; 

• p is a vector of length n representing the user latent features; 

• q is a vector of length n representing the movie latent features. 

The model is trained using alternating least squares regression for 30 iterations in the following order: 

1. Update user coefficients; 

2. Update movie coefficients. 

Regularization is best explained by using the user coefficient update as an example. When updating the 

user coefficients for a specific user, all the ratings of the user are considered. Let's call X the vector 

composed of the collection of all the user coefficients (y and p). X is found by solving the linear problem 

A
T
AX=A

T
B where A and B are determined from the non-user coefficient frozen at a constant value during 

this step. 

First we compute  ¡ and ¤V , the average of A
T
A and A

T
B over the whole training set. All entries of  ¡ 

except the diagonal entries associated with p and q are forced to zero. The regularized solution for X is 

computed as: 

¢ = ( £  + ! ¡ +  "¯)4�( £¤ + !¤V) (47) 

Where α and λ are regularization constants, and N is the number of training samples included in the 

evaluation of X (the number of ratings by user u for the user coefficient updates). J is an identity matrix 

where the entries corresponding to the values of y are set to zero.
14

 

The same process is repeated for the movies (in which case N is the number of ratings of movie m). 

In some variants, we force all coefficients to be non-negative. In others, some of the c or d parameters 

are not used. This model is sometimes evaluated on the residual error of another model, which is useful 

to introduce a time correction to models that are not date aware. 
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 We are simply reporting here the regularization method used in this model. With hindsight, we find 

regularization used in other models more appropriate. 
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The regularization parameters were selected manually to α = 50 and λ = 0.05. The following variants are 

included in the solution: 

Variant baseline Use c1d1 Use c2d2c3d3 Use c4d4 Use c5d5c6d6 n non-negative 

nnmf40 n/a no no no no 40 yes 

nnmf80 n/a no no no no 80 yes 

ssvd-04-00 n/a yes no no no 0 no 

ssvd-04-10 n/a yes no no no 10 no 

ssvd-04-40 n/a yes no no no 40 no 

ssvd-07-30-2
15

 n/a yes yes no no 30 no 

ssvd-31-00 n/a yes yes no yes 0 no 

ssvd-31-10 n/a yes yes no yes 10 no 

ssvd-31-20 n/a yes yes no yes 20 no 

ssvd-31-60 n/a yes yes no yes 60 no 

ssvd-39-00 n/a yes yes yes no 0 no 

ssvd-39-05 n/a yes yes yes no 5 no 

ssvd-39-10 n/a yes yes yes no 10 no 

ssvd-63-00 n/a yes yes yes yes 0 no 

ssvd-63-30 n/a yes yes yes yes 30 no 

rbm100-ssvd-07-00 rbm100 yes yes no no 0 no 

crbm100-ssvd-07-00 crbm100 yes yes no no 0 no 

crbm100-ssvd-07-20 crbm100 yes yes no no 20 no 

crbm100x-ssvd-03-00 crbm100x no yes no no 0 no 

crbm200-ssvd-07-00 crbm200 yes yes no no 0 no 

trbm50-ssvd-39-00 trbm50 yes yes yes no 0 no 

trbm100-ssvd-31-00 trbm100 yes yes no yes 0 no 

trbm150-ssvd-07-00 trbm150 yes yes no no 0 no 

trbm150-ssvd-39-00 trbm150 yes yes yes no 0 no 

nnmf40-ssvd-07-00 nnmf40 yes yes no no 0 no 

nnmf80-ssvd-39-00 nnmf80 yes yes yes no 0 no 

We also implemented a neighbourhood aware model as described in Section 4.4 of [12]. Like in Section 

3.6 Matrix Factorization 1, the idea consists of re-computing the user coefficients for each prediction 

being made, while giving more weight to ratings most similar to the rating being predicted. We defined 

one movie proximity measure used when re-computing user coefficients. We also used the same logic 

while transposing users and movies, such that for each prediction being made movie coefficients are 

recomputed according to a user proximity measure. 

¦�(��, ��) = 1
0.001 + ∑ (J�(��) − J�(��)*�

J�̈VVV��
 

(48) 

¦�(
�, 
�) = 1
0.001 + ∑ (I�(
�) − I�(
�)*�

I�̈VVV��
 

(49) 

Where: 
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 This variant uses α = 16 and λ = 0.02. 
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• The functions P1 represents the weight to be given to the rating of m2 when predicting m1; 

• q­�VVV is the average of the squared value of the corresponding movie latent feature over all 

movies; 

• P2 represents the weight to be given to the rating of u2 when predicting u1.; 

• I­�VVV is the average of the squared value of the corresponding movie latent feature over all users. 

The proximity functions P1 and P2 are based on the distance between the latent feature vectors. 

The following variants were computed. The same parameters are used as when training the regular 

model. 

Variant Baseline Proximity function 

ssvd-04-10-m ssvd-04-10 P1 

ssvd-04-40-m ssvd-04-40 P1 

ssvd-31-10-m ssvd-31-10 P1 

ssvd-31-20-m ssvd-31-20 P1 

ssvd-31-20-u ssvd-31-20 P2 

3.8 Usermovie model 

This is a very early and simple model where the rating is modeled as the sum of a user and a movie bias 

(bu  and bm). The values are initialized to zero and updated using the following equations for two 

iterations. 

�̂(
, �) =  �� +  ��  
 

(50) 

�� =  ∑ (�(
, �) −  ��)�∈f(�) +  !� ��VVVV(|"(�)| +  !�)  

 

(51) 

�� =  ∑ (�(
, �) −  ��)�∈f(�) +  !���VVV(|"(
)| + !�)  

 

(52) 

Where: 

• �̂(
, �) is the estimated rating for user u  and movie m; 

• �� is the movie bias for movie m; 

• �� is the user bias for user u; 

• N(m) is the subset of users that have rated movie m; 

• αm=20 is the movie shrinkage coefficient; 

• N(u) is the subset of movies rated by user u; 

• αu=8.3 is the user shrinkage coefficient;  

• ��VVVV is the average of (�(
, �) −  ��) over the complete training set; 

• �
VVV is the average of (�(
, �) − ��) over the complete training set. 

The following table shows the variant selected in the solution: 
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Variant 

usermovie 

3.9 SVDNN model 

This model is an early and plain version of a Matrix Factorization model (as described in [1]) where NN 

represents the number of latent features used. Training is done by alternating least squares regression. 

Regularization is similar to Section 3.7 Matrix Factorization 2. Let's call X the vector composed of the 

user coefficients. X is found by solving the linear problem A
T
AX=A

T
B where A and B are determined from 

the movie coefficients frozen at a constant value during this step. 

First we compute  ¡, the average of A
T
A over the whole training set. All non-diagonal entries of  ¡ are 

forced to zero. The regularized solution for X  is computed as: 

¢ = ( £  + ! ¡ +  "°)4� < £¤< (53) 

Where α and λ are regularization constants, and N is the number of training samples included in the 

evaluation of X (the number of ratings by user u for the user coefficient updates). I is the identity matrix. 

The same process is repeated for the movies (in which case N is the number of ratings of movie m). 

The variants that were selected in the solution were trained on the residual errors of the usermovie 

model. Note that the svdNNx variant also runs an additional pass of the usermovie model on the 

residuals of the svdNN model. 

The following table shows the predictors selected in the solution. 

Variant 

svd02x 

svd05x 

3.10 BRISMF 

We implemented the BRISMF model as described in [11]. We reused all given parameters including 

number of epochs and regularization. The following table indicates the variants that were used in the 

solution.  

Variant Comment 

brismf40 Based on BRISMF#1UM in [11] 

brismf250 Based on BRISMF#250UM in [11] 

brismf760 Based on BRISMF#1000UM in [11], but with rank limited to K=760. 

brismf760n Based on SemPosMF#800 in [11], but with rank limited to K=760. 

3.11 Restricted Boltzmann Machines 

3.11.1 Basic RBM models 

We implemented all the RBM types described in [5]. The following variants were included in the 

solution: 
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Variant Description 

rbm100 Ordinary RBM from Section 2 of [5], with 100 softmax hidden units. The model is trained using mini-

batches of 1000 users, a learning rate of 2x10
-5

, a weight decay of 0.02 and a momentum of 0.9. 

crbm100 Conditional RBM from Section 4 of [5], with 100 softmax hidden units. The model is trained using 

mini-batches of 1000 users, a learning rate of 2x10
-5

, a weight decay of 0.02 and a momentum of 0.9. 

crbm100x Conditional RBM from Section 4 of [5], with 100 softmax hidden units. The model is trained using 

mini-batches of 1000 users, a learning rate of 2x10
-5

, a weight decay of 0.02 and a momentum of 0.9. 

The learning rate is progressively reduced by a factor of 8 over the last 6 iterations. 

crbm200 Conditional RBM from Section 4 of [5], with 200 softmax hidden units. The model is trained using 

mini-batches of 1000 users, a learning rate of 2x10
-5

, a weight decay of 0.02 and a momentum of 0.9. 

drbm100-500 Conditional Factored RBM from Section 5 of [5], with a factorization of rank 100 and 500 softmax 

hidden unit. The initial learning rate is set to 0.0005 for the hidden unit biases and the rank reducing 

matrices, 0.005 for all others. The learning rate is reduced exponentially by a factor of 1000 over 100 

iterations. Update occurs by batches of 1 user, with no weight decay or momentum. 

drbm160-640 Conditional Factored RBM from Section 5 of [5], with a factorization of rank 160 and 640 softmax 

hidden unit. The same training parameters were used as drbm100-500. 

urbm20-1000 Conditional Factored RBM from Section 5 of [5], with a factorization of rank 20 and 1000 softmax 

hidden unit. In this variant, the role of the users and the movies is reversed: each movie is modeled 

by a number of units, and weights connect the hidden units to the users. The initial learning rate is 

set to 4.51005x10
-7

 for the hidden unit biases and the rank reducing matrices, 6.21418x10
-5

 for all 

others. The learning rate is reduced by a factor of 0.0315713 per iteration. Update occurs by batches 

of 1 user, with a weight decay of 0.0946444 on all parameters except the hidden unit biases, and no 

momentum. The meta-parameters were selected using the Nelder-Mead Simplex Method. During 

the selection of the meta-parameters, the maximum number of iterations is limited to 100. 

integ0-0-0TZ-grbm200 RBM with 200 Gaussian visible units as described in [7], running on residuals of integ0-0-0TZ. The 

model is trained using mini-batches of 1000 users, an initial learning rate of 8.18119x10
-5

 which 

decreased by a factor 0.000390623 at each iteration. A weight decay of 0.00012058 + 0.0569244/N is 

used where N is the support of the respective parameter. Momentum is set to zero. The meta-

parameters were selected using the Nelder-Mead Simplex Method. During the selection of the meta-

parameters, the maximum number of iterations is limited to 100. 

mfw31-10-grbm200 RBM with 200 Gaussian visible units as described in [7], running on residuals of mfw31-10. The same 

training parameters were used as integ0-0-0TZ-grbm200. 

 

3.11.2 Time RBM models 

We developed a new RBM variant that we called Time RBM which takes into account the dates of the 

ratings. The Time RBM is based on the Conditional RBM, except that the weights are the product of a 

movie factor by a time factor. 

±�d\ =  �d\ ¤dz  (54) 

The  �d\  are akin to typical RBM weights: they capture the relation between item i and hidden unit j for 

rating k. The  ¤dz capture the relationship between the hidden unit j and the number of ratings of this 

user on that day (frequency f). The update rule becomes: 

Δ �d\ = ²(³¤dzW�\ℎd´&�%� − ³¤dzW�\ℎd´�µ&��* (55) 

Δ¤dz = ² M³¶�  �d\ W�\�\ · ℎd´&�%� − ³¶�  �d\ W�\�\ · ℎd´�µ&��N (56) 
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The biases and the conditional part do not depend on the date and are computed as in [5]. The weight 

decay for the ¤dz is made toward 1.0 instead of the usual 0.0. The model is trained using mini-batches of 

1000 users, a learning rate of 2x10-5, a weight decay of 0.02 and a momentum of 0.9. 

Instead of using the rating frequency, we also tried using the raw date in the same way. The following 

variants are included in the solution: 

Variant Description 

frbm100 Time RBM using frequency, with 100 softmax hidden units. 

frbm200 Time RBM using frequency, with 200 softmax hidden units. 

frbm200x Time RBM using frequency, with 200 softmax hidden units. Instead of using one iteration of the 

mean field equation to make predictions, we use the expression defined in equation (7) of [5]. 

frbm300 Time RBM using frequency, with 200 softmax hidden units. 

frbm300x Time RBM using frequency, with 200 softmax hidden units. Instead of using one iteration of the 

mean field equation to make predictions, we use the expression defined in equation (7) of [5]. 

trbm50 Time RBM using date, with 50 softmax hidden units. 

trbm100 Time RBM using date, with 100 softmax hidden units. 

trbm150 Time RBM using date, with 150 softmax hidden units. 

3.11.3 Decomposed RBM models 

To generate a prediction, the classic RBM actually computes the probability that a given rating is a 1, 2, 

3, 4 or 5. Typically, the prediction is selected as: 

�̂ = I(� = 1) + 2I(� = 2) + 3I(� = 3) + 4I(� = 4) + 5I(� = 5) (57) 

Where: 

• �̂ is the prediction; 

• p(r=x) is the probability that the rating takes the value x. 

However, under certain circumstances, it may be better to let the blending algorithm select optimized 

weights rather than the expected 1, 2, 3, 4 and 5 values. To that end, we also produce the following 

expressions and generate them as prediction sets. Their individual accuracy is very poor, but they blend 

well with each other and with the rest. ¸� = I(� = 2) + I(� = 3) + I(� = 4) + I(� = 5) (58) ¸� = I(� = 3) + I(� = 4) + I(� = 5) (59) ¸B = I(� = 4) + I(� = 5) (60) ¸C = I(� = 5) (61) 

We included the following variants in the blend: 

Variant Baseline Expression 

drbm160-640g1 drbm160-640 g1 

drbm160-640g2 drbm160-640 g2 

drbm160-640g3 drbm160-640 g3 

drbm160-640g4 drbm160-640 g4 

frbm300g1 frbm300 g1 

frbm300g2 frbm300 g2 

frbm300g3 frbm300 g3 

frbm300g4 frbm300 g4 
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3.11.4 Split RBM model 

We described in the previous section (3.11.3 Decomposed RBM) that we can produce separate 

prediction sets from a RBM, each set representing the probability of the rating being above a certain 

threshold 1, 2, 3 or 4, using expressions g1, g2, g3 and g4. We also experimented with a variant that 

tried to directly estimate one of g1, g2, g3 or g4. 

We replaced the visible units with a single softmax unit per rating. The visible unit is interpreted as the 

probability that the correct rating is greater than g, where g one is 1, 2, 3 or 4. The rest of the model 

works as the Time RBM model using frequency. 

The initial learning rate is set to γ and reduced by a factor Δγ per iteration. Update occurs by batches of 

1 user, with no weight decay or momentum. The meta-parameter were selected using the Nelder-Mead 

Simplex Method. During the selection of the meta-parameters, the maximum number of iterations is 

limited to 100. 

This provided results much inferior to the Decomposed RBMs, and they are described here only because 

some variants were included in the solution: 

 Variant γ Δγ  Comment 

frbm2-100g1 0.00106641  0.0570313 Time RBM with frequency, 100 hidden units and g=1. 

frbm2-100g2 0.00246875  0.0351563 Time RBM with frequency, 100 hidden units and g=2. 

frbm2-100g3 0.00140625  0.00546875 Time RBM with frequency, 100 hidden units and g=3. 

frbm2-100g4 0.0021875  0.0265625 Time RBM with frequency, 100 hidden units and g=4. 

3.12 Asymmetric models 

Asymmetric models are from a family of models that do not directly model user latent features, but 

instead infer the user tastes by the movie that he rated. This was first described in [6] as NSVD1. The 

name Asymmetric was used in [7] which also introduced several variations. We describe here our own 

variations. 

One difference in our implementation compared to Paterek's is that we don't use a bias term. Instead, 

we always run the model on the residual of another model: time-dependent biases, a low rank matrix 

factorization or a Restricted Boltzmann Machine. 

3.12.1 Asymmetric 1 model 

This variant differs from NSVD1 in [6] by an extra factor in the expression that accounts for the value of 

the rating. 

�̂(
, �) = 1`|"(
)| � J�(�) � b�(c)d ∈f(�)
�

�F� H(c, �d) (62) 

Where: 

• �̂ is the predicted rating for user u and movie m; 

• N(u) is the set of ratings provided by user u, whether or not the rating is known; 

• q is a vector of length n representing the movie latent features; 
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• y(j) is a vector of length n representing the implicit feedback from knowing that movie j was 

rated by u; 

• rj is the rating given to movie j; if not known, then rj takes the value zero; 

• c is a correction factor applied according to the rating of movie j, it is a table of dimension 

6xnumber of movies. 

This model was trained using gradient descent with mini-batch of 1000 users, starting with a learning 

rate of 0.001 which decreased by a factor of 0.25 at each iteration until the rate reached 5x10
-6

. It used a 

weight decay of 0.01 and a momentum of 0.9. 

This model was not very successful, but it is documented here as the following variant was included in 

the solution: 

Variant Baseline n 

ssvd-31-00-asym1-20 ssvd-31-00 20 

3.12.2 Asymmetric 3 model 

This variant is much closer to NSVD1 in [6]. The main difference is the introduction of a user-specific 

scale s(u). 

�̂(
, �) = �(
)`|"(
)| � J�(�) � b�(c)d ∈f(�)
�

�F�  (63) 

Where: 

• �̂ is the predicted rating for user u and movie m; 

• N(u) is the set of ratings provided by user u, whether or not the rating is known; 

• q is a vector of length n representing the movie latent features; 

• y(j) is a vector of length n representing the implicit feedback from knowing that movie j was 

rated by u; 

• s(u) is a user-specific scale, which is either the constant 1, or the value of the user ratings 

standard deviation regularized with a population weight of 40 as described in the Common 

Concepts section. 

The model was trained using gradient descent with mini-batches of 1000 users and a learning rate which 

decreased by a factor of 0.21 at each iteration, until the rate reached 10
-3

 of the initial value. It used a 

weight decay of 0.01 and a momentum of 0.9. 

In one variant, we re-compute s(u) after training as follows: 

• For each user, we compute, through linear regression, the value of s(u) that would minimize the 

prediction error on the training set; 

• We then compute a weighted average between the old value and the new value of s(u), where 

the old value gets a weight of 40, and the new value a weight equal to the number of known 

ratings of user u. 



44 

The following variants were included in the final blend: 

Variant Baseline n s(u) initial learning rate 

mfw31-05-asym3v250 mfw31 250 standard deviation 0.0004 

ssvd-31-00-asym3-20 ssvd-31-00 20 1.0 0.0005 

ssvd-31-00-asym3-100 ssvd-31-00 100 1.0 0.0005 

ssvd-31-00-asym3-200 ssvd-31-00 200 1.0 0.0005 

ssvd-31-00-asym3v-300 ssvd-31-00 300 standard deviation 0.0004 

ssvd-31-00-asym3w-200 ssvd-31-00 200 post-processed 0.0004 

trbm50-asym3v250 trbm50 250 standard deviation 0.0004 

3.12.3 Asymmetric 4 model 

This variant was inspired from the sigmoid variants found in [7]. 

�̂(
, �) = �(
) � J�(�)+ ��� + � b�(c)d ∈f(�) ��
�F�  (64) 

+(-) = 11 + �4,  (65) 

Where: 

• �̂ is the predicted rating for user u and movie m; 

• N(u) is the set of ratings provided by user u, whether or not the rating is known; 

• q is a vector of length n representing the movie latent features; 

• y(j) is a vector of length n representing the implicit feedback from knowing that movie j was 

rated by u; 

• b is a vector of length n representing a bias in the sigmoid function σ; 

• s(u) is a user-specific scale, which is either the constant 1, or the value of the user ratings 

standard deviation regularized with a population weight of 40 as described in the Common 

Concepts section. 

The model was trained using gradient descent with mini-batches of 1000 users and an initial learning 

rate of 0.0005 which decreased by a factor of 0.21 at each iteration, until the rate reached 10
-3

 of the 

initial value. It used a weight decay of 0.01 and a momentum of 0.9. 

The following variants were included in the solution: 

Variant Baseline n s(u) 

ssvd-31-00-asym4-200 ssvd-31-00 200 1.0 

ssvd-31-00-asym4v-200 ssvd-31-00 200 standard deviation 

3.12.4 Milestone model 

We named our most successful variant milestone although the name is an abuse of language. A 

prediction is generated using the following model: 
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�̂(
, �) = �(
)`"(
) � J(�, �) � {k(
, 7d*b�(c, �) + (1 − k(
, 7d*)b�(c, �)|d $�%�& �' �
�
�  (66) 

 

Where: 

• �̂ is the predicted rating for user u and movie m; 

• fj is the frequency, i.e. the number of ratings made by user u the day he rated movie j; 

• s(u) is a user-specific scale, which is the value of the user ratings standard deviation regularized 

with a population weight of 40 as described in the Common Concepts section; 

• N(u) is the number of movies rated by u, whether or not the score is known; 

• q is a vector of length n representing the movie latent features; 

• y1 and y2 are also vectors of length n representing the implicit feedback of having user u rating 

the associated movie; 

• w is the date dependent weight applied to y1 and y2 to produce the user factors. 

While Paterek in [6] created user latent factors by summing a vector for each movie rated by the user, 

instead we add a linear combination of two vectors y1 and y2, weighted by w. Paterek's idea was that the 

user tastes could be inferred by the identity of the movies rated by the user, without looking at the 

individual score. We extended this approach by assuming that the contribution of each movie rated by 

the user was a function of the date at which the rating was provided, as captured by w. The values of q, 

y1 and y2 are learned through gradient descent. The values of w are chosen as one among the following 

alternatives: 
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#0 k = l0 �7 7 = 11 �7 7 > 1< 
#3 k varies linearly from 0 to 1 over the range of frequencies observed for u. 

#4 

k =
.//
0
//1

0 �7 7 = 11 4¹ �7 7 = 21 2¹ �7 7 = 33 4¹ �7 7 = 41 �7 7 > 4
< 

#5 k = �7 − 19 �7 7 < 101 �7 7 ≥ 10< 
#6 k = 11 + 110 (7 − 1) 

#7 k = 11 + 120 (7 − 1) 

#9 k = 11 + 1400 (7 − 1)� 

The model was trained using gradient descent with mini-batches of 1000 users, with an initial learning 

rate of 0.0004 which decreased by a factor of 0.21 at each iteration, until the rate reached 10
-3

 of the 

initial value. It used a weight decay of 0.01 and a momentum of 0.9. 

The following variants are included in the solution: 

Variant Baseline n w 

mfw31-00milestone3-100 mfw31-00 100 #3 

mfw31-00milestone4-100 mfw31-00 100 #4 

mfw31-00milestone5-100 mfw31-00 100 #5 

mfw31-00milestone6-100 mfw31-00 100 #6 

mfw31-00milestone7-100 mfw31-00 100 #7 

mfw31-00milestone9-100 mfw31-00 100 #9 

mfw31-10-milestone0-150 mfw31-10 150 #0 

mfw31-10-milestone5-150 mfw31-10 150 #5 

trbm50-milestone0-150 trbm50 150 #0 

trbm50-milestone9-150 trbm50 150 #9 

In our opinion, this variant of asymmetrical model supersedes the other variants presented in this 

document. The other forms were described essentially because some old results were included in the 

solution. The astute reader will also notice the similitude between the milestone model and the implicit 

feedback component in the BK4 model. 

3.13 Global Effects 

We implemented Global Effects (GE) and Global Time Effects (GTE) as described in [4]. The various 

parameters used were also the ones noted in [4]. The following table shows the base predictors that 

were included in the solution. Note that all of these use the first 14 effects, in the order described in [4].  
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Variant Comment 

globalEffect14 Global Effects. 

gte14b Global Time Effects. The basic user and movie effects were run only once (as opposed 

to twice, which is suggested in [4]). 

3.14 Basic statistics 

The basic statistics do not attempt to model the prediction, but simply reflect measures of the user and 

movie statistical properties. These properties have a weak correlation with the ratings and can be useful 

inputs for blending. 

The main categories of statistics that were computed are support (count), mean, standard deviation and 

skew. The probabilities of the ratings 2, 3, 4 and 5 were also computed. These 8 statistics were 

computed both for each user and for each movie for a total of 16 predictors. Note that none of these 

are regularized in any way; they are just straight statistics.  

The following table indicates the predictors that were used in the solution: 

Variant Comment 

mmean Movie mean 

mp5 Probability of the movie being rated 5 

mskew Movie skew 

ucount User support (number of ratings) 

uskew User skew 

up2 Probability of the user rating a 2 

up3 Probability of the user rating a 3 

up4 Probability of the user rating a 4 

up5 Probability of the user rating a 5 

3.15 Non-linear post-processing model 

User rating distributions are most often asymmetrical. This is easy to verify by computing the skew for 

the rating distribution of each user. The skew varies from very positive for users with many 1's and a few 

higher ratings, to the very negative for users with many 5's and a few lower ratings. On the other hand, 

most models have an essentially symmetrical formulation, which makes the predictions inaccurate in 

certain rating ranges. We propose to post-process a model using a third degree polynomial to correct for 

this effect. 

�̂(
, �) = -(
, �) + �3(
) + ��(
)(-(
, �) − ��) + ��(
)(-(
, �) − ��)� + �B(
) (-(
, �) − ��)B+ �3(�) + ��(�)(-(
, �) − ��) + ��(�)(-(
, �) − ��)� + �B(�) (-(
, �) − ��)B 
(67) 

Where: 

• �̂(
, �) is the generated prediction for user u and movie m; 

• x is the model prediction being post-processed; 

• a0, a1, a2, a3, b0, b1, b2 and b3 are the coefficients of the polynomial transformation learned 

during training; 

• �� is the average ratings of user u; 
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• �� is the average ratings of movie m; 

The transformation parameters a0, a1, a2, a3, b0, b1, b2 and b3 are learned by alternating least squares 

regression, starting with the movies, for two iterations. 

Regularization is computed by adding the expression α + λN to the diagonal elements of the regression 

matrix. α and λ are constants selected through validation on the probe set automatically, using the 

Nelder-Mead Simplex Method. N is the number of training samples in this particular regression matrix 

(number of movies rated by user u for the a factors, numbers of users having rated movie m for the b 

factors). The values of α and λ are selected independently for each a and b, so a total of 16 meta-

parameters are trained using the Nelder-Mead algorithm. 

The following variants are present in the solution: 

Variant Baseline 

bk1-a1000-nlpp1 bk1-a1000 

bk3-d200z-nlpp1 bk3-d200z 

bk4-f200z4-nlpp1 bk4-f200z4 

bk3-200gx-nlpp1B105
16

 bk3-200gx 

bk5-b200B089-nlpp1B108
16

 bk5-b200B089 

3.16 Clustering model 

Another post-processing method we developed was based on user and movie clusters. We randomly 

divided the users in 256 bins. We also randomly divided the movies in 256 bins, creating 256x256=65536 

clusters. We then minimize the intra-cluster rating variance by moving users and movies between bins, 

while keeping the bin sizes roughly equal. This is repeated greedily, until the intra-cluster variance no 

longer improves significantly. Note that the intra-cluster variance is computed on the residual error from 

the ssvd-04-00 model described previously, which basically centers the data. 

The idea is that the average value of the cluster is a predictor for all user/movie pairs in the cluster. 

However, some of the 65536 clusters have fewer known ratings, making the cluster average value 

imprecise. To improve the prediction accuracy, we redo the same clustering algorithm using only 128 

movie and user bins, thus obtaining larger clusters. Similarly, we also computed 64, 32, 16, 8, 4, 2 and 1 

bin clusters. The final prediction for a movie/user pair is a weighted average of the mean rating in each 

cluster the movie/user pair belongs to: 

�̂(
, �) = � k���
w

�F3  
(68) 

kw = "w"w + ! 
(69) 

k� = �1 − � kd
w

dF�º� � "�"� + ! , 7K� 0 < � < 8 
(70) 

                                                           
16

 This set used direct optimization of the blended score. 
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k3 = �1 − � kd
w

dF� � 
(71) 

Where: 

• �̂(
, �) is the prediction for user u  and movie m; 

• �, is the average of the cluster with 2
x
 bins which contains the pair (u,m); 

• w  are the weights given to each cluster the pair (u, m)  belongs to; 

• Nx is the number of ratings in the cluster using 2
x
 bins; 

• α is a regularization parameter set to 20000. 

The following variants are present in the solution: 

Variant Baseline 

ssvd-31-20-cluster ssvd-31-20 

This is the only attempt at clustering that was kept in the solution. In general, we found that clustering 

could not improve the more accurate models (like BK4), and had virtually no impact on the accuracy of 

the final blend. 

3.17 Classification models 

Typically, models used for collaborative filtering attempt to fit a real-valued function to minimize the 

prediction error. Most models do not exploit the knowledge that ratings take discrete values between 1 

and 5 in the Netflix dataset
17

.  

In order to use this fact, we recast the problem into four distinct classification problems: 

• What is the probability that the rating is above 1? 

• What is the probability that the rating is above 2? 

• What is the probability that the rating is above 3? 

• What is the probability that the rating is above 4? 

If we call p1, p2, p3 and p4 the respective probability, then we can estimate the probability that a rating r 

takes a specific value between 1 and 5 as: 

• p(r = 1) = 1 - p1; 

• p(r = 2) = p1 - p2; 

• p(r = 3) = p2 - p3; 

• p(r = 4) = p3 - p4; 

• p(r = 5) = p4; 

Also, a combined prediction can be generated as: 

                                                           
17

 Restricted Boltzmann Machines are an exception to this, as they estimate distinct probabilities for each possible 

rating outcome. 
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• r = (1 - p1) + 2(p1 - p2) + 3(p2 - p3) + 4(p3 - p4) + 5 p4 = 1 + p1 + p2 + p3 + p4. 

Recasting the collaborative filtering into a classification problem offers a number of advantages: 

• It allows the use of a huge body of knowledge and methods related to classification problems. 

Although we only experimented with logistic transformation, there are a lot of interesting 

opportunities in exploring other alternatives. 

• It allows the use of specialized models to address hard to predict ratings, like the 1's in the 

dataset. 

3.17.1 Logistic transformation models 

A simple classification algorithm that can be used is the logistic transformation. In the logistic model, the 

probability of the rating being above the value g is estimated as: 

I© = I(� > ¸) = +(^(
, �, X)) (72) 

+(-) = 11 + �4,  (73) 

Where: 

• pg is the probability that the rating is above g = 1, 2, 3 or 4. 

• σ is the logistic function (sigmoid); 

• z is the logit (see [15]). 

In many applications, the logit z is chosen as a linear regression of a number of explanatory variables. In 

our application, we use some of our pre-existing models as logit. So z in equation (72) can be the 

expression of z from equation (19), equation (21) or any other suitable model. Interestingly, when recast 

as logistic transformation, these same models capture different trends in the data, as evidenced by the 

contribution to the blended accuracy. 

Training is done in the same way as the linear version of the model. The output of the logistic function is 

the probability of this rating being above the value g. The error term is the squared difference between 

the real outcome (0 if false, 1 if true) and the estimated probability. This allows transforming a linear 

model into a logistic model with minimum code changes. 

When recast as a logistic transformation, regularization must be re-adjusted. In order to speed up the 

process, we simply multiplied all learning rate parameters by a factor α and all weight decays by a factor 

β. The values of α and β were selected using a combination of manual selection and the Nelder-Mead 

Simplex Method. 

The following variants are included in the solution: 
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Variant logit g α β 

bk3-200g1 bk3-d200 1 18.4308 0.0295088 

bk3-200g2 bk3-d200 2 9.68684 0.057215 

bk3-200g3 bk3-d200 3 7.10457 0.0816571 

bk3-200g4 bk3-d200 4 10.4069 0.0830019 

bk3-100ga1 bk3-c100 1 18.4308 0.0295088 

bk3-100ga2 bk3-c100 2 9.68684 0.057215 

bk3-100ga3 bk3-c100 3 7.10457 0.0816571 

bk3-100ga4 bk3-c100 4 10.4069 0.0830019 

bk3-100g1 bk3-c100 1 3.70845 0.00214961 

bk3-100g2 bk3-c100 2 5.25 0.01875 

bk3-100g3 bk3-c100 3 7.84473 0.0932007 

bk3-100g4 bk3-c100 4 5.14063 0.028125 

bk4-c200g1 bk4-c200 1 18.43080 0.0295088 

bk4-c200g2 bk4-c200 2 9.68684 0.0572150 

bk4-c200g3 bk4-c200 3 7.10457 0.0816571 

bk4-c200g4 bk4-c200 4 10.40690 0.0830019 

bk4-f200g1 bk4-f200 1 18.43080 0.0295088 

bk4-f200g2 bk4-f200 2 9.68684 0.0572150 

bk4-f200g3 bk4-f200 3 7.10457 0.0816571 

bk4-f200g4 bk4-f200 4 10.40690 0.0830019 

3.17.2 Blending classification models 

Let's assume we have classification models fg,i, i=1, 2, …, N and g=1, 2, 3 or 4. We create a combined 

classification model Fg using a linear combination of the logit. 

»© = + M� �©,�+4�(7©,�*f
�F� N (74) 

The values of bg,i are selected to minimize the RMSE of the classification error over the probe set. The 

process is entirely automated using the Nelder-Mead Simplex Method. 

One interesting point is that we can easily include Decomposed RBMs or Split RBMs into the mix. 

The following variants are included in the solution: 

Variant g Components 

blend2-gb1 1 bk3-200g1  bk3-100ga1 bk3-100g1 frbm2-100g1 bk4-c200g1  bk4-f200g1 frbm300g1 drbm160-640g1 

blend2-gb2 2 bk3-200g2 bk3-100ga2 bk3-100g2 frbm2-100g2 bk4-c200g2 bk4-f200g2 frbm300g2 drbm160-640g2 

blend2-gb3 3 bk3-200g3  bk3-100ga3 bk3-100g3 frbm2-100g3 bk4-c200g3  bk4-f200g3 frbm300g3 drbm160-640g3 

blend2-gb4 4 bk3-200g4  bk3-100ga4 bk3-100g4 frbm2-100g4 bk4-c200g4  bk4-f200g4 frbm300g4 drbm160-640g4 

blend2-ga1 1 bk3-200g1  bk3-100ga1 bk3-100g1 frbm2-100g1     

blend2-ga2 2 bk3-200g2 bk3-100ga2 bk3-100g2 frbm2-100g2     

blend2-ga3 3 bk3-200g3  bk3-100ga3 bk3-100g3 frbm2-100g3     

blend2-ga4 4 bk3-200g4  bk3-100ga4 bk3-100g4 frbm2-100g4     

3.17.3 Making predictions using classification 

We already discussed that a prediction can be obtained by summing the layers: 
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�̂3 = 1 + � 7©
C

©F�  (75) 

Instead, we used a different expression that yields slightly more accurate results. The expression 

evaluates a linear regression of the different layers. 

�̂ = �3 + � �©7©
C

©F�  (76)  

The values of a are computed using a linear regression to minimize the error over the training set. No 

regularization is used. 

The following variants are included in the solution: 

Variant Components 

bk3-200g bk3-200g1 bk3-200g2 bk3-200g3 bk3-200g4 

bk3-100ga bk3-100ga1 bk3-100ga2 bk3-100ga3 bk3-100ga4 

bk4-c200g bk4-c200g1 bk4-c200g2 bk4-c200g3 bk4-c200g4 

3.18 Per-user linear regression 

We developed a method where we blend a small number of prediction sets using a linear regression 

model specific to each user. Given that there are 480189 users in the Netflix dataset, we compute 

480189 such linear regressions. 

Initially, we compute a simple linear regression of the basic predictions over the probe set. This is a 

single linear regression (R0) computed over the 1408395 samples from the probe set. We then train a 

linear model specific to each user using ridge regression, which minimizes the expression: 

���k � LM�� − �(�) − � k�� I�(�)N� + �  �k��� Q� $�%�& �' �  (77) 

Where: 

• u is the user and m the movie being predicted; 

• l(m) is the prediction of R0 (the global linear regression) for movie m; 

• pi is the prediction set i; 

• wi is the weight given predictor i; 

•  � is the ridge regression coefficient, computed as a function of the number of ratings Nu made 

by u. 

 � = !�"� + R�  (78) 

The parameters !�and R� are the same for all users and selected by validation on the probe set, using 

the Nelder-Mead Simplex Method. The final prediction is: 
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�̂(�) = �(�) + � k�� I�(�) (79) 

The following variants are included in the solution: 

Variant Components 

blend2b frbm300 integ80-80-0TZM    

blend3 bk1-b1000x  bk3-d200z frbm100-mf27   

blend5 bk1-b1000x bk3-d200z frbm100-mf27 bk1-a200 brismf760n 

 

Interestingly, this method can also be used to combine together different layers of a classification 

model. The following are included in the blend: 

Variant Components 

bk3-100gx bk3-100g1 bk3-100g2 bk3-100g3 bk3-100g4 

bk3-200gx bk3-200g1 bk3-200g2 bk3-200g3 bk3-200g4 

bk4-c200gx bk4-c200g1 bk4-c200g2 bk4-c200g3 bk4-c200g4 

bk4-f200gx bk4-f200g1 bk4-f200g2 bk4-f200g3 bk4-f200g4 

drbm160-640gx drbm160-640g1 drbm160-640g2 drbm160-640g3 drbm160-640g4 

frbm2-100gx frbm2-100g1 frbm2-100g2 frbm2-100g3 frbm2-100g4 

frbm300gx frbm300g1 frbm300g2 frbm300g3 frbm300g4 

 

3.19 KNN1 

This section describes a series of movie Nearest-Neighbour models in which various proximity measures 

are used both to select neighbours and to compute the weight for each neighbour.  

3.19.1 Proximity measures 

When predicting the rating for a specific movie, the first step of a neighbourhood model consists of 

selecting a set of similar movies. We propose five methods to select neighbours. In each case, we 

compute a proximity z between the movie m being rated and a neighbour i rated by user u. 

3.19.1.1 Common Support 

The first method evaluates z as: 

^(�, �) = ���,�¼���� # � 11 + ½∆X# ¾ ��,���,� + !¿ (80) 

Where: 

• z is the proximity; 

• nm,i is the number of users having rated both m and i; 

• nm is the number of users having rated m; 

• ni is the number of users having rated i; 

• U is the total number of users (480189); 

• ∆X is the number of days between the rating of m and i; 

• ! and ½ are parameters learned through validation on the probe set. 
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The first factor of the equation measures the preference of m and i to appear together. If m and i are 

independent, the value is one. Like the Set Correlation suggested in [4] Section 12, this measure is 

independent from the ratings and depends only on who rated what. However, the expression above 

gives better results than [4] when nm and ni are widely different. Note that this is usually evaluated over 

all movies rated by the user, including those for which we don't know the rating. In some instances, only 

the known ratings were used. 

The second factor decreases the proximity as the time interval between the ratings increase. Such 

decrease in proximity for movies rated at different dates has been proposed by many authors, usually in 

the form �4À∆%. Our experiments show that equation (80) gives more accurate results. It follows the 

intuition that while two movies rated on the same day are much better indicators than movies rated one 

year apart for example, movies rated respectively five and six years apart should have more similar 

weights. 

The third factor penalizes movie pairs with sparse data. 

3.19.1.2 Pearson’s correlation 

The second method uses a proximity based on Pearson's correlation coefficient: 

^(�, �) = ¾ Á�1 − Á�¿ � 11 + ½∆X# (81) 

Á = r�,� ¾ ��,���,� + !¿ (82) 

Where: 

• z is the proximity; 

• r�,� is Pearson's correlation coefficient between movies m and i ratings, measured over users 

having rated both, which can be pre-computed for each movie pair; 

• Á is Pearson's correlation coefficient penalized for sparse data; 

• nm,i is the number of users having rated both m and i; 

• ∆X is the number of days between the rating of m and i; 

• ! and ½ are parameters learned through validation on the probe set. 

The first factor was suggested in [7]. The second factor is identical to the one in the first method above. 

3.19.1.3 Mean Square Error 

The third method uses a proximity based on the Mean Square Error (MSE) between the ratings: 

^(�, �) = � 11 + ½∆X# ¾ ��,� + !��,�Â� + �Â¡�¿ (83) 

 

Where: 

• z is the proximity; 
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• Â� is the MSE between ratings from movie m and i measured over users having rated both, 

which can be pre-computed for each movie pair; 

• Â¡� is the mean MSE average over all movie pairs in the training set; 

• ∆X is the number of days between the rating of m and i; 

• ! and ½ are parameters learned through validation on the probe set. 

The first factor is the same time factor used in the first two methods. The second factor is the inverse of 

the MSE, shrunk toward the global MSE. 

3.19.1.4 Common Support vs. user support 

The fourth method is similar to the first one, except that it penalizes movie pairs for users that have high 

support. The logic here is that if a user has only made a few ratings, the probability of correlation 

between the movies he has rated is stronger than for a user that has rated a high number of movies.  

The proximity measure is defined as: 

^(�, �) = ���,�¼���� # � 11 + ½∆X# ¾ ��,���,� + !¿ (84) 

��,� = � 1��� ∈f(�,�)  (85) 

  �, = � 1��� ∈f(,)  (86) 

Where: 

• z is the proximity; 

• N(m, i) is the subset of users which have rated movies m and i; 

• su is the number of movies that user u has rated (including the ratings for which we don’t have a 

value); 

• N(x) is the subset of users that have rated movie x; 

• U is the total number of users (480189); 

• ∆X is the number of days between the rating of m and i; 

• ! and ½ are parameters learned through validation on the probe set. 

Here, the different factors of z are the same as in the first method. ! and ½ are parameters learned 

through validation on the probe set.  

3.19.1.5 Latent feature distance 

The fifth method uses the latent features from an integrated model to determine the correlation 

between movies. In this case, the BK5 model was used with n=100 to produce a set of latent features. All 

the other parameters and the training procedure are as described in Section 3.4 BK5 SVD++ model. 

Then, the sum of the square of the difference between the latent feature values is computed for all 

movie pairs. Finally, we calculate z as follows: 
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^(�, �) = � 11 + ½∆X# � 1Ã(�, �)� + !# (87) 

Ã(�, �) =  � �Jd(�) − Jd(�)���
d  (88) 

Where: 

• z is the proximity; 

• J(�) is the vector of movie latent factors for movie m; 

• ∆X is the number of days between the rating of m and i; 

• ! and ½ are parameters learned through validation on the probe set. 

The first factor of z is the same time factor used in all the above methods. The second term is the 

squared inverse of the latent feature square-error.  

3.19.2 Weight measure 

Once the proximity measure is computed for all movies rated by a user, the neighbours with the top K 

proximity values are kept. K is chosen through validation on the probe set. Once the neighbours are 

selected, weights must be chosen for each neighbour. 

In the kNN1 series of models, weights are derived directly from the proximity measure as suggested in 

[4] Section 12.3: 

k(�) = +(t + Ä^) (89) +(-) = 11 + �4,  (90) 

�̂ = ∑ k(�)��� �� %µO Å∑ k(�)� �� %µO Å  (91) 

Where: 

• z is the proximity; 

• k(�) is the weight given each rating in the chosen nearest K movies; 

• +(-) is the sigmoid function; 

• t and Ä are selected through validation on the probe set; 

• �̂ is the predicted score for movie m. More exactly, it is the predicted residual error for movie m, 

since the model is computed on residual errors. 

3.19.3 Selected combinations 

The basic name of this model is knn1. The second digit in the predictor name indicates the selected 

proximity measurement in the order described above (e.g. knn1-1 uses the common support 

measurement; knn1-2 uses Pearson’s correlation; etc.). Note that the proximity measurement calculated 

with equation (80) but computed without the movies with unknown ratings is called knn1-0. This model 

is always run on the residual errors of another model. The various parameters, including K, are 

optimized automatically using the Nelder-Mead approach. The parameters are either selected to 

optimize the probe set score or the blending improvement on a linear regression of our selected 
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predictors. The parameters are seeded with different values depending on the proximity measure used. 

The following table indicates the initial parameter values for each method.  

Proximity 

method 

Æ Ç È É Ê 

 val min max val min max val min max val min max val min max 
Common 

support (1) 
80 10 n/a 15000 1 n/a 0.02 0.0 n/a -4 n/a n/a 1 0 n/a 

Pearson’s 

correlation (2) 
80 10 n/a 200 1 n/a 0.02 0.0 n/a -3 n/a n/a 20 0 n/a 

Mean Square 

Error (3) 
80 10 n/a 20 1 n/a 0.005 0.0 n/a -5 n/a n/a 4 0 n/a 

Common 

support w/ 

user (4) 

80 10 n/a 15000 1 n/a 0.02 0.0 n/a -4 n/a n/a 1 0 n/a 

Latent feature 

distance (5) 
80 10 n/a 30 0 n/a 0.05 0.0 n/a -5 n/a n/a 250 0 n/a 

The following tables indicate all the instances of this model that were used in the solution. The first 

column identifies the predictor and the second column indicates if the parameters were optimized on 

the probe set (P) or on the blend (B). 

3.19.3.1 Common support 

Variant Opt. Variant Opt. Variant Opt. 

bk1-a200-knn1-1 P bk4-e200-knn1-1B170 B frbm200-mf27-flip20-knn1-1B067 B 

bk1-a200x-knn1-1 P bk4-e50a-knn1-1B188 B frbm300-bk4-knn1-1B045 B 

bk1-a50-2-knn1-1 P bk4-f200gx-knn1-1B223 B frbm300-knn1-1B068 B 

bk1-a50-2-knn1-1B059 B bk4-f200z4-nlpp1-knn1-1B204 B frbm300gx-knn1-1B177 B 

bk1-a50-knn1-1B058 B bk5-b200-knn1-1B095 B gte14b-knn1-1B048 B 

bk1-b200-1-knn1-1 P bk5-b200B089-knn1-1B091 B integ0-0-0TZ-grbm200-knn1-1B056 B 

bk1-b200-5-knn1-1B060 B blend2-gax-knn1-1B052 B integ0-0-0TZ-knn1-1B046 B 

bk1-b200-6x-knn1-1B054 B blend2-gb-knn1-1B213 B integ0-100-100TZ-knn1-1B069 B 

bk1-b200-6x-knn1-1B061 B blend2-gb1-knn1-1B196 B integ0-200-200TZ-knn1-1 P 

bk1-c200-knn1-1B062 B blend2-gb2-knn1-1B203 B integ0-200-200TZ-knn1-1B070 B 

bk1-c200x-knn1-1B063 B blend2-gb3-knn1-1B205 B integ40-200-0ST-knn1-1B071 B 

bk2-b200hz-knn1-1 P blend2-gb4-knn1-1B244 B mf27-20-knn1-1B072 B 

bk3-100ga-knn1-1B064 B blend5-knn1-1B047 B mfw31-05-asym3v250-knn1-1B073 B 

bk3-200gx-knn1-1B065 B brismf760n-knn1-1 P mfw31-10-milestone0-150-knn1-1B053 B 

bk3-d200-knn1-1B049 B brismf760n-knn1-1B050 B mfw31-10-milestone5-150-knn1-1B074 B 

bk4-b200-knn1-1B100 B drbm160-640-bk4-knn1-1B055 B mfw31-60-10-120-knn1-1B057 B 

bk4-c200gx-knn1-1B162 B drbm160-640-knn1-1B066 B ssvd-31-00-asym1-20-knn1-1B075 B 

3.19.3.2 Pearson’s correlation 

Variant Opt. Variant Opt. Variant Opt. 

bk4-f200gx-knn1-2B216 B blend2-gb-knn1-2B238 B blend2-gb3-knn1-2B240 B 

bk4-f200z4-knn1-2B234 B blend2-gb1-knn1-2B194 B blend2-gb4-knn1-2B230 B 

bk4-f200z4-nlpp1-knn1-2B202 B blend2-gb2-knn1-2B215 B   

3.19.3.3 Mean Square Error 

Variant Opt. Variant Opt. Variant Opt. 

bk1-a1000x-knn1-3 P bk4-e50a-knn1-3B166 B frbm200-mf27-flip20-knn1-3B036 B 

bk1-a200-knn1-3 P bk4-f200gx-knn1-3B190 B frbm300-bk4-knn1-3B014 B 
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bk1-a50-2-knn1-3B028 B bk4-f200z4-knn1-3B242 B frbm300-knn1-3B037 B 

bk1-a50-knn1-3B027 B bk5-b200-knn1-3B094 B frbm300gx-knn1-3B160 B 

bk1-b200-5-knn1-3B029 B bk5-b200B089-knn1-3B090 B gte14b-knn1-3B017 B 

bk1-b200-5x-knn1-3 P blend2-gax-knn1-3B021 B integ0-0-0TZ-grbm200-knn1-3B025 B 

bk1-b200-6x-knn1-3B030 B blend2-gb-knn1-3B212 B integ0-0-0TZ-knn1-3B015 B 

bk1-c200-knn1-3B031 B blend2-gb1-knn1-3B233 B integ0-100-100TZ-knn1-3B038 B 

bk1-c200x-knn1-3B032 B blend2-gb2-knn1-3B206 B integ0-200-200TZ-knn1-3 P 

bk3-a50-knn1-3 P blend2-gb3-knn1-3B208 B integ0-200-200TZ-knn1-3B039 B 

bk3-b200-knn1-3 P blend2-gb4-knn1-3B231 B integ40-200-0ST-knn1-3B040 B 

bk3-d200-knn1-3B018 B blend5-knn1-3B016 B mf27-20-knn1-3B041 B 

bk4-b200-knn1-3B099 B brismf760n-knn1-3 P mfw31-10-milestone0-150-knn1-3B022 B 

bk4-c200z-knn1-3B176 B brismf760n-knn1-3B019 B mfw31-10-milestone5-150-knn1-3B043 B 

bk4-c500-knn1-3B126 B drbm160-640-bk4-knn1-3B024 B ssvd-31-00-asym1-20-knn1-3B044 B 

bk4-e200-knn1-3B163 B drbm160-640-knn1-3B035 B urbm20-1000-knn1-3 P 

urbm20-1000-knn1-3B020 B     

3.19.3.4 Common support vs. User support 

Variant Opt. Variant Opt. Variant Opt. 

bk1-a1000x-knn1-4B145 B bk4-f200z4-nlpp1-knn1-4B221 B drbm160-640-bk4-knn1-4B150 B 

bk3-d200z-knn1-4B146 B bk5-b200-knn1-4B147 B drbm160-640-knn1-4B149 B 

bk4-c500-knn1-4B143 B blend2-gb-knn1-4B210 B frbm300-bk4-knn1-4B152 B 

bk4-d500-knn1-4B144 B blend2-gb1-knn1-4B237 B frbm300-knn1-4B151 B 

bk4-f200gx-knn1-4B241 B blend2-gb3-knn1-4B195 B integ0-200-200NT-knn1-4B154 B 

bk4-f200z4-knn1-4B224 B brismf760n-knn1-4B148 B integ80-80-0TZM-knn1-4B155 B 

3.19.3.5 Latent feature distance 

Variant Opt. Variant Opt. Variant Opt. 

bk1-a1000x-knn1-5B131 B bk4-f200z4-nlpp1-knn1-5B207 B drbm160-640gx-knn1-5B174 B 

bk4-c200gx-knn1-5B164 B bk5-b200-knn1-5B133 B frbm300-knn1-5B137 B 

bk4-c200z-knn1-5B182 B blend2-gb-knn1-5B214 B frbm300gx-knn1-5B184 B 

bk4-c500-knn1-5B129 B blend2-gb1-knn1-5B232 B integ0-0-0TZmilestone6-200-knn1-

5B139 
B 

bk4-d500-knn1-5B130 B blend2-gb3-knn1-5B245 B integ0-200-200NT-knn1-5B140 B 

bk4-e200-knn1-5B180 B blend2-gb4-knn1-5B229 B integ80-80-0TZM-knn1-5B141 B 

bk4-e50a-knn1-5B159 B brismf760n-knn1-5B134 B mfw31-10-grbm200-knn1-5B142 B 

bk4-f200gx-knn1-5B198 B drbm160-640-bk4-knn1-5B136 B   

bk4-f200z4-knn1-5B197 B drbm160-640-knn1-5B135 B   

3.20 KNN2-5 

This section describes a series of movie Nearest-Neighbour models where the same proximity measures 

(as described in the previous section) are used to select the list of K neighbours, but where the weight 

measure is obtained by using a regression model, as described in [1]. This approach yields more accurate 

results than the ad-hoc transformation of the proximity measure used in kNN1. 

3.20.1 Weight computation  

In [1], the vector of weights w is computed as: 

 Ëk = �Ì (92) 

Where  Ë and �Ì are defined in [1]. In our implementation, we modified this equation to: 
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(- �Í + (1 − -) �Í*k = -��G + (1 − -)��Í (93) 

 �Í and ��Í are computed similarly to [1], except that the residual rating error is used instead of the raw 

ratings.  �Í  and ��Í are also computed similarly to [1], except that the value r' is used instead of the raw 

ratings, and r' is defined by: 

�Î = � − ���������(
, �) (94) 

In other words, r' is the raw rating from which we have subtracted the bias value baseline1 described in 

the Common Concepts section. The values of w are obtained by solving the linear system subject to non-

negativity constraint like in [1]. Shrinkage toward the mean is used for the diagonal elements and other 

elements are shrunk toward zero. 

By mixing weight selection between the residual error and a simple bias model, we are able to 

significantly improve the accuracy of the model. While weights from the residual errors seem the best 

approach in theory, artefacts from the base model cause inaccuracy in the weight evaluation. Weights 

from the simple bias model are immune to this, but do not reflect the actual task which is to estimate 

the residual error. The compromise between the two is controlled by x, which is selected by validation 

on the probe set.  

Note that the meta-parameters for models kNN2 to kNN5 are automatically tuned using the Nelder-

Mead method (described in the Common Concepts section) for each base model. This model specific 

optimization is key to the achieved accuracy. 

3.20.2 KNN2 

The basic implementation of the method described above is called the knn2 model. In this model, the 

number of neighbours (K) is fixed, but selected through validation on the probe set. 

Again, for the sake of conciseness only the seed values of the meta-parameters are provided and not the 

final values for each base model. The following table shows these seed values (as well as the minimum 

and maximum values) for the different proximity measures.  

Proximity 

method 

Æ Ç È É Ï 

 val min max val min max val min max val min max val min max 

Common 

support (1) 

40 10 60 15000 1 n/a 0.01 n/a n/a 500 n/a n/a 0.9 n/a 1.0 

Pearson’s 

correlation 

(2) 

30 10 60 150 1 n/a 0.02 n/a n/a 500 n/a n/a 0.9 n/a 1.0 

 

This model is always run on the residual errors of another model. The following table presents the 

combinations of this model that were used in the final blend. For all of the selected combinations the 

parameters were trained for probe set accuracy. 
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Variant Proximity Variant Proximity 

bk1-c200-knn2-1 1 frbm2-100gx-knn2-1 1 

bk3-200g-knn2-1 1 frbm200-mf27-knn2-2 2 

bk3-c50-knn2-1 1 integ0-0-0TZ-flip20-knn2-1 1 

blend2-ga-knn2-1 1 integ0-0-0TZmilestone6-200-knn2-1 1 

blend3-knn2-1 1 integ0-200-200TZ-knn2-1 1 

 

3.20.3 KNN3 

In another variant, the number of neighbours is limited by selecting only the neighbours for which the 

proximity measure exceeds a certain threshold. This threshold was selected manually through validation 

on the probe set. Note that we also limit the number of neighbours to a low and high limit. The low limit 

is also selected through validation on the probe set. The high limit is fixed at 60 to limit running time to 

about 1 minute on a Core i7-920 processor. Weights and proximity are computed identically to knn2 and 

we always use the first proximity measure. Thus, this model is called knn3-1. Interestingly, this variant is 

our most accurate neighbourhood model. 

The selected proximity value threshold is 0.25. The following table presents the seed and limit values 

that are used when optimizing the meta-parameters (using the Nelder-Mead technique). 

ÆÐÑÒ Ç È É Ï 

val min max val min max val min max val min max val min max 

10 1 30 20000 1 n/a 0.01 n/a n/a 200 n/a n/a 0.8 n/a 1.0 

This model is always run on the residual errors of another model. The following table presents the 

different combinations that were selected for the solution. The second column indicates if the meta-

parameters were selected to optimize the probe accuracy (P) or the blend accuracy (B). 

Variant Opt. Variant Opt. Variant Opt. 

bk1-a200-knn3-1 P bk4-f200z4-knn3-1B199 B drbm160-640-knn3-1 P 

bk1-b200-6x-knn3-1B010 B bk4-f200z4-nlpp1-knn3-1 P drbm160-640gx-knn3-1B168 B 

bk3-100ga-knn3-1 P bk4-f200z4-nlpp1-knn3-1B219 B frbm300-bk4-knn3-1 P 

bk3-c50-knn3-1 P bk5-b200-knn3-1B096 B frbm300-bk4-knn3-1B001 B 

bk3-d200-knn3-1B005 B bk5-b200B089-knn3-1B092 B frbm300-knn3-1 P 
bk3-d200z-nlpp1-knn3-1B109 B blend2-gax-knn3-1B008 B frbm300gx-knn3-1B179 B 

bk4-b200-knn3-1B101 B blend2-gb-knn3-1B217 B gte14b-knn3-1B004 B 

bk4-c200gx-knn3-1B167 B blend5-knn3-1 P integ0-0-0TZ-grbm200-knn3-1B012 B 

bk4-c200z-knn3-1B165 B blend5-knn3-1B003 B integ0-0-0TZ-knn3-1B002 B 

bk4-c500-knn3-1B123 B brismf760n-knn3-1 P integ0-200-200TZ-knn3-1 P 

bk4-e200-knn3-1B169 B brismf760n-knn3-1B006 B mfw31-10-milestone0-150-knn3-1B009 B 

bk4-e50a-knn3-1B175 B drbm160-640-bk4-knn3-1 P mfw31-60-10-120-knn3-1B013 B 

bk4-f200gx-knn3-1B193 B drbm160-640-bk4-knn3-1B011 B   

 

3.20.4 KNN4 

We have also implemented a variant of knn2 for which we limit the neighbour list to the movies rated 

on the same day. Also, in this variant, when evaluating the coefficient in the weight model, we limit the 
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data to pairs of movies also rated on the same day. While the accuracy of this model is not as good, it 

does make a nice contribution to the blended results. We called this model knn4-1. 

The following table presents the seed and limit values that are used when optimizing the meta-

parameters (using the Nelder-Mead technique). 

Ç É Ï 

val min max val min max val min max 

30000 n/a n/a 100 1 n/a 0.8 n/a 1.0 

This model is always run on the residual errors of another model. The following table presents the 

different combinations that were selected for the solution. The second column indicates if the meta-

parameters were selected to optimize the probe accuracy (P) or the blend accuracy (B). 

Variant Opt. Variant Opt. Variant Opt. 

bk1-b200-6x-knn4-1B085 B blend5-knn4-1 P integ0-0-0TZ-grbm200-knn4-1B087 B 

bk3-d200-knn4-1B080 B blend5-knn4-1B078 B integ0-0-0TZ-knn4-1B077 B 

bk3-d200z-knn4-1 P brismf760n-knn4-1B081 B mfw31-10-milestone0-150-knn4-1B084 B 

bk4-b200-knn4-1B102 B drbm160-640-bk4-knn4-1B086 B mfw31-60-10-120-knn4-1B088 B 

bk5-b200-knn4-1B097 B drbm160-640-knn4-1 P urbm20-1000-knn4-1B082 B 
bk5-b200B089-knn4-1B093 B frbm300-bk4-knn4-1B076 B   

blend2-gax-knn4-1B083 B gte14b-knn4-1B079 B   

3.20.5 KNN5 

Finally, a variant of knn4 was devised in which the “same day” concept is extended to a set of 

contiguous days. For example, all movies rated within an 8 day window are considered for neighbour 

selection and weight computation. The K nearest movies are selected within this subset of movies. K is 

selected through validation on the probe set. Note that, in this variant, we also changed the definition of 

r’ to use baseline2 instead of baseline1 as follows: 

�Î = � − ���������(
, �) (95) 

This model is called knn5. The following table presents the seed and limit values that are used when 

optimizing the meta-parameters (using the Nelder-Mead technique). 

K Ç É Ï 

val min max val min max val min max val min max 

40 10 60 250 n/a n/a 150 n/a n/a 0.7 n/a n/a 

 

This model is always run on the residual errors of another model. The following table presents the 

different combinations that were selected for the solution. The second column indicates the number of 

days that were considered for the neighbourhood. Note that the parameters for this model were always 

optimized for blend improvement. 
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Variant Days Variant Days Variant Days 

bk1-a1000x-knn5-8B111 8 bk4-f200z4-knn5-1B218 1 frbm300-bk4-knn5-8B117 8 

bk4-c200z-knn5-1B183 1 bk4-f200z4-nlpp1-knn5-1B192 1 frbm300gx-knn5-1B171 1 

bk4-c500-knn5-1B125 1 blend2-gb-knn5-1B191 1 integ0-0-0TZmilestone6-200-knn5-8B118 8 

bk4-e200-knn5-1B185 1 drbm160-640-bk4-knn5-8B115 8 integ0-200-200NT-knn5-8B119 8 

bk4-e50a-knn5-1B161 1 drbm160-640-knn5-8B114 8 integ80-80-0TZM-knn5-8B120 8 

bk4-f200gx-knn5-1B228 1 drbm160-640gx-knn5-1B186 1 mfw31-10-grbm200-knn5-8B121 8 

3.21 Older movie neighbourhood models 

This section describes a number of older movie neighbourhood models because some variants were 

included in the solution. These methods are superseded by the new movie kNN described earlier. 

3.21.1 Movie 

This is our earliest neighbourhood model. It is a direct implementation of the model described in [1]. To 

predict the rating r(u, m) of user u for movie m, we select the k=20 movies rated by u with the highest 

similarity score: 

^(�, �) = r�,���,���,� + ! (96) 

Where: 

• z(m, i) is the similarity measure between movies m and i; 

• r�,� is the Pearson's correlation coefficient between the raw ratings of movie m and movie i 

amongst users having rated both m and i; 

• nm, i  is the number of users having rated both m and i; 

• α=400 is the shrinkage coefficient. 

The regression model described in [1] is used on the raw ratings to determine the neighbour weight. The 

regularization coefficient β=400 is used to build the regression model. While the model described in [1] 

requires a non-negative least square solver, we used a simple heuristic instead to generate a similar but 

slightly sub-optimal solution: 

1. Solve the regression problem without the non-negative constraint; 

2. Pin all negative variables to zero; 

3. Re-compute the remaining variables with the pinned variables forced to zero; 

4. Repeat 2 and 3 until all variables are non-negative. 

This model is applied to the residual error of other models. One variant is present in the solution: 

Variant Baseline 

ssvd-31-00-movie ssvd-31-00 

3.21.2 Movie2 

This model is very similar to Movie. The first difference is the similarity measure: 
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^(�, �) = ��,� ∑ �Ó,��Ó,�  Ó∈f(�)∩f(�)
(��,� + !*Õ(∑ �Ó,��  Ó∈f(�)∩f(�) *(∑ �Ó,��  Ó∈f(�)∩f(�) * 

(97) 

Where: 

• z(m, i) is the similarity measure between movies m and i; 

• ev,m (ev,i) is the residual error of model ssvd-04-00 for user v  and movie m (i); 

• N(m) (N(i)) is the set of users having rated movie m (i); 

• ��,� = |"(�) ∩ "(�)| is the number of users having rated both m and i; 

•  α is the shrinkage coefficient. 

The k neighbours with the highest proximity are kept. 

The regression model used to determine weights is computed using the residual of the model ssvd-04-

00. The weights themselves are then applied to the residual of the actual baseline model. 

The values of α and k were chosen manually around the values giving the best result on average: 500 

and 40 respectively. 

The following variants are present in our solution. 

Variant Baseline α k 

crbm100-movie2 crbm100 400 40 

crbm100-ssvd-07-00-movie2 crbm100-ssvd-07-00 400 40 

rbm100-ssvd-07-00-movie2 rbm100-ssvd-07-00 500 30 

ssvd-07-30-2-movie2 ssvd-07-30-2 600 40 

ssvd-31-00-asym3-200-movie2 ssvd-31-00-asym3-200 500 40 

ssvd-31-00-asym3v-300-movie2 ssvd-31-00-asym3v-300 500 40 

ssvd-31-00-asym3w-200-movie2 ssvd-31-00-asym3w-200 600 30 

ssvd-31-20-cluster-movie2 ssvd-31-20-cluster 500 40 

ssvd-31-20-movie2 ssvd-31-20 500 40 

trbm100-movie2 trbm100 550 35 

trbm100-ssvd-31-00-movie2 trbm100-ssvd-31-00 550 35 

3.21.3 Movie3 

This model is strictly identical to Movie2, except that we implemented a proper non-negative solver (see 

[12] figure 1 for an example of a non-negative solver), resulting in slightly more accurate result than the 

heuristic used in Movie and Movie2. 

The following variants are present in our solution: 

Variant Baseline α k 

mf01-20-movie3 mf01-20 500 40 

nmf40-60-10-movie3 nmf40-60-10 500 40 

nnmf40-ssvd-07-00-movie3 nnmf40-ssvd-07 500 40 
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3.21.4 Movie4 

This model is strictly identical to Movie3, except that ssvd-39-00 is used in the residuals that determine 

the proximity and the weights. 

The following variants are present in our solution: 

Variant Baseline α k 

mf01-40-3-80-movie4 mf01-40-3-80 500 40 

mf27-20-movie4 mf27-20 500 40 

mf27-20env50-movie4 mf27-20env50 500 40 

nmf80-120-20-mf27-movie4 nmf80-120-20-mf27 500 40 

nnmf80-ssvd-39-00-movie4 nnmf80-ssvd-39-00 400 50 

pmf80-120-20-mf27-movie4 pmf80-120-20-mf27 500 40 

ssvd-39-05-movie4 ssvd-39-05 400 30 

ssvd-39-10-movie4 ssvd-39-10 400 30 

ssvd-63-00-movie4 ssvd-63-00 500 40 

ssvd-63-30-movie4 ssvd-63-30 500 40 

trbm150-mf27-movie4 trbm150-mf27 500 40 

trbm150-ssvd-07-00-movie4 trbm150-ssvd-07-00 500 40 

3.21.5 Movie6 

This model is similar to Movie3 and Movie4. It uses mfw31-00 for the residuals that determine the 

proximity and the weights. 

The proximity measure is enhanced to take into account the dates at which the ratings were made. 

When predicting the rating for user u and movie m, we consider the proximity for movie i to be smaller 

if m and i are rated far apart in time. 

^3(�, �) = ��,� ∑ �Ó,��Ó,�  Ó∈f(�)∩f(�)
(��,� + !*Õ(∑ �Ó,��  Ó∈f(�)∩f(�) *(∑ �Ó,��  Ó∈f(�)∩f(�) * 

(98) 

^(�, �) = ^3�(�, �)(1 + ½|X� − X�|)(1 − ^3�(�, �)*  

Where: 

• z(m, i) is the similarity measure between movies m and i; 

• z0(m, i) is a component of the similarity measure between movies m and i (identical to the 

similarity measure of Movie2, Movie3 and Movie4); 

• ev,m (ev,i) is the residual error of model mfw31-00  for user v and movie m (i); 

• N(m) (N(i)) is the set of users having rated movie m (i); 

• ��,� = |"(�) ∩ "(�)| is the number of users having rated both m and i; 

• α=500 is the shrinkage coefficient  

• tm and ti are the dates at which user u has rated movies m and i respectively; 

• τ is selected manually as 0.03; 

• the neighbourhood size is fixed to k=40. 
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The following variants are included in the solution: 

Variant Baseline 

brismf760n-movie6 brismf760n 

integ0-0-0TZ-movie6 integ0-0-0TZ 

integ0-0-0TZmilestone6-200-movie6 integ0-0-0TZmilestone6-200 

integ0-100-100TZ-movie6 integ0-100-100TZ 

integ80-80-0TZM-movie6 integ80-80-0TZM 

mfw31-00-movie6 mfw31-00 

mfw31-00milestone3-100-movie6 mfw31-00milestone3-100 

mfw31-00milestone7-100-movie6 mfw31-00milestone7-100 

mfw31-00milestone9-100-movie6 mfw31-00milestone9-100 

mfw31-05-asym3v250-movie6 mfw31-05-asym3v250 

mfw31-60-10-120-movie6 mfw31-60-10-120 

ssvd-31-00-asym1-20-movie6 ssvd-31-00-asym1-20 

trbm50-asym3v250-movie6 trbm50-asym3v250 

trbm50-milestone0-150-movie6 trbm50-milestone0-150 

3.21.6 Movie8 

This model is identical to Movie6, except that τ=0. 

The following variant is included in the solution: 

Variant Baseline 

frbm300-movie8 frbm300 

3.21.7 Movie5 

This model is very different from the MovieN models presented so far, as it does not rely on the method 

described in [1]. Instead, it uses a heuristic function to determine the weights directly from the 

proximity measure: 

^(�, �) = R + |"(�) ∩ "(�)|1.94R + ∑ Ö�(W, �) − �(W, �)×�Ó∈(f(��)∩f(��))  (99) 

k(�, �) = ^C(�, �)1 + ½|X� − X�| (100) 

Where: 

• z is the proximity measure between movies m and i; 

• w(m, i) is the weight given to movie i  when predicting movie m; 

• r(v, m) is the rating given to movie m by user v, r(v, i) is the rating given to movie i by user v; 

• N(m) and N(i) are the sets of users having rated movie m and i respectively; 

• β=100 is a regularization factor, which pulls the expression toward the mean square between 

arbitrary pairs of movies (1.94); 

• tm and ti are the dates at which user u has rated movies m and i respectively; 

• τ=1/60 is selected manually; 

• the neighbourhood includes the k=50 neighbours with the highest weights w. 
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The following variants are included in the solution: 

Variant Baseline 

bk1-a50-movie5 bk1-a50 

brismf250-movie5 brismf250 

brismf40-movie5 brismf40 

brismf760-movie5 brismf760 

brismf760n-movie5 brismf760n 

globalEffect14-movie5 globalEffect14 

integ0-200-200TZ-movie5 integ0-200-200TZ 

integ60-0-0TS-movie5 integ60-0-0TS 

integ80-80-0TZ-movie5 integ80-80-0TZ 

mf27-20-movie5 mf27-20 

mf27-20env50-movie5 mf27-20env50 

mf27-40-3-80-movie5 mf27-40-3-80 

mfw31-00milestone4-100-movie5 mfw31-00milestone4-100 

mfw31-00milestone5-100-movie5 mfw31-00milestone5-100 

mfw31-10-milestone0-150-movie5 mfw31-10-milestone0-150 

mfw31-10-milestone5-150-movie5 mfw31-10-milestone5-150 

ssvd-31-00-asym4v-200-movie5 ssvd-31-00-asym4v-200 

ssvd-31-00-movie5 ssvd-31-00 

trbm150-movie5 trbm150 

trbm50-asym3v250-mfw27-movie5 trbm50-asym3v250-mfw27 

trbm50-asym3v250-movie5 trbm50-asym3v250 

trbm50-milestone9-150-movie5 trbm50-milestone9-150 

3.22 User neighbourhood models 

We implemented two variants of user neighbourhood models. The idea is to identify user pairs having 

similar taste and rating habits, in order to infer unknown ratings from the ratings of these neighbours. 

Overall, we found user neighbourhood models much less useful than movie neighbourhood models. 

3.22.1 User2 model 

This variant is a very naive neighbourhood model. For each rating that we wish to predict, we select the 

100 most similar users that have rated the movie being predicted. The prediction is the weighted sum of 

the 100 similar ratings, where the weight varies linearly between 1.0 and 0.6 according to the rank 

among the 100 neighbours. 

The distance measure used is the mean squared error between pairs of user ratings, computed over the 

common rated movies. Movies most similar to the movie being predicted are given a greater weight 

when computing the user distance. The distance measure is computed as: 

E�(
�, 
�, �) = 2! + Ø k(�, �)Ö�(
�, �) − �(
�, �)×��∈(f(��)∩f(��))! + ∑ k(�, �)�∈(f(��)∩f(��))  (101) 

! = 5 Ø k(�, �)�∈(f(��)∩f(��))|"(
�) ∩ "(
�)|  (102) 
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k(�, �) = ¶1.94R + Ø Ö�(W, �) − �(W, �)×�Ó∈(f(�)∩f(�))R + |"(�) ∩ "(�)| ·C
 (103) 

Where: 

• du  is the distance between users u1 and u2 when predicting movie m; 

• α is a regularization factor, which pulls du toward 2.0 for pair of users with few common movies, 

the value of α is chosen as 5.0 times the average weight; 

• w is the distance measure between two movies, used to weigh the movie when comparing 

users, the value is pre-computed and kept in computer memory for all movie pairs; 

• r(u, m) is the rating given to movie m by user u; 

• N(u) is the set of movies rated by user u; 

• N(m) is the set of users having rated movie m; 

• β is a regularization factor, which pulls the expression toward the mean square between 

arbitrary pairs of movies (1.94), β is chosen as 100. 

Computing this expression for all users and all predictions would take an excessive amount of time. To 

accelerate processing, we use pre-filtering steps that prune the most unlikely candidates, with virtually 

no impact on the final model accuracy: 

1. When searching for the best 100 neighbours of user u for movie m, we first identify all users v≠u  

having rated m; 

2. We discard all users v having provided few ratings, keeping only the 12288
18

 users with the most 

ratings; 

3. We sort the remaining 12288 v users using the Euclidean distance between the users latent 

features of a rank=8 simple matrix factorization model. We then keep the top 1280 candidate v. 

4. Finally we sort the remaining 1280 candidates using the du formula described above and discard 

all v except the top 100. 

                                                           
18

 A nice round number... in hexadecimal! 
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This model is always computed on the residual error of another model. The following variants are 

included in the solution: 

Variant Baseline 

brismf760-user2 brismf760 

brismf760n-user2 brismf760n 

drbm100-500-user2 drbm100-500 

integ0-200-200NT-user2 integ0-200-200NT 

integ0-200-200TZ-user2 integ0-200-200TZ 

integ60-0-0TS-user2 integ60-0-0TS 

mfc27-60-10-120-user2 mfc27-60-10-120 

mfw31-05-asym3v250-user2 mfw31-05-asym3v250 

mfw31-80-x-user2 mfw31-80-x 

ssvd-31-00-user2 ssvd-31-00 

trbm100-ssvd-31-00-user2 trbm100-ssvd-31-00 

trbm50-asym3v250-user2 trbm50-asym3v250 

3.22.2 Flipped model 

The second user neighbourhood model that we implemented is directly inspired from Section 4.1 of 

[10]. Neighbourhood models are most useful between movies, thus the name flipped when applied to 

users. 

In [10], Koren describes a neighbourhood model where the weights are approximated by a low rank 

matrix factorization. We used the same approach, adding the implicit feedback of movies for which the 

rating is not known. Also, since we only compute this model on the residual error of another model, the 

bias terms are unnecessary. 

The model uses the following expression: 

�̂(
, �) = � I�(
) L 1`|g(�)| � �(W, �)J�(W)Ó∈i(�) + 1`|"(�)| � b�(W)Ó∈f(�) Q�
�F�  (104) 

Where: 

• �̂ is the estimated residual error for user u and movie m; 

• e(v, m) is the residual error for the prediction of user v and movie m; 

• p is a vector of length n representing the latent features of user u; 

• q is a vector of length n such that p
T
q is the approximation of the weight given to user v; 

• y is a vector of length n such that p
T
y is the approximation of the implicit feedback given to user 

v; 

• R(m) is the set of users providing known ratings for movie m; 

• N(m) is the set of users providing ratings (known or not) for movie m; 
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The model is trained using stochastic gradient descent. p and q are trained using a learning rate γ1 and 

weight decay λ1. y is trained using a learning rate γ2 and weight decay λ2. γ1 and γ2 are reduced by a 

factor Δγ at each iteration. Training stops when maximum accuracy is achieved on the probe set. 

The values of γ1, γ2, λ1, λ2 and Δγ are selected automatically using the Nelder-Mead Simplex Method to 

optimize the probe set accuracy. 

The following variants are included in the solution: 

Variant Baseline n 

frbm200-mf27-flip20 frbm200-mf27 20 

integ0-0-0TZ-flip20 integ0-0-0TZ 20 
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4 Blending 
During our participation in the Netflix Prize competition, we followed the strategy used by most 

participants which consists of developing multiple models to predict the ratings, and then combining 

these multiple predictions into a single solution using various blending methods. 

One of the keys to achieving a 10.09% improvement on the quiz set was the complex blending scheme 

that combined the many results from the individual teams. This important component was handled by 

our colleagues from Big Chaos. Thus, this part will not be described here. Nevertheless, we will describe 

our blending techniques, as a few partial blends have been included in the solution.  

In general, a blending method involves selecting a number of parameters that determine how the 

various prediction sets should be combined. Our strategy has been to optimize these parameters on the 

probe set, using models trained on data excluding the probe set. Then, the same parameters are reused 

to blend together corresponding models that were trained including the probe set. This methodology 

has no theoretical grounding because the probe set is not statistically equivalent to the rest of the 

training data, but it works well in practice. Note that it is critical for the two versions of each model 

(computed with and without the probe set) to be precisely equivalent. 

Finally, when investigating blending methods, an approach we have followed is to split the probe set in 

two subsets. Then the blending method is trained on one subset, keeping the other subset to obtain an 

objective evaluation of the success of the method.  

4.1 Set selection 

Over time, we produced a large number of prediction sets. Unfortunately, most of them are highly 

collinear with the others and do not contribute to the blend. Furthermore, these collinear sets, if used, 

are likely to actually degrade the accuracy on the test set, due to overfitting. Consequently, we routinely 

discarded predictors that showed little or no contribution to the blend result. 

We used a simple algorithm to help us in this task, known as backward selection: 

1. Compute a linear regression of all prediction sets over the probe set; 

2. For each set, compute a linear regression of the collection without the current set; 

3. Remove the set with the smallest contribution and repeat from step 1. 

This algorithm allowed us to rank predictors from the worst to the best in a greedy fashion, in term of 

contribution to a linear regression. It was useful to determine which prediction sets to include or not in 

the blend. Typically we excluded prediction sets that contributed less than 2 or 3x10
-6

 to the blend 

accuracy. 
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4.2 Neural network blending 

We have generated four neural network blends in the solution, using a strategy directly inspired from 

[4]. Each neural network consists of a multi-layer perceptron with one hidden layer. Each neuron uses a 

hyperbolic tangent activation function. Inputs are scaled to zero mean and unit variance. 

The input variables are augmented by two values: the log of the user support and the log of the movie 

support. Weights are learned through gradient descent (back prop). Weight decay is set to 1x10
-5

 for the 

first layer, and zero for the second. Learning rates are set initially to 0.0008 for the first layer, and 

0.0003 for the second layer. Learning rates are decreased to zero linearly over 500 iterations. Between 

12 and 20 runs are executed with different seeds, and the most accurate is kept. 

The following variants are included in the solution: 

Variant Number of sets Number of hidden nodes 

nnblend-top212 212 9 

nnblend-top100 100 18 

nnblend-top50 50 35 

nnblend-bottom95 95 18 

The following tables show the list of predictors used in each case: 

nnblend-top212 

bk1-a1000x-knn1-3 bk1-a200-knn3-1 bk1-a200x-knn1-1 bk1-a50 

bk1-a50-2x bk1-a50-movie5 bk1-b1000 bk1-b200-1 

bk1-b200-1-knn1-0 bk1-b200-1-knn1-1 bk1-b200-2 bk1-b200-5 

bk1-b200-6x bk1-c200-knn2-1 bk1-c200x bk2-b200hz-knn1-1 

bk3-100g1 bk3-100g2 bk3-100g4 bk3-100ga-knn3-1 

bk3-100ga4 bk3-100gax bk3-100gx bk3-200g1 

bk3-200g3 bk3-200g4 bk3-200gx bk3-a0z 

bk3-b200-knn1-3 bk3-c50 bk3-c50-knn2-1 bk3-d200 

bk3-d200-knn1-1B049 bk3-d200-knn1-3B018 bk3-d200-knn3-1B005 bk3-d200z 

bk3-d200z-knn4-1 bk4-biasZ blend2-ga-knn2-1 blend2-ga1 

blend2-ga4 blend2-gax blend2-gax-knn1-1B052 blend2-gax-knn1-3B021 

blend2b blend5-knn1-1B047 blend5-knn3-1 blend5-knn4-1 

brismf250 brismf250-movie5 brismf40-movie5 brismf760-movie5 

brismf760n brismf760n-knn1-1 brismf760n-knn1-1B050 brismf760n-knn1-3 

brismf760n-knn1-3B019 brismf760n-knn3-1 brismf760n-knn4-1B081 crbm100-movie2 

crbm100-ssvd-07-00-movie2 crbm100-ssvd-07-20 crbm100x-ssvd-03-00 crbm200 

crbm200-ssvd-07-00 drbm100-500 drbm100-500-user2 drbm160-640 

drbm160-640-bk4-knn3-1 drbm160-640-bk4-knn3-1B011 drbm160-640-knn3-1 drbm160-640-knn4-1 

frbm100-mf27-m frbm2-100g3 frbm2-100g4 frbm200 

frbm200-mf27-flip20 frbm200-mf27-knn2-2 frbm200x frbm300 

frbm300-bk4-knn3-1 frbm300-knn1-1B068 frbm300-knn3-1 frbm300x 

integ0-0-0TZ integ0-0-0TZ-flip20-knn2-1 integ0-0-0TZ-grbm200-knn1-

3B025 

integ0-0-0TZ-knn1-1B046 

integ0-0-0TZ-knn1-3B015 integ0-0-0TZ-knn3-1B002 integ0-0-0TZ-movie6 integ0-0-0TZmilestone6-200-

movie6 

integ0-100-100TZ integ0-100-100TZ-movie6 integ0-200-200NT integ0-200-200NT-user2 

integ0-200-200TZ integ0-200-200TZ-knn1-1 integ0-200-200TZ-knn1-3B039 integ0-200-200TZ-knn3-1 

integ0-200-200TZ-movie5 integ0-200-200TZ-user2 integ20-100-100NT integ40-200-0ST-knn1-1B071 

integ40-200-0T integ60-0-0TS integ60-0-0TS-movie5 integ60-0-0TS-user2 

integ80-80-0TZ-movie5 integ80-80-0TZM integ80-80-0TZM-movie6 mf01-20-movie3 

mf01-40-3-80-movie4 mf27-20 mf27-20-knn1-1B072 mf27-20-movie4 

mf27-20-movie5 mf27-20-u mf27-20env50-m mf27-20env50-movie4 
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mf27-20env50-movie5 mf27-40-3-80-movie5 mfc27-60-10-120 mfc27-60-10-120-m 

mfc27-60-10-120-user2 mfw31-00-movie6 mfw31-00milestone3-100-

movie6 

mfw31-00milestone5-100-

movie5 

mfw31-00milestone6-100 mfw31-00milestone7-100-

movie6 

mfw31-00milestone9-100-

movie6 

mfw31-05-asym3v250 

mfw31-05-asym3v250-movie6 mfw31-05-m mfw31-10-milestone0-150 mfw31-10-milestone0-150-knn1-

3B022 

mfw31-10-milestone0-150-

movie5 

mfw31-10-milestone5-150 mfw31-10-milestone5-150-

movie5 

mfw31-40env50 

mfw31-40env50-m mfw31-40env50-m2 mfw31-60-10-120-m mfw31-60-10-120-movie6 

mfw31-60-x mfw31-80-x mfw31-80-x-m mfw31-80-x-user2 

mmean mp5 mskew nmf40-60-10 

nmf40-60-10-movie3 nmf80-120-20-m nmf80-120-20-mf27-movie4 nnmf40 

nnmf40-ssvd-07-00 nnmf40-ssvd-07-00-movie3 nnmf80-ssvd-39-00-movie4 pmf40-60-10-m 

pmf80-120-20-mf27-movie4 rbm100-ssvd-07-00-movie2 ssvd-04-00 ssvd-04-10 

ssvd-04-10-m ssvd-04-40-m ssvd-07-30-2-movie2 ssvd-31-00-asym1-20-movie6 

ssvd-31-00-asym3-100 ssvd-31-00-asym3-20 ssvd-31-00-asym3-200 ssvd-31-00-asym3-200-movie2 

ssvd-31-00-asym3v-300-movie2 ssvd-31-00-asym3w-200-movie2 ssvd-31-00-asym4-200 ssvd-31-00-asym4v-200-movie5 

ssvd-31-00-movie5 ssvd-31-00-user2 ssvd-31-10-m ssvd-31-20 

ssvd-31-20-cluster-movie2 ssvd-31-20-m ssvd-31-20-movie2 ssvd-31-20-u 

ssvd-31-60 ssvd-39-05 ssvd-39-05-movie4 ssvd-39-10 

ssvd-39-10-movie4 svd05x trbm100 trbm100-ssvd-31-00-movie2 

trbm150-mf27-m trbm150-mf27-movie4 trbm150-movie5 trbm150-ssvd-07-00-movie4 

trbm150-ssvd-39-00 trbm50-asym3v250-movie5 trbm50-asym3v250-movie6 trbm50-asym3v250-user2 

trbm50-mf27 trbm50-milestone0-150-movie6 trbm50-milestone9-150-movie5 trbm50-ssvd-39-00 

ucount up2 up3 up4 

up5 urbm20-1000-knn1-3 usermovie uskew 

 

nnblend-top100 

bk1-a200-knn3-1 bk1-b1000 bk1-b200-1 bk1-b200-5 

bk1-b200-6x bk1-c200-knn2-1 bk1-c200x bk2-b200hz-knn1-1 

bk3-100g1 bk3-100g2 bk3-100g4 bk3-100ga-knn3-1 

bk3-100gax bk3-100gx bk3-200g3 bk3-200gx 

bk3-a0z bk3-b200-knn1-3 bk3-d200 bk3-d200-knn1-1B049 

bk3-d200-knn1-3B018 bk4-biasZ blend2-gax blend2-gax-knn1-1B052 

blend2-gax-knn1-3B021 blend5-knn1-1B047 blend5-knn3-1 blend5-knn4-1 

brismf250 brismf40-movie5 brismf760n brismf760n-knn1-1 

brismf760n-knn1-1B050 brismf760n-knn1-3 brismf760n-knn1-3B019 brismf760n-knn3-1 

brismf760n-knn4-1B081 crbm100x-ssvd-03-00 drbm100-500 drbm100-500-user2 

drbm160-640-bk4-knn3-1 drbm160-640-bk4-knn3-1B011 frbm100-mf27-m frbm2-100g4 

frbm200-mf27-flip20 frbm300 frbm300-knn3-1 frbm300x 

integ0-0-0TZ integ0-0-0TZ-grbm200-knn1-3B025 integ0-0-0TZ-knn1-1B046 integ0-0-0TZ-knn1-3B015 

integ0-0-0TZ-knn3-1B002 integ0-200-200TZ-knn1-1 integ0-200-200TZ-knn1-3B039 integ0-200-200TZ-movie5 

integ40-200-0ST-knn1-1B071 integ60-0-0TS-user2 mf01-20-movie3 mf27-20 

mf27-20-knn1-1B072 mf27-20-u mf27-40-3-80-movie5 mfc27-60-10-120 

mfc27-60-10-120-user2 mfw31-00milestone3-100-

movie6 

mfw31-00milestone9-100-

movie6 

mfw31-05-asym3v250 

mfw31-05-asym3v250-movie6 mfw31-10-milestone0-150-knn1-

3B022 

mfw31-10-milestone0-150-

movie5 

mfw31-10-milestone5-150-

movie5 

mfw31-40env50 mfw31-60-10-120-m mfw31-60-10-120-movie6 mfw31-80-x 

mfw31-80-x-user2 mmean mp5 nnmf40-ssvd-07-00-movie3 

nnmf80-ssvd-39-00-movie4 rbm100-ssvd-07-00-movie2 ssvd-04-00 ssvd-04-40-m 

ssvd-31-00-asym1-20-movie6 ssvd-31-00-asym3-200-movie2 ssvd-31-00-asym3w-200-movie2 ssvd-31-00-asym4v-200-movie5 

ssvd-31-00-movie5 ssvd-31-00-user2 ssvd-31-20 ssvd-31-20-cluster-movie2 

ssvd-31-20-u ssvd-39-05-movie4 trbm100-ssvd-31-00-movie2 trbm150-ssvd-07-00-movie4 

trbm50-asym3v250-movie6 trbm50-milestone0-150-movie6 urbm20-1000-knn1-3 usermovie 

 

nnblend-top50 

bk1-b1000 bk1-b200-5 bk3-100g2 bk3-100g4 

bk3-100gax bk3-100gx bk3-200gx bk3-a0z 

bk3-d200-knn3-1B005 bk3-d200z bk3-d200z-knn4-1 bk4-a50 
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bk4-b200-knn3-1B101 bk4-biasZ bk5-b200-knn1-1B095 bk5-b200B089 

blend2-gax blend2-gax-knn1-1B052 blend5-knn3-1 brismf760n-knn1-1 

brismf760n-knn1-1B050 drbm160-640-bk4-knn3-1 drbm160-640-bk4-knn3-1B011 frbm2-100g4 

frbm200-mf27-flip20 frbm300 frbm300-knn3-1 frbm300x 

integ0-0-0TZ integ0-0-0TZ-grbm200-knn1-

3B025 

integ0-0-0TZ-knn1-3B015 integ0-0-0TZ-knn3-1B002 

integ0-200-200TZ-knn1-3B039 integ0-200-200TZ-movie5 integ40-200-0ST-knn1-1B071 mf27-20 

mf27-20-knn1-1B072 mf27-20-u mfc27-60-10-120 mfw31-05-asym3v250-movie6 

mfw31-10-milestone0-150-

movie5 

mfw31-10-milestone5-150-

movie5 

mfw31-60-10-120-m nnmf80-ssvd-39-00-movie4 

ssvd-04-00 ssvd-04-40-m ssvd-31-00-asym1-20-movie6 trbm50-asym3v250-movie6 

urbm20-1000-knn1-3 usermovie   

 

nnblend-bottom95 

bk1-a200-knn1-1 bk1-a200-knn3-1 bk1-a200x-knn1-1 bk1-a50-2-knn1-1 

bk1-b1000 bk1-b200-1 bk1-b200-2 bk1-b200-5x-knn1-3 

bk1-b200-6 bk3-100g1 bk3-200g3 bk3-200gx-nlpp1B105 

bk3-a50-knn1-3 bk3-c50 bk3-c50x bk4-b200-knn4-1B102 

bk5-b200B089-nlpp1B108 blend2-ga1 blend2-ga4 blend2b 

blend3-knn2-1 brismf250-movie5 brismf760-movie5 brismf760-user2 

brismf760n-knn1-3B019 brismf760n-user2 crbm100 crbm100-ssvd-07-00 

crbm200 crbm200-ssvd-07-00 drbm100-500-user2 frbm200-mf27-knn2-2 

frbm300-bk4-knn3-1-X-bk3-

b200-knn1-3 

frbm300-knn1-1B068 frbm300-movie8 globalEffect14-movie5 

gte14b integ0-0-0TZ-flip20-knn2-1 integ0-0-0TZmilestone6-200 integ0-0-0TZmilestone6-200-

knn2-1 

integ0-0-0TZmilestone6-200-

movie6 

integ0-200-200TZ integ0-200-200TZ-knn1-3 integ0-200-200TZ-knn3-1 

integ0-200-200TZ-user2 integ20-100-100NT integ60-0-0TS-movie5 integ80-80-0TZM 

integ80-80-0TZM-movie6 mf27-20-movie4 mf27-20-movie5 mf27-20env50-m 

mf27-20env50-movie4 mf27-20env50-movie5 mfc27-60-10-120-m mfc27-60-10-120-user2 

mfw31-00 mfw31-00-movie6 mfw31-05-asym3v250 mfw31-05-asym3v250-user2 

mfw31-10-milestone5-150 mfw31-40env50-m2 mfw31-60-x mfw31-80-x 

mskew nmf40-60-10 nmf40-60-10-movie3 nmf80-120-20-m 

nmf80-120-20-mf27-movie4 nnmf40-ssvd-07-00 pmf40-60-10-m pmf80-120-20-mf27-movie4 

ssvd-04-00 ssvd-07-30-2-movie2 ssvd-31-00-asym3-200 ssvd-31-00-movie 

ssvd-31-10-m ssvd-31-20-m ssvd-31-60 ssvd-39-05 

ssvd-39-05-movie4 ssvd-39-10 ssvd-39-10-movie4 svd02x 

svd05x trbm100-movie2 trbm100-ssvd-31-00 trbm100-ssvd-31-00-movie2 

trbm100-ssvd-31-00-user2 trbm150-mf27-movie4 trbm50-asym3v250 trbm50-asym3v250-mfw27-

movie5 

trbm50-asym3v250-movie5 trbm50-milestone9-150-movie5 urbm20-1000-knn1-3B020  

 

4.3 Multi-stage blending 

Prior to implementing the complete and efficient Neural Network mechanism described above (which 

yields better results) we had devised a number of blending techniques to try to capture various aspects 

of the data and improve the overall result. These classifiers were used in a stack; each one being trained 

on the residual error of the previous with the resulting predictor being the sum of the output of each 

classifier. The following subsections describe each classifier (or stage) in this complex blending 

mechanism. The final subsection presents the details of the variants that were included in the solution. 
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4.3.1 Multi-linear classifier 

This classifier is actually a set of simple linear classifiers trained on a subset of the probe set. The probe 

set is divided into n buckets of equal size (number of samples) using user support. The prediction for 

each user-movie pair is the output of the linear classifier corresponding to that user’s support. 

 To refine the training of each classifier, data from neighbouring buckets on both sides is used. If 

insufficient buckets are available on one side (for buckets near the start of the end), extra buckets are 

taken from the other side to have a constant number of buckets. The samples are given a weight value 

which decays linearly with the distance of the sample user’s support to that of the trained bucket 

support. This is illustrated in the example chart below, which shows the sample weight per user support 

for each bucket. Notice how the bucket starting at 1 has a different weight slope, as all extra buckets are 

taken to the right. The number of buckets (N) as well as the width of the base of each bucket (i.e. % of 

the total samples used for the training of each bucket) was optimized through validation on the probe 

set.  

 

4.3.2 Per-movie Linear classifier 

This classifier is another set of simple linear classifiers. This time one classifier is trained for each movie, 

using the residual errors from the previous step. First, we compute the regularized mean of each movie 

over the probe set as follows: 

�� =  ∑ �(�)� ∈Ù(�) +  ! Ú|¦(�)| +  !  

Where: 

• ¦(�) is the set of ratings for movie m in the probe set; 

• �(�) is the rating for item i; 
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• ! is a regularization parameter found through validation on the probe set; 

• Ú is the global mean, 3.6043. 

Then, the linear equation is solved through Ridge Regression, with each sample being the difference 

between the predicted output of the previous stage and ��; optimized towards the difference between 

the actual probe rating and ��. Sparseness being an issue, the proper Ridge Regression regularization is 

necessary and found manually through validation on the probe set. 

4.3.3 Neural-Network classifier 

We experimented with using a Neural Network to estimate the residual error after the previous 

blending steps. This Neural Network is very similar to the one described in Section 4.2 Neural network 

blending, with the following differences: 

• Like in [4], a neural network with 12 hidden nodes, and one with 13 hidden nodes are chosen 

and then linearly combined; 

• The output layer has a linear activation function; 

• Weight decay is 0.00012 for both layers; 

• Initial learning rate is 0.00012 for both layers; 

• Learning rates are decreased linearly to zero over 1000 iterations. 

4.3.4 Tree (or GAM) classifier 

Prior to implementing the more complex Neural-Network step, we had implemented a Generalized 

Additive Model (GAM) classifier to capture non-linearities in the predictor sets. Even after having 

implemented the Neural-Network classifier, this classifier still proved useful when trained on the 

residual error of that stage. 

We define a classifier step function as follows: 

�̂(
, �) = �$��(
, �) + ! l�� �7 I� (
, �) <  - �� �7 I� (
, �) ≥  - < (105) 

Where: 

• u is the user and m the movie being predicted; 

• �$��(
, �) is the residual error of the previous classifier for that user-movie pair; 

• I� (
, �) is the value of predictor � for that user-movie pair; 

• �� is the average of all samples in the probe set for which I� <  -; 

• �� is the average of all samples in the probe set for which I� ≥  -; 

• ! is a correction ratio optimized through validation on the probe set. 

We find the optimal - and � to minimize the residual error on the probe set. We can generalize this 

function to a tree function with two levels: 
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�̂(
, �) = �$��(
, �) + ! 
./0
/1Û�� �7 I� (
, �) <  - ��E Id (
, �) <  b�� �7 I� (
, �) <  - ��E Id (
, �) ≥  b<  

l�� �7 I� (
, �) ≥  - ��E I\ (
, �) <  ^�&�7 I� (
, �) ≥  - ��E I\ (
, �) ≥  ^< < (106) 

Where: 

• I� (
, �), Id (
, �) and I\(
, �) are the values of predictors �, c ��E Z for that user-movie pair; 

• �� is the average of all samples in the probe set for which I� <  - ��E  Id <  b; 

• �� is the average of all samples in the probe set for which I� <  - ��E  Id ≥  b; 

• ��  is the average of all samples in the probe set for which I� ≥  - ��E  I\ <  ^; 

• �&  is the average of all samples in the probe set for which I� ≥  - ��E  I\ ≥  ^; 

Because of processing issues, we first find - and � as in the step function above. Then, we find b, ^, c and Z to minimize the residual error on the probe set.  

Finally, we define the GAM classifier as a stacking of n of these tree functions trained on the residual 

error of the previous ones. The value of n is optimized through validation on the probe set. Note that to 

avoid overfitting, the number of samples which fall in a particular quadrant is limited to a minimum 

value and the correction in each tree function limited by multiplying the output by a certain ratio. Each 

of these meta-parameters was optimized manually through validation on the probe set.  

4.3.5 Clipping 

The final step in our multi-stage classifier is the clipping stage. The minimum threshold X��� is chosen as 

the highest value for which the predicted output is lower than the average of the probe set scores that 

have a predicted output below X���. All values below that threshold are clamped to X���. The maximum 

clamping threshold X��, is found similarly. 

4.3.6 Variants 

Two predictors produced with this multi-stage blending approach were included in the solution. The 

following tables indicate the parameters used in these blends. Note that the Neural-Network 

parameters are described in the corresponding section above. 

Variant Multi-Linear Movie-Linear Neural-Network 

Used? N Base offset slope ! 

pragmatictheory-20090316 50 50% 1200 350 1 Y 

pragmatictheory-20090527 50 50% 1200 350 1 N 

 

Variant Tree Clipping Number of sets 

nb tree min samples corr. ratio X��� X��, 

pragmatictheory-20090316 221 5000 0.10 1.0398 4.9616 233 

pragmatictheory-20090527 142 5000 0.25 1.0599 4.9659 208 

The following tables show the list of predictors used in each case: 
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pragmatictheory-20090316 

bk1-a1000x brismf760n-knn1-1 integ80-80-0TZM ssvd-31-00-asym1-20-movie6 

bk1-a1000x-knn1-3 brismf760n-knn1-3 integ80-80-0TZM-movie6 ssvd-31-00-asym3-100 

bk1-a200-knn1-1 brismf760n-knn3-1 integ80-80-0TZ-movie5 ssvd-31-00-asym3-20 

bk1-a200-knn1-3 brismf760n-movie5 mf01-20-movie3 ssvd-31-00-asym3-200 

bk1-a200-knn3-1 brismf760n-movie6 mf01-40-3-80-movie4 ssvd-31-00-asym3-200-movie2 

bk1-a200x-knn1-1 brismf760n-user2 mf27-20 ssvd-31-00-asym3v-300-movie2 

bk1-a50 brismf760-user2 mf27-20env50-m ssvd-31-00-asym3w-200-movie2 

bk1-a50-2 crbm100 mf27-20env50-movie4 ssvd-31-00-asym4-200 

bk1-a50-2-knn1-1 crbm100-movie2 mf27-20env50-movie5 ssvd-31-00-asym4v-200-movie5 

bk1-a50-2x crbm100-ssvd-07-00 mf27-20-movie4 ssvd-31-00-movie 

bk1-a50-movie5 crbm100-ssvd-07-00-movie2 mf27-20-movie5 ssvd-31-00-movie5 

bk1-b1000 crbm100-ssvd-07-20 mf27-20-u ssvd-31-10-m 

bk1-b200-1 crbm100x-ssvd-03-00 mf27-40-3-80-movie5 ssvd-31-20 

bk1-b200-1-knn1-0 crbm200 mfc27-60-10-120 ssvd-31-20-cluster-movie2 

bk1-b200-1-knn1-1 crbm200-ssvd-07-00 mfc27-60-10-120-m ssvd-31-20-m 

bk1-b200-2 drbm100-500 mfc27-60-10-120-user2 ssvd-31-20-movie2 

bk1-b200-5 drbm100-500-mfw31-m mfw31-00 ssvd-31-20-u 

bk1-b200-5x drbm100-500-user2 

mfw31-00milestone3-100-

movie6 ssvd-31-60 

bk1-b200-5x-knn1-3 drbm160-640 

mfw31-00milestone4-100-

movie5 ssvd-39-05 

bk1-b200-6 drbm160-640-knn3-1 

mfw31-00milestone5-100-

movie5 ssvd-39-05-movie4 

bk1-b200-6x drbm160-640-knn4-1 mfw31-00milestone6-100 ssvd-39-10 

bk1-c200-knn2-1 frbm100-mf27-m 

mfw31-00milestone7-100-

movie6 ssvd-39-10-movie4 

bk1-c200x frbm200 

mfw31-00milestone9-100-

movie6 ssvd-63-00 

bk2-b200hz-knn1-1 frbm200-mf27-flip20 mfw31-00-movie6 ssvd-63-00-movie4 

bk3-100g1 frbm200-mf27-knn2-2 mfw31-05-asym3v250 ssvd-63-30 

bk3-100g2 frbm200x mfw31-05-asym3v250-movie6 ssvd-63-30-movie4 

bk3-100g4 frbm2-100g3 mfw31-05-asym3v250-user2 svd02x 

bk3-100ga1 frbm2-100g4 mfw31-05-m svd05x 

bk3-100ga4 frbm2-100gx-knn2-1 mfw31-10-milestone0-150 trbm100 

bk3-100ga-knn3-1 frbm300 

mfw31-10-milestone0-150-

movie5 trbm100-movie2 

bk3-100gax frbm300-knn3-1 mfw31-10-milestone5-150 trbm100-ssvd-31-00 

bk3-100gx frbm300-movie8 

mfw31-10-milestone5-150-

movie5 trbm100-ssvd-31-00-movie2 

bk3-200g1 frbm300x mfw31-40env50 trbm100-ssvd-31-00-user2 

bk3-200g3 globalEffect14-movie5 mfw31-40env50-m trbm150-mf27-m 

bk3-200g4 gte14b mfw31-40env50-m2 trbm150-mf27-movie4 

bk3-200g-knn2-1 integ0-0-0TZ mfw31-60-10-120-m trbm150-movie5 

bk3-200gx integ0-0-0TZ-flip20-knn2-1 mfw31-60-10-120-movie6 trbm150-ssvd-07-00-movie4 

bk3-a50-knn1-3 integ0-0-0TZ-grbm200 mfw31-60-x trbm150-ssvd-39-00 

bk3-b200-knn1-3 integ0-0-0TZmilestone6-200 mfw31-80-x trbm50-asym3v250 

bk3-c50 

integ0-0-0TZmilestone6-200-

knn2-1 mfw31-80-x-m 

trbm50-asym3v250-mfw27-

movie5 

bk3-c50-knn2-1 

integ0-0-0TZmilestone6-200-

movie6 mfw31-80-x-user2 trbm50-asym3v250-movie5 

bk3-c50-knn3-1 integ0-0-0TZ-movie6 mmean trbm50-asym3v250-movie6 

bk3-c50x integ0-100-100TZ mp5 trbm50-asym3v250-user2 

bk3-d200 integ0-100-100TZ-movie6 mskew trbm50-mf27 

bk3-d200z integ0-200-200NT nmf40-60-10 trbm50-milestone0-150-movie6 

bk3-d200z-knn4-1 integ0-200-200NT-user2 nmf40-60-10-movie3 trbm50-milestone9-150-movie5 

blend2b integ0-200-200TZ nmf80-120-20-m trbm50-ssvd-39-00 

blend2-ga1 integ0-200-200TZ-knn1-1 nmf80-120-20-mf27-movie4 ucount 

blend2-ga4 integ0-200-200TZ-knn1-3 nnmf40 up2 

blend2-ga-knn2-1 integ0-200-200TZ-knn2-1 nnmf40-ssvd-07-00 up3 

blend2-gax integ0-200-200TZ-knn3-1 nnmf40-ssvd-07-00-movie3 up4 

blend3-knn2-1 integ0-200-200TZ-movie5 nnmf80-ssvd-39-00-movie4 up5 

blend5-knn3-1 integ0-200-200TZ-user2 pmf40-60-10-m urbm20-1000 
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blend5-knn4-1 integ20-100-100NT pmf80-120-20-mf27-movie4 urbm20-1000-knn1-3 

brismf250 integ40-200-0ST rbm100-ssvd-07-00-movie2 usermovie 

brismf250-movie5 integ40-200-0T ssvd-04-00 uskew 

brismf40-movie5 integ60-0-0TS ssvd-04-10-m  

brismf760-movie5 integ60-0-0TS-movie5 ssvd-04-40-m  

brismf760n integ60-0-0TS-user2 ssvd-07-30-2-movie2  

 

pragmatictheory-20090527 

bk1-a200-knn3-1 brismf760n-knn1-3B019 integ60-0-0TS-user2 nnmf80-ssvd-39-00-movie4 

bk1-a200x-knn1-1 brismf760n-knn3-1 integ80-80-0TZ-movie5 pmf40-60-10-m 

bk1-a50 brismf760n-knn4-1B081 integ80-80-0TZM pmf80-120-20-mf27-movie4 

bk1-a50-2-knn1-1 brismf760n-user2 integ80-80-0TZM-movie6 rbm100-ssvd-07-00-movie2 

bk1-a50-2x crbm100 mf01-20-movie3 ssvd-04-00 

bk1-a50-movie5 crbm100-movie2 mf01-40-3-80-movie4 ssvd-04-10-m 

bk1-b1000 crbm100-ssvd-07-00 mf27-20 ssvd-04-40-m 

bk1-b200-1 crbm100-ssvd-07-00-movie2 mf27-20-knn1-1B072 ssvd-07-30-2-movie2 

bk1-b200-1-knn1-0 crbm100-ssvd-07-20 mf27-20-movie4 ssvd-31-00-asym1-20-movie6 

bk1-b200-1-knn1-1 crbm100x-ssvd-03-00 mf27-20-movie5 ssvd-31-00-asym3-100 

bk1-b200-2 crbm200-ssvd-07-00 mf27-20-u ssvd-31-00-asym3-20 

bk1-b200-5 drbm100-500 mf27-20env50-m ssvd-31-00-asym3-200 

bk1-b200-6x drbm100-500-user2 mf27-20env50-movie4 ssvd-31-00-asym3-200-movie2 

bk1-c200-knn2-1 drbm160-640 mf27-20env50-movie5 ssvd-31-00-asym3v-300-movie2 

bk1-c200x drbm160-640-bk4-knn3-1 mf27-40-3-80-movie5 ssvd-31-00-asym3w-200-movie2 

bk2-b200hz-knn1-1 drbm160-640-bk4-knn3-1B011 mfc27-60-10-120 ssvd-31-00-asym4-200 

bk3-100g1 drbm160-640-knn3-1 mfc27-60-10-120-m ssvd-31-00-asym4v-200-movie5 

bk3-100g2 drbm160-640-knn4-1 mfc27-60-10-120-user2 ssvd-31-00-movie 

bk3-100g4 frbm100-mf27-m mfw31-00 ssvd-31-00-movie5 

bk3-100ga-knn3-1 frbm2-100g3 mfw31-00-movie6 ssvd-31-10-m 

bk3-100ga4 frbm2-100g4 

mfw31-00milestone3-100-

movie6 ssvd-31-20 

bk3-100gax frbm200 

mfw31-00milestone4-100-

movie5 ssvd-31-20-cluster-movie2 

bk3-100gx frbm200-mf27-flip20 

mfw31-00milestone5-100-

movie5 ssvd-31-20-m 

bk3-200g1 frbm200-mf27-knn2-2 mfw31-00milestone6-100 ssvd-31-20-movie2 

bk3-200g3 frbm200x 

mfw31-00milestone7-100-

movie6 ssvd-31-20-u 

bk3-200g4 frbm300 

mfw31-00milestone9-100-

movie6 ssvd-31-60 

bk3-200gx frbm300-bk4-knn3-1 mfw31-05-asym3v250 ssvd-39-05 

bk3-a50-knn1-3 frbm300-knn1-1B068 mfw31-05-asym3v250-movie6 ssvd-39-05-movie4 

bk3-b200-knn1-3 frbm300-knn3-1 mfw31-05-asym3v250-user2 ssvd-39-10 

bk3-c50 frbm300x mfw31-05-m ssvd-39-10-movie4 

bk3-c50-knn2-1 integ0-0-0TZ mfw31-10-milestone0-150 svd05x 

bk3-d200 integ0-0-0TZ-flip20-knn2-1 

mfw31-10-milestone0-150-knn1-

3B022 trbm100 

bk3-d200z 

integ0-0-0TZ-grbm200-knn1-

3B025 

mfw31-10-milestone0-150-

movie5 trbm100-ssvd-31-00-movie2 

bk3-d200z-knn4-1 integ0-0-0TZ-knn1-1B046 mfw31-10-milestone5-150 trbm150-mf27-m 

bk4-biasZ integ0-0-0TZ-knn1-3B015 

mfw31-10-milestone5-150-

movie5 trbm150-mf27-movie4 

blend2-ga-knn2-1 integ0-0-0TZ-knn3-1B002 mfw31-40env50 trbm150-ssvd-07-00-movie4 

blend2-ga1 integ0-0-0TZ-movie6 mfw31-60-10-120-m trbm150-ssvd-39-00 

blend2-ga4 integ0-0-0TZmilestone6-200 mfw31-60-10-120-movie6 trbm50-asym3v250-movie5 

blend2-gax 

integ0-0-0TZmilestone6-200-

movie6 mfw31-60-x trbm50-asym3v250-movie6 

blend2-gax-knn1-1B052 integ0-100-100TZ mfw31-80-x trbm50-asym3v250-user2 

blend2b integ0-100-100TZ-movie6 mfw31-80-x-m trbm50-mf27 

blend5-knn1-1B047 integ0-200-200NT mfw31-80-x-user2 trbm50-milestone0-150-movie6 

blend5-knn3-1 integ0-200-200NT-user2 mmean trbm50-milestone9-150-movie5 

blend5-knn4-1 integ0-200-200TZ mp5 trbm50-ssvd-39-00 

brismf250 integ0-200-200TZ-knn1-1 mskew ucount 
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brismf250-movie5 integ0-200-200TZ-knn3-1 nmf40-60-10 up2 

brismf40-movie5 integ0-200-200TZ-user2 nmf40-60-10-movie3 up3 

brismf760-movie5 integ20-100-100NT nmf80-120-20-m up4 

brismf760n integ40-200-0ST nmf80-120-20-mf27-movie4 up5 

brismf760n-knn1-1 integ40-200-0T nnmf40 urbm20-1000-knn1-3 

brismf760n-knn1-1B050 integ60-0-0TS nnmf40-ssvd-07-00 usermovie 

brismf760n-knn1-3 integ60-0-0TS-movie5 nnmf40-ssvd-07-00-movie3 uskew 

4.4 Variable multiplications 

In the late stages of the competition, we used a final blending step consisting of a linear regression 

blending done directly on quiz sets, as described in [7]. Since this type of blending is linear in nature, it 

can only capture certain relationships between predictors. In order to try to capture non-linear aspects, 

we introduced new predictors which consist of simple arithmetic multiplications of pairs of base 

predictors. This technique is suggested in [6]. 

In order to find the best pairs of predictors to multiply, we constructed a baseline using a linear 

regression of the 233 sets in the pragmatictheory-20090316 blend. Then, we added, in turn, each 

possible pair of predictors multiplied together and compute the linear blend again. Finally, the pair 

which improves the blend result the most is selected. This new predictor is added to the baseline and 

the algorithm is run again. This method is known as forward selection. The following table presents the 

predictors that were introduced to the solution using this technique. 

Name Base predictor 1 Base predictor 2 

bk3-200g3-X-bk3-100ga4 bk3-200g3 bk3-100ga4 

nnmf80-ssvd-39-00-movie4-X-blend2-ga4 nnmf80-ssvd-39-00-movie4 blend2-ga4 

ucount-X-drbm100-500 ucount drbm100-500 

ucount-X-nmf80-120-20-m ucount nmf80-120-20-m 

frbm300-bk4-knn3-1-X-bk3-b200-knn1-3 frbm300-bk4-knn3-1 bk3-b200-knn1-3 
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5 Towards a better recommendation system 
The solution presented in this document was exclusively aimed at building a system that would predict 

subscriber ratings with the highest possible accuracy. Although highly accurate predictions are an 

important part of a recommender system, these alone cannot ensure good recommendations. 

Moreover, the solution is based on a huge amount of models and predictors which would not be 

practical as part of a commercial recommender system. However, this result is a direct consequence of 

the nature and goal of the competition: obtain the highest possible accuracy at any cost, disregarding 

completely the complexity of the solution and the execution performance. 

On the other hand, we believe that a real life recommender system can benefit from some of the 

techniques and algorithms proposed in this document. In our opinion, the following are our most 

worthwhile innovations: 

• The use of the frequency measure leads to higher accuracy. Frequency was most useful for 

movie related coefficients. This variable is especially useful because it can be used even with 

new customers that have a short history of ratings. 

• The classification view of linear models using logistic transformation allows for increased blend 

accuracy, using the same basic algorithm. 

• The non-linear envelope allows greater model accuracy with virtually no increase in model 

complexity. 

• We presented an extension to Koren's integrated model that achieves very high accuracy (bk4-

f200z4-nlpp1-knn3-1 has a quiz RMSE of 0.8713). One innovative contribution is to use a low 

rank matrix factorization to capture time-dependent biases. 

• We also presented an extension to Bell and Koren's neighbourhood approach that has been 

successful at improving virtually any model (kNN3). One innovative contribution was to 

estimate neighbour weights by combining the residual error and a simple baseline. 

• We demonstrated the use of automatic parameter tuning across multiple model types using the 

Nelder-Mead Simplex Method, which greatly reduces the manual effort required to adjust 

model meta-parameters. 

We believe the methods presented here will allow the creation of higher accuracy recommendation 

systems or, at the very least, simpler ones with equivalent accuracy. For example, the 2007 Progress 

Prize was won with an entry consisting of 107 predictors with a quiz set accuracy of 0.8712. Currently, 

we can achieve accuracy within 0.0001 of this milestone using a single predictor (bk4-f200z4-nlpp1-

knn3-1). This illustrates the progress made in collaborative filtering algorithms over the past two years. 
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7 List of predictors 

The following table lists all predictors that were included in the final quiz blend, sorted alphabetically. 

Name Probe RMSE Quiz RMSE 

bk1-a1000-nlpp1B107 0.8891 0.8815 

bk1-a1000x 0.8876 0.8794 

bk1-a1000x-knn1-3 0.8855 0.8766 

bk1-a1000x-knn1-5B131 0.8888 0.8803 

bk1-a200-knn1-1 0.8873 0.8787 

bk1-a200-knn1-3 0.8865 0.8776 

bk1-a200-knn3-1 0.8847 0.8762 

bk1-a200x-knn1-1 0.8861 0.8773 

bk1-a50 0.8917 0.8844 

bk1-a50-2 0.8917 0.8844 

bk1-a50-2-knn1-1 0.8889 0.8803 

bk1-a50-2x 0.8898 0.8819 

bk1-a50-movie5 0.8887 0.8797 

bk1-b1000 0.8863 0.8781 

bk1-b200-1 0.8877 0.8792 

bk1-b200-1-knn1-0 0.8872 0.8777 

bk1-b200-1-knn1-1 0.8871 0.8776 

bk1-b200-2 0.8880 0.8795 

bk1-b200-5 0.8872 0.8789 

bk1-b200-5-knn1-1B060 0.8868 0.8777 

bk1-b200-5x 0.8865 0.8778 

bk1-b200-5x-knn1-3 0.8858 0.8766 

bk1-b200-6 0.8865 0.8784 

bk1-b200-6x 0.8854 0.8768 

bk1-c200-knn2-1 0.8840 0.8755 

bk1-c200x 0.8855 0.8770 

bk2-b200h 0.8868 0.8785 

bk2-b200hz-knn1-1 0.8851 0.8761 

bk3-100g1 1.0426 1.0411 

bk3-100g2 0.9725 0.9698 

bk3-100g4 0.9717 0.9684 

bk3-100ga1 1.0411 1.0395 

bk3-100ga4 0.9697 0.9663 

bk3-100ga-knn3-1 0.8821 0.8747 

bk3-100gax 0.8879 0.8818 

bk3-100gx 0.8895 0.8836 

bk3-200g1 1.0385 1.0366 

bk3-200g3 0.9140 0.9092 

bk3-200g3-X-bk3-100ga4 0.9616 0.9577 

bk3-200g4 0.9669 0.9631 

bk3-200g-knn2-1 0.8812 0.8738 

bk3-200gx 0.8851 0.8785 

bk3-a0z 0.9610 0.9555 

bk3-a50-knn1-3 0.8901 0.8817 

bk3-b200-knn1-3 0.8901 0.8814 
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bk3-c50 0.8895 0.8825 

bk3-c50-knn2-1 0.8841 0.8763 

bk3-c50-knn3-1 0.8837 0.8758 

bk3-c50x 0.8895 0.8826 

bk3-d200 0.8850 0.8772 

bk3-d200-knn1-1B049 0.8836 0.8749 

bk3-d200-knn1-3B018 0.8850 0.8769 

bk3-d200-knn3-1B005 0.8822 0.8738 

bk3-d200z 0.8849 0.8775 

bk3-d200z-knn1-4B146 0.8998 0.8941 

bk3-d200z-knn4-1 0.8828 0.8749 

bk4-a50 0.8893 0.8823 

bk4-b200-knn1-1B100 0.8856 0.8779 

bk4-b200-knn3-1B101 0.8817 0.8736 

bk4-b200-knn4-1B102 0.8854 0.8778 

bk4-bias 0.9525 0.9469 

bk4-biasZ 0.9520 0.9464 

bk4-c200g 0.8938 0.8875 

bk4-c50 0.8875 0.8805 

bk4-c500-knn5-1B125 0.8842 0.8765 

bk4-d50 0.8848 0.8768 

bk4-d500-knn1-5B130 0.8861 0.8775 

bk4-d50B128 0.8850 0.8770 

bk4-e50a 0.8873 0.8803 

bk4-f200z4 0.8837 0.8760 

bk4-f200z4-nlpp1-knn3-1 0.8798 0.8713 

bk5-b200B089 0.9070 0.9013 

bk5-b200B089-knn1-3B090 0.9047 0.8973 

bk5-b200-knn1-1B095 0.8953 0.8882 

bk5-b200-knn1-5B133 0.8979 0.8914 

bk5-b200-knn4-1B097 0.8945 0.8881 

blend2b 0.8897 0.8840 

blend2-ga1 1.0353 1.0333 

blend2-ga4 0.9663 0.9624 

blend2-ga-knn2-1 0.8810 0.8736 

blend2-gax 0.8844 0.8778 

blend2-gax-knn1-1B052 0.8895 0.8823 

blend2-gax-knn1-3B021 0.8842 0.8771 

blend2-gb 0.8823 0.8761 

blend3-knn2-1 0.8766 0.8682 

blend5-knn1-1B047 0.8777 0.8692 

blend5-knn3-1 0.8762 0.8678 

blend5-knn4-1 0.8773 0.8691 

brismf250 0.9012 0.8945 

brismf250-movie5 0.8998 0.8915 

brismf40-movie5 0.9012 0.8930 

brismf760-movie5 0.8995 0.8913 

brismf760n 0.8992 0.8926 

brismf760n-knn1-1 0.8967 0.8886 

brismf760n-knn1-1B050 0.8973 0.8895 
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brismf760n-knn1-3 0.8960 0.8877 

brismf760n-knn1-3B019 0.8970 0.8892 

brismf760n-knn3-1 0.8953 0.8877 

brismf760n-knn4-1B081 0.8973 0.8900 

brismf760n-movie5 0.8972 0.8888 

brismf760n-movie6 0.9000 0.8932 

brismf760n-user2 0.8987 0.8917 

brismf760-user2 0.8998 0.8926 

crbm100 0.9096 0.9051 

crbm100-movie2 0.8963 0.8895 

crbm100-ssvd-07-00 0.9038 0.8986 

crbm100-ssvd-07-00-movie2 0.8937 0.8864 

crbm100-ssvd-07-20 0.9033 0.8978 

crbm100x-ssvd-03-00 0.9048 0.8996 

crbm200 0.9067 0.9020 

crbm200-ssvd-07-00 0.9013 0.8961 

drbm100-500 0.9073 0.9045 

drbm100-500-mfw31-m 0.9018 0.8974 

drbm100-500-user2 0.9039 0.8997 

drbm160-640 0.9069 0.9027 

drbm160-640-bk4-knn3-1 0.8885 0.8811 

drbm160-640-bk4-knn3-1B011 0.8899 0.8822 

drbm160-640-knn3-1 0.8936 0.8869 

drbm160-640-knn4-1 0.9024 0.8966 

frbm100-mf27-m 0.8999 0.8940 

frbm200 0.9056 0.9002 

frbm200-mf27-flip20 0.8965 0.8904 

frbm200-mf27-knn2-2 0.8886 0.8811 

frbm200x 0.9048 0.8995 

frbm2-100g3 0.9809 0.9785 

frbm2-100g4 1.0041 1.0005 

frbm2-100gx-knn2-1 0.8991 0.8911 

frbm300 0.9050 0.9001 

frbm300-bk4-knn3-1 0.8871 0.8788 

frbm300-knn1-1B068 0.8941 0.8856 

frbm300-knn3-1 0.8913 0.8841 

frbm300-movie8 0.8942 0.8875 

frbm300x 0.9039 0.8992 

globalEffect14-movie5 0.9327 0.9227 

gte14b 0.9537 0.9471 

integ0-0-0TZ 0.9592 0.9551 

integ0-0-0TZ-flip20-knn2-1 0.9034 0.8957 

integ0-0-0TZ-grbm200 0.9192 0.9137 

integ0-0-0TZ-grbm200-knn1-3B025 0.9212 0.9153 

integ0-0-0TZ-knn1-1B046 0.9459 0.9404 

integ0-0-0TZ-knn1-3B015 0.9311 0.9235 

integ0-0-0TZ-knn3-1B002 0.9131 0.9052 

integ0-0-0TZmilestone6-200 0.9211 0.9162 

integ0-0-0TZmilestone6-200-knn2-1 0.8920 0.8839 

integ0-0-0TZmilestone6-200-movie6 0.8919 0.8840 
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integ0-0-0TZ-movie6 0.9079 0.9003 

integ0-100-100TZ 0.8981 0.8921 

integ0-100-100TZ-movie6 0.8911 0.8837 

integ0-200-200NT 0.9057 0.8996 

integ0-200-200NT-user2 0.9037 0.8972 

integ0-200-200TZ 0.8969 0.8906 

integ0-200-200TZ-knn1-1 0.8931 0.8845 

integ0-200-200TZ-knn1-3 0.8924 0.8836 

integ0-200-200TZ-knn1-3B039 0.8949 0.8869 

integ0-200-200TZ-knn2-1 0.8891 0.8814 

integ0-200-200TZ-knn3-1 0.8889 0.8811 

integ0-200-200TZ-movie5 0.8920 0.8829 

integ0-200-200TZ-user2 0.8963 0.8895 

integ20-100-100NT 0.9003 0.8946 

integ40-200-0ST 0.8995 0.8939 

integ40-200-0ST-knn1-1B071 0.8982 0.8914 

integ40-200-0T 0.8999 0.8936 

integ60-0-0TS 0.9048 0.8988 

integ60-0-0TS-movie5 0.8998 0.8912 

integ60-0-0TS-user2 0.9014 0.8948 

integ80-80-0TZM 0.8989 0.8927 

integ80-80-0TZM-movie6 0.8909 0.8831 

integ80-80-0TZ-movie5 0.8907 0.8817 

mf01-20-movie3 0.9038 0.8974 

mf01-40-3-80-movie4 0.9044 0.8984 

mf27-20 0.9078 0.9020 

mf27-20env50-m 0.8984 0.8915 

mf27-20env50-movie4 0.8988 0.8919 

mf27-20env50-movie5 0.8985 0.8904 

mf27-20-knn1-1B072 0.9064 0.8993 

mf27-20-movie4 0.8995 0.8922 

mf27-20-movie5 0.9005 0.8917 

mf27-20-u 0.9071 0.9014 

mf27-40-3-80-movie5 0.8990 0.8900 

mfc27-60-10-120 0.9072 0.9017 

mfc27-60-10-120-m 0.8996 0.8918 

mfc27-60-10-120-user2 0.9051 0.8991 

mfw31-00 0.9708 0.9665 

mfw31-00milestone3-100-movie6 0.8961 0.8876 

mfw31-00milestone4-100-movie5 0.9036 0.8935 

mfw31-00milestone5-100-movie5 0.9031 0.8932 

mfw31-00milestone6-100 0.9289 0.9235 

mfw31-00milestone7-100-movie6 0.8954 0.8869 

mfw31-00milestone9-100-movie6 0.8954 0.8869 

mfw31-00-movie6 0.9124 0.9040 

mfw31-05-asym3v250 0.9083 0.9024 

mfw31-05-asym3v250-movie6 0.8919 0.8838 

mfw31-05-asym3v250-user2 0.9031 0.8963 

mfw31-05-m 0.9176 0.9091 

mfw31-10-milestone0-150 0.9055 0.8994 
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mfw31-10-milestone0-150-knn1-3B022 0.9049 0.8977 

mfw31-10-milestone0-150-movie5 0.8972 0.8874 

mfw31-10-milestone5-150 0.9049 0.8989 

mfw31-10-milestone5-150-movie5 0.8966 0.8869 

mfw31-40env50 0.9017 0.8966 

mfw31-40env50-m 0.8961 0.8887 

mfw31-40env50-m2 0.8948 0.8874 

mfw31-60-10-120-m 0.8965 0.8883 

mfw31-60-10-120-movie6 0.8978 0.8906 

mfw31-60-x 0.9027 0.8968 

mfw31-80-x 0.9031 0.8973 

mfw31-80-x-m 0.8965 0.8890 

mfw31-80-x-user2 0.9012 0.8948 

mmean 1.0516 1.0520 

mp5 1.0648 1.0657 

mskew 1.0687 1.0691 

nmf40-60-10 0.9138 0.9089 

nmf40-60-10-movie3 0.9068 0.9005 

nmf80-120-20-m 0.9069 0.8997 

nmf80-120-20-mf27-movie4 0.9012 0.8942 

nnmf40 0.9156 0.9088 

nnmf40-ssvd-07-00 0.9122 0.9050 

nnmf40-ssvd-07-00-movie3 0.9056 0.8971 

nnmf80-ssvd-39-00-movie4 0.9019 0.8933 

nnmf80-ssvd-39-00-movie4-X-blend2-ga4 0.9639 0.9597 

pmf40-60-10-m 0.9102 0.9033 

pmf80-120-20-mf27-movie4 0.9024 0.8957 

rbm100-ssvd-07-00-movie2 0.8949 0.8878 

ssvd-04-00 0.9891 0.9872 

ssvd-04-10 0.9278 0.9236 

ssvd-04-10-m 0.9160 0.9099 

ssvd-04-40-m 0.9136 0.9073 

ssvd-07-30-2-movie2 0.9263 0.9197 

ssvd-31-00-asym1-20-movie6 0.9063 0.8987 

ssvd-31-00-asym3-100 0.9279 0.9227 

ssvd-31-00-asym3-20 0.9311 0.9262 

ssvd-31-00-asym3-200 0.9275 0.9223 

ssvd-31-00-asym3-200-movie2 0.8990 0.8909 

ssvd-31-00-asym3v-300-movie2 0.8984 0.8902 

ssvd-31-00-asym3w-200-movie2 0.8986 0.8905 

ssvd-31-00-asym4-200 0.9254 0.9201 

ssvd-31-00-asym4v-200-movie5 0.9055 0.8959 

ssvd-31-00-movie 0.9166 0.9091 

ssvd-31-00-movie5 0.9323 0.9234 

ssvd-31-00-user2 0.9290 0.9230 

ssvd-31-10-m 0.9124 0.9049 

ssvd-31-20 0.9185 0.9124 

ssvd-31-20-cluster-movie2 0.9047 0.8971 

ssvd-31-20-m 0.9100 0.9020 

ssvd-31-20-movie2 0.9059 0.8982 
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ssvd-31-20-u 0.9172 0.9112 

ssvd-31-60 0.9165 0.9102 

ssvd-39-05 0.9282 0.9239 

ssvd-39-05-movie4 0.9061 0.8991 

ssvd-39-10 0.9215 0.9169 

ssvd-39-10-movie4 0.9053 0.8985 

ssvd-63-00 0.9593 0.9545 

ssvd-63-00-movie4 0.9138 0.9058 

ssvd-63-30 0.9148 0.9086 

ssvd-63-30-movie4 0.9046 0.8971 

svd02x 0.9496 0.9461 

svd05x 0.9376 0.9336 

trbm100 0.9087 0.9036 

trbm100-movie2 0.8956 0.8884 

trbm100-ssvd-31-00 0.9043 0.8989 

trbm100-ssvd-31-00-movie2 0.8948 0.8874 

trbm100-ssvd-31-00-user2 0.9017 0.8955 

trbm150-mf27-m 0.8986 0.8926 

trbm150-mf27-movie4 0.8921 0.8849 

trbm150-movie5 0.8944 0.8860 

trbm150-ssvd-07-00-movie4 0.8939 0.8869 

trbm150-ssvd-39-00 0.9003 0.8946 

trbm50-asym3v250 0.9112 0.9072 

trbm50-asym3v250-mfw27-movie5 0.8931 0.8845 

trbm50-asym3v250-movie5 0.8957 0.8872 

trbm50-asym3v250-movie6 0.8929 0.8863 

trbm50-asym3v250-user2 0.9073 0.9021 

trbm50-mf27 0.9077 0.9026 

trbm50-milestone0-150-movie6 0.8936 0.8869 

trbm50-milestone9-150-movie5 0.8955 0.8871 

trbm50-ssvd-39-00 0.9079 0.9030 

ucount 1.1264 1.1277 

ucount-X-drbm100-500 1.1266 1.1279 

ucount-X-nmf80-120-20-m 1.1264 1.1276 

up2 1.0947 1.0936 

up3 1.1004 1.1001 

up4 1.1271 1.1285 

up5 1.0813 1.0799 

urbm20-1000 0.9366 0.9311 

urbm20-1000-knn1-3 0.9253 0.9167 

usermovie 0.9823 0.9802 

uskew 1.1059 1.1050 

The following table lists additional predictors that were not included as part of the final quiz blend, but 

were included in the solution through probe-based blending. The quiz RMSE for these predictors is not 

available. 

Name Probe RMSE 

bk1-a1000x-knn1-4B145 0.8875 

bk1-a1000x-knn5-8B111 0.8865 
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bk1-a50-2-knn1-1B059 0.8897 

bk1-a50-2-knn1-3B028 0.8909 

bk1-a50-knn1-1B058 0.8902 

bk1-a50-knn1-3B027 0.8926 

bk1-b200-5-knn1-3B029 0.8863 

bk1-b200-6x-knn1-1B054 0.8849 

bk1-b200-6x-knn1-1B061 0.8850 

bk1-b200-6x-knn1-3B030 0.8848 

bk1-b200-6x-knn3-1B010 0.8839 

bk1-b200-6x-knn4-1B085 0.8850 

bk1-c200-knn1-1B062 0.8864 

bk1-c200-knn1-3B031 0.8864 

bk1-c200x-knn1-1B063 0.8847 

bk1-c200x-knn1-3B032 0.8848 

bk3-100ga-knn1-1B064 0.8892 

bk3-200gx-knn1-1B065 0.8833 

bk3-d200-knn4-1B080 0.8836 

bk3-d200z-nlpp1-knn3-1B109 0.8807 

bk4-b200-knn1-3B099 0.8852 

bk4-c200gx-knn1-1B162 0.8905 

bk4-c200gx-knn1-5B164 0.8910 

bk4-c200gx-knn3-1B167 0.8843 

bk4-c200z-knn1-1B172 0.8854 

bk4-c200z-knn1-3B176 0.8859 

bk4-c200z-knn1-5B182 0.8865 

bk4-c200z-knn3-1B165 0.8817 

bk4-c200z-knn5-1B183 0.8838 

bk4-c500-knn1-3B126 0.8859 

bk4-c500-knn1-4B143 0.8864 

bk4-c500-knn1-5B129 0.8876 

bk4-c500-knn3-1B123 0.8816 

bk4-d500-knn1-4B144 0.8849 

bk4-e200-knn1-1B170 0.8861 

bk4-e200-knn1-3B163 0.8863 

bk4-e200-knn1-5B180 0.8865 

bk4-e200-knn3-1B169 0.8816 

bk4-e200-knn5-1B185 0.8838 

bk4-e50a-knn1-1B188 0.8858 

bk4-e50a-knn1-3B166 0.8871 

bk4-e50a-knn1-5B159 0.8869 

bk4-e50a-knn3-1B175 0.8818 

bk4-e50a-knn5-1B161 0.8845 

bk4-f200gx-knn1-1B223 0.8884 

bk4-f200gx-knn1-2B216 0.8889 

bk4-f200gx-knn1-3B190 0.8878 

bk4-f200gx-knn1-4B241 0.8889 

bk4-f200gx-knn1-5B198 0.8885 

bk4-f200gx-knn3-1B193 0.8836 

bk4-f200gx-knn5-1B228 0.8871 

bk4-f200z4-knn1-2B234 0.8832 
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bk4-f200z4-knn1-3B242 0.8833 

bk4-f200z4-knn1-4B224 0.8845 

bk4-f200z4-knn1-5B197 0.8850 

bk4-f200z4-knn3-1B199 0.8803 

bk4-f200z4-knn5-1B218 0.8824 

bk4-f200z4-nlpp1-knn1-1B204 0.8839 

bk4-f200z4-nlpp1-knn1-2B202 0.8831 

bk4-f200z4-nlpp1-knn1-4B221 0.8832 

bk4-f200z4-nlpp1-knn1-5B207 0.8834 

bk4-f200z4-nlpp1-knn3-1B219 0.8802 

bk4-f200z4-nlpp1-knn5-1B192 0.8820 

bk5-b200-knn1-3B094 0.8959 

bk5-b200-knn1-4B147 0.8949 

bk5-b200-knn3-1B096 0.8924 

bk5-b200B089-knn1-1B091 0.9065 

bk5-b200B089-knn3-1B092 0.9047 

bk5-b200B089-knn4-1B093 0.9056 

blend2-gax-knn3-1B008 0.8796 

blend2-gax-knn4-1B083 0.8834 

blend2-gb-knn1-1B213 0.8816 

blend2-gb-knn1-2B238 0.8790 

blend2-gb-knn1-3B212 0.8788 

blend2-gb-knn1-4B210 0.8801 

blend2-gb-knn1-5B214 0.8818 

blend2-gb-knn3-1B217 0.8772 

blend2-gb-knn5-1B191 0.8793 

blend2-gb1-knn1-1B196 1.0023 

blend2-gb1-knn1-2B194 1.0063 

blend2-gb1-knn1-3B233 0.9850 

blend2-gb1-knn1-4B237 0.9974 

blend2-gb1-knn1-5B232 1.0091 

blend2-gb2-knn1-1B203 0.9645 

blend2-gb2-knn1-2B215 0.9524 

blend2-gb2-knn1-3B206 0.9513 

blend2-gb3-knn1-1B205 0.9392 

blend2-gb3-knn1-2B240 0.9265 

blend2-gb3-knn1-3B208 0.9274 

blend2-gb3-knn1-4B195 0.9370 

blend2-gb3-knn1-5B245 0.9432 

blend2-gb4-knn1-1B244 0.9716 

blend2-gb4-knn1-2B230 0.9486 

blend2-gb4-knn1-3B231 0.9414 

blend2-gb4-knn1-5B229 0.9654 

blend5-knn1-3B016 0.8859 

blend5-knn3-1B003 0.8765 

blend5-knn4-1B078 0.8773 

brismf760n-knn1-4B148 0.9011 

brismf760n-knn1-5B134 0.9148 

brismf760n-knn3-1B006 0.8963 

drbm160-640-bk4-knn1-1B055 0.8971 
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drbm160-640-bk4-knn1-3B024 0.8983 

drbm160-640-bk4-knn1-4B150 0.9012 

drbm160-640-bk4-knn1-5B136 0.9011 

drbm160-640-bk4-knn4-1B086 0.8962 

drbm160-640-bk4-knn5-8B115 0.8949 

drbm160-640-knn1-1B066 0.9101 

drbm160-640-knn1-3B035 0.9072 

drbm160-640-knn1-4B149 0.9046 

drbm160-640-knn1-5B135 0.9041 

drbm160-640-knn5-8B114 0.9007 

drbm160-640gx-knn1-1B181 0.9029 

drbm160-640gx-knn1-5B174 0.8969 

drbm160-640gx-knn3-1B168 0.8918 

drbm160-640gx-knn5-1B186 0.8976 

frbm200-mf27-flip20-knn1-1B067 0.8925 

frbm200-mf27-flip20-knn1-3B036 0.8924 

frbm300-bk4-knn1-1B045 0.8933 

frbm300-bk4-knn1-3B014 0.8928 

frbm300-bk4-knn1-4B152 0.8962 

frbm300-bk4-knn3-1B001 0.8888 

frbm300-bk4-knn4-1B076 0.8948 

frbm300-bk4-knn5-8B117 0.8925 

frbm300-knn1-3B037 0.8967 

frbm300-knn1-4B151 0.8961 

frbm300-knn1-5B137 0.8998 

frbm300gx-knn1-1B177 0.8951 

frbm300gx-knn1-3B160 0.9006 

frbm300gx-knn1-5B184 0.8971 

frbm300gx-knn3-1B179 0.8915 

frbm300gx-knn5-1B171 0.8979 

gte14b-knn1-1B048 0.9394 

gte14b-knn1-3B017 0.9411 

gte14b-knn3-1B004 0.9167 

gte14b-knn4-1B079 0.9459 

integ0-0-0TZ-grbm200-knn1-1B056 0.9173 

integ0-0-0TZ-grbm200-knn3-1B012 0.9022 

integ0-0-0TZ-grbm200-knn4-1B087 0.9140 

integ0-0-0TZ-knn4-1B077 0.9467 

integ0-0-0TZmilestone6-200-knn1-5B139 0.9142 

integ0-0-0TZmilestone6-200-knn5-8B118 0.9146 

integ0-100-100TZ-knn1-1B069 0.8972 

integ0-100-100TZ-knn1-3B038 0.8964 

integ0-200-200NT-knn1-4B154 0.9003 

integ0-200-200NT-knn1-5B140 0.9020 

integ0-200-200NT-knn5-8B119 0.8989 

integ0-200-200TZ-knn1-1B070 0.8964 

integ40-200-0ST-knn1-3B040 0.8972 

integ80-80-0TZM-knn1-4B155 0.8957 

integ80-80-0TZM-knn1-5B141 0.8957 

integ80-80-0TZM-knn5-8B120 0.8923 
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mf27-20-knn1-3B041 0.9018 

mfw31-05-asym3v250-knn1-1B073 0.9032 

mfw31-10-grbm200-knn1-5B142 0.9083 

mfw31-10-grbm200-knn5-8B121 0.9026 

mfw31-10-milestone0-150-knn1-1B053 0.9019 

mfw31-10-milestone0-150-knn3-1B009 0.8926 

mfw31-10-milestone0-150-knn4-1B084 0.9005 

mfw31-10-milestone5-150-knn1-1B074 0.8996 

mfw31-10-milestone5-150-knn1-3B043 0.8995 

mfw31-60-10-120-knn1-1B057 0.9030 

mfw31-60-10-120-knn3-1B013 0.8956 

mfw31-60-10-120-knn4-1B088 0.8995 

ssvd-31-00-asym1-20-knn1-1B075 0.9213 

ssvd-31-00-asym1-20-knn1-3B044 0.9157 

urbm20-1000-knn1-1B051 0.9286 

urbm20-1000-knn4-1B082 0.9332 

Finally, the following table lists the probe blends that were included as part of the final quiz blend. The 

second column reports the quiz set RMSE. 

Name Quiz RMSE 

nnblend-top50 0.8602 

nnblend-top100 0.8597 

nnblend-top212 0.8598 

nnblend-bottom95 0.8617 

pragmatictheory-20090316 0.8599 

pragmatictheory-20090527 0.8599 
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