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Cancer outlier differential gene expression detection
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SUMMARY

We study statistical methods to detect cancer genes that are over- or down-expressed in some but not all
samples in a disease group. This has proven useful in cancer studies where oncogenes are activated only in
a small subset of samples. We propose the outlier robust t-statistic (ORT), which is intuitively motivated
from the t-statistic, the most commonly used differential gene expression detection method. Using real and
simulation studies, we compare the ORT to the recently proposed cancer outlier profile analysis (Tomlins
and others, 2005) and the outlier sum statistic of Tibshirani and Hastie (2006). The proposed method often
has more detection power and smaller false discovery rates. Supplementary information can be found at
http://www.biostat.umn.edu/∼baolin/research/ort.html.
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1. INTRODUCTION

Recently, Tomlins and others (2005) have proposed the “cancer outlier profile analysis” (COPA) method
for detecting cancer genes which show increased expressions in a subset of disease samples. They argue
that in the majority of cancer types, oncogene has heterogeneous activation patterns; traditional analytical
methods, for example, t-statistic, which search for common activation of genes across a class of cancer
samples, will fail to find such oncogene expression profiles. Instead, we should search for overexpression
only in a subset of cases. Through applications to public cancer microarray data sets, they have shown
that the proposed COPA can perform better than the commonly used t-statistic.

More recently, Tibshirani and Hastie (2006) proposed the outlier sum (OS) statistic to detect can-
cer gene outlier expressions. The OS and COPA are similarly defined using robust location and scale
estimates of the gene expression values (more details in Section 2). Through simulation studies and ap-
plications, they have shown that the OS can perform better than the COPA, for example, having smaller
false discovery rates (Benjamini and Hochberg, 1995).

In this paper, we consider the statistical methods to detect cancer genes with a subset of over- or
down-expressed outlier disease samples. Many methods have been proposed to detect differentially ex-
pressed genes (see, e.g. Dudoit and others, 2002; Troyanskaya and others, 2002). Among them, the
t-statistic is the most commonly used method. We will discuss several problems associated with the
t-statistic for cancer gene outlier expression detection, which will motivate the development of the out-
lier robust t-statistic (ORT). We will further establish the connection of the OS, COPA, and ORT statis-
tics to the t-statistic from a robustness consideration. Through simulation studies and applications to a
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public breast cancer microarray data, we empirically evaluate and compare the different outlier detection
statistics.

2. STATISTICAL METHODS

Consider a 2-class, for example, cancer/normal tissues, microarray data. Let xi j be the observed expression
values for samples i = 1, . . . , n and genes j = 1, . . . , p. Without loss of generality, assume that the
first n1 samples are from the normal group and the last n2 samples are from the cancer group, where
n = n1 + n2. In the following discussion, we assume that the outlier disease samples are overexpressed.
Similar arguments will carry through to detect genes with down-expressed outlier disease samples.

The 2-sample t-test statistic for gene j is defined as

t j = x̄2 j − x̄1 j

s j

√
n1n2

n
, where x̄1 j =

∑
i�n1

xi j

n1
, x̄2 j =

∑
i>n1

xi j

n2
. (2.1)

Here s j is the pooled standard error estimate for gene j

s2
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The t-statistic is based on the assumption that all disease samples are overexpressed. While in cancer
gene outlier analysis, only a subset of the disease samples are assumed to be overexpressed. Intuitively,
we want to make inference only using those overexpressed samples (outliers).

In the following, we first study the recently proposed COPA method (Tomlins and others, 2005) and
the OS statistic (Tibshirani and Hastie, 2006) for detecting cancer gene outliers. We will make some
intuitive connections between these 2 outlier detection statistics and the t-statistic. The t-statistic (2.1)
will be studied from a robustness (against outlier) perspective, which shows its dependence on all disease
samples and the inappropriate variance estimate. We then propose an ORT to remove the “all disease
samples” dependence and appropriately reduce the outlier effects on the variance.

2.1 t-statistic, COPA and OS

Note that we can equivalently write the t-statistic (2.1) as

t j =
√

n1n2(n − 2)

n

avgi>n1
(xi j − avg1 j )√

avg{(xi j − avg1 j )
2
i�n1

, (xi j − avg2 j )
2
i>n1

}
, (2.2)

where avg(·) means the sample average; avg1 j and avg2 j are the normal and disease group sample means.
According to our assumption, only a subset of those disease samples (i > n1) is overexpressed. So the
avgi>n1

(·) in the numerator, which sums over all disease samples, will introduce some extra noise. Another
problem is the variance estimate, which might overestimate the true value since we already know that there
is a subset of outlier disease samples. The COPA and OS statistics address these 2 problems with their
different approaches. They are defined as follows:

First, (robustly) standardize the data

x̃i j = xi j − med j

mad j
, i = 1, . . . , n, j = 1, . . . , p, (2.3)

where med j is the median and mad j is the median absolute deviation of gene j’s expression values

med j = mediani=1,...,n(xi j ), mad j = 1.4826 × mediani=1,...,n(|xi j − med j |),
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where the constant 1.4826 makes mad j approximately equal to the standard error for normally distributed
random variables. Here the medians are used due to the robustness consideration.

Let qr (·) be the r th percentile of the data. The COPA statistic (Tomlins and others, 2005) is defined
as the r th percentile of the disease samples’ standardized expression values qr (x̃i j : i > n1), where the
authors have used r = 75, 90, or 95. Note that the subtraction and scaling would not change the order of
the observed values. So it is easily checked that the COPA statistic is equivalent to

qr (x̃i j : i > n1) = qr (xi j : i > n1) − med j

mad j
. (2.4)

Compared to the t-statistic, intuitively the COPA replaces the normal sample mean x̄1 j by the all-sample
median med j , the sample standard error s j by the median absolute deviation mad j , and the disease sample
mean x̄2 j by the r th percentile qr (xi j : i > n1). Here, mad j can be viewed as a scaling factor to make the
COPA statistics comparable across different genes.

Immediately, we can see that the COPA statistic might not be efficient, since a fixed r th sample per-
centile is approximately equivalent to using the information from only one sample. We expect to see
improved power if instead we sum over, ideally, all outlier disease samples. The OS statistic (Tibshirani
and Hastie, 2006) proposed to replace the r th percentile with a sum over the outlier disease samples
identified with some heuristic criterion. The OS statistic is defined as

W j =
∑
i>n1

x̃i j × I{x̃i j > q75(x̃k j : k = 1, . . . , n) + IQR(x̃k j : k = 1, . . . , n)},

where I (·) is the indicator function and IQR(·) calculates the interquartile range

IQR(x̃k j : k = 1, . . . , n) = q75(x̃k j : k = 1, . . . , n) − q25(x̃k j : k = 1, . . . , n).

It is commented that values greater than the limit q75 + IQR are defined to be outliers in the usual statistical
sense.

Similarly, since the subtraction and scaling would not change the order of the observed values, it is
easily checked that the OS statistic is equivalent to

W j =
∑

i∈R(xi j − med j )

mad j
, (2.5)

where R is the set of “outlier disease samples” defined by the following heuristic criterion:

R = {i > n1: xi j > q75(xk j : k = 1, . . . , n) + IQR(xk j : k = 1, . . . , n)}. (2.6)

2.2 Outlier robust t-statistic

Besides the inefficiency of the COPA statistic owing to its use of a fixed r th sample percentile, a second
problem is that the median over all samples, med j , is not quite the right statistic to replace the normal
sample mean, avg1 j . It might overestimate the normal group mean owing to the contamination by disease
samples if a majority of them have outlier expressions. A more intuitive and appropriate quantity might
be, for example, the normal sample median.

Another problem is the median absolute deviation estimation. Since we already know that the disease
and normal samples are different, it might not be the best approach to use the overall median as a common
estimate for the 2 group medians. Intuitively, it might help to base our estimate on, for example, the group
median–centered expression values

|xi j − med1 j |, i = 1, . . . , n1; |xi j − med2 j |, i = n1 + 1, . . . , n,
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where med1 j and med2 j are the sample medians for the normal and disease groups

med1 j = mediani�n1(xi j ), med2 j = mediani>n1(xi j ).

An intuitive and reasonable estimate for the median absolute deviation might then be, for example,

1.4286 × median{|xi j − med1 j |i�n1 , |xi j − med2 j |i>n1} (2.7)

which is in spirit very similar to the pooled sample variance estimate

n

n − 2
× avg{(xi j − avg1 j )

2
i�n1

, (xi j − avg2 j )
2
i>n1

}.

In essence, we use the sample median to replace average, and the absolute difference to replace squared
difference in order to obtain a more robust variance estimate.

Summarizing previous discussions, we propose the following ORT to detect cancer genes with over-
expressed outlier disease samples

t∗j =
∑

i∈U j
(xi j − med1 j )

median{|xi j − med1 j |i�n1 , |xi j − med2 j |i>n1}
, j = 1, . . . , p, (2.8)

where U j is the set of “outlier disease samples” for gene j defined by

U j = {i > n1: xi j > q75(xk j : k = 1, . . . , n1) + IQR(xk j : k = 1, . . . , n1)}. (2.9)

Note that here we explicitly calculate the outlying measures using only the normal group samples. We use
permutations to estimate the ORT’s null distribution and calculate the P-values. For simplicity, we omit
those constants in the statistic definition, since they would not affect the significance testing based on the
permutations.

In the following, we use simulation studies and applications to a public breast cancer microarray data
to empirically evaluate and compare the detection power of previously discussed 4 methods: the t-statistic,
COPA, OS, and the proposed ORT.

3. SIMULATION STUDIES

Simulation studies are conducted to evaluate the power of various outlier detection statistics. We also
compare their false discovery rates (Benjamini and Hochberg, 1995).

Suppose we have n = 25 normal and disease samples. There are in total p = 1000 genes with their ex-
pression values simulated from the standard normal distribution. The first gene contains k = 1, 5, 10, 15,
20, 25 outlier disease samples with their expression values being added constant µ = 2. For each simu-
lated data, we can calculate the P-value for the first gene, which is the proportion of the other (null) genes
with the absolute test statistics bigger than the first gene. The P-values from the simulations can be used
to estimate the true/false-positive rates, that is, the sensitivity and 1 − specificity, which are then used to
construct the receiver operating characteristic curve for power comparison.

Figure 1 shows the estimated true/false-positive rates based on 1000 simulations. In the extreme sit-
uation with only one outlier disease sample (k = 1), the OS statistic performs the best, the ORT has
comparable performance as the OS, and the t-statistic and COPA have almost no detection power. When
increasing to k = 5 outlier disease samples, the ORT, OS, and COPA have similar power, all better than
the t-statistic. For k = 10 outlier disease samples, the ORT performs the best. The detection power of
both the ORT and t-statistic increases with more outlier disease samples. While the performance of the
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Fig. 1. Detection power estimation based on 1000 simulations. There are n = 25 disease and normal samples, and
999 null genes with their expression values simulated from standard normal distribution. The first gene contains a
subset of k outlier disease samples with their expression values added constant µ = 2.

COPA and OS decreases a little bit when the outlier disease samples approach the full set (k = 20, 25).
Overall, the ORT performs the best. It seems to be able to automatically adapt to the unknown number of
outlier samples, and combine the strength of both the OS and t-statistic.

Next we evaluate and compare the false discovery rates of the 4 methods based on the simulation.
We set m = 100, 200, 300 of the p = 1000 genes as differentially expressed with k = 1, 5, 15, 20, 25
outlier disease samples with their expression values being added constant µ = 2. Figure 2 shows the
estimated false discovery rates based on 1000 simulations for m = 200 differentially expressed genes.
Similar patterns as the true/false-positive rates estimation (see Figure 1) are observed. The ORT has the
overall best performance with the smallest false discovery rates.

Very similar patterns have been observed for m = 100, 300. We also did the simulation studies for
n = 15, 25; k = 1, 3, 6, 9, 12, 15 or k = 1, 5, 10, 15, 20, 25; and µ = 1, 2. We consistently observe that
the ORT has the overall best performance. Complete simulation results are available at the supplementary
web site (http://www.biostat.umn.edu/∼baolin/research/ort.html).

In Section 4, we apply the 4 cancer gene outlier detection statistics to a public breast cancer microarray
data and empirically compare their performance.

4. APPLICATION TO THE BREAST CANCER MICROARRAY DATA

The breast cancer microarray data reported by West and others (2001) contained the expression levels of
7129 genes from 49 breast tumor samples. Each sample had a binary outcome describing the status of

http://www.biostat.umn.edu/~baolin/research/ort.html


Cancer outlier differential gene expression detection 571

Fig. 2. False discovery rate estimation based on 1000 simulations. There are n = 25 disease and normal samples, and
p = 1000 genes with their expression values simulated from standard normal distribution. The first m = 200 genes
contain a subset of k outlier disease samples with their expression values being added constant µ = 2. The x-axis is
the positive rates: the proportion of genes called significant.

lymph node involvement in breast cancer. Among them, 25 tumor samples had no positive lymph nodes
discovered and 24 tumor samples had identifiably positive nodes. The gene expressions, obtained from
the Affymetrix human HuGeneFL GeneChip, can be downloaded from http://data.cgt.duke.edu/west.php.
We normalize the data using quantile normalization (Bolstad and others, 2003), and then log transform
the intensities for follow-up statistical analysis. In the cancer gene outlier detection, we treat the negative
group as the normal class. We applied the t-statistic, COPA, OS, and the proposed ORT to detect genes
with overexpressed disease samples. We rank the genes based on each test statistic. For those top 25 genes
identified by each method, we mapped their Affymetrix identifiers to the UniGene cluster identifiers using
the Bioconductor (Gentleman and others, 2004) annotation package hu6800, which were then used to
search for relevant literature in the PubMed. There are in total 13 genes identified that have been studied
previously and shown related to breast cancer.

Table 1 lists the confirmed breast cancer–related genes ranked in top 25 for each outlier detection
statistic. ORT identified 8 genes, 5 of them were not selected by other statistics. There were 5 genes that
were missed by the ORT but identified by the others. Also listed in the table is the ranking of each gene by
the 4 test statistics. The genes identified by the OS were ranked generally high by the ORT. Among those
genes identified by the ORT, some were ranked low by the OS but relatively higher by the t-statistic, for
example, ATM and ERBB4; while several others were ranked low by the t-statistic but relatively higher
by the OS, for example, AGTR1 and CASC3. It seems likely that the proposed ORT could combine the

http://data.cgt.duke.edu/west.php
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Table 1. Genes ranked in top 25 by the outlier detection statistics and confirmed to be associated with
breast cancer in previous studies. The last 4 columns also list the ranking of each gene by the 4 methods

Methods Rank UniGene ID Gene name t COPA OS ORT

t 18 Hs.435561 ATM 819 4296 7

23 Hs.338207 FRAP1 4507 4296 4376
24 Hs.487046 SOD2 3670 4296 401

COPA 17 Hs.512234 IL6 3447 5 126
21 Hs.204238 LCN2 4744 4296 4375

OS 5 Hs.512234 IL6 3447 17 126
14 Hs.477887 AGTR1 2191 98 21
15 Hs.435714 PAK1 4744 125 32
16 Hs.350229 CASC3 731 105 22

ORT 7 Hs.435561 ATM 18 819 4296
9 Hs.390729 ERBB4 82 1842 1203

17 Hs.724 THRA 817 121 69
18 Hs.327527 SMARCA4 84 196 55
19 Hs.460996 TRADD 380 483 415
20 Hs.534310 CTAG1B 1883 292 176
21 Hs.477887 AGTR1 3291 98 14
22 Hs.350229 CASC3 731 105 16

strength of both the OS and t-statistic (see also Figures 1 and 2 in Section 3). Overall, the ORT had the
best detection power.

Figure 3 shows the expression profiles of the 8 genes that were identified by the ORT and con-
firmed associated with the breast cancer in previous studies. Figure 4 shows the expression profiles of the
other 5 confirmed breast cancer–related genes that were missed by the ORT but identified by the other 3
methods. We have added some jittering to the horizontal positions to distinguish among close points. The
title lists the gene names. Within the parentheses are those outlier statistics that have ranked the gene in
top 25.

5. DISCUSSION

Previous discussions have focused on detecting genes with overexpressed outlier disease samples. The
proposed ORT can be adapted to detect cancer genes with down-expressed outlier disease samples as
follows:

t∗j =
∑

i∈D j
(xi j − med1 j )

median{|xi j − med1 j |i�n1 , |xi j − med2 j |i>n1}
, j = 1, . . . , p,

where D j is the set of down-expressed “outlier disease samples” for gene j defined by

D j = {i > n1: xi j < q25(xk j : k = 1, . . . , n1) − IQR(xk j : k = 1, . . . , n1)}.

Similarly, here we have used the intuition that values less than the limit q25−IQR are defined to be outliers
in the usual statistical sense. When applied to the breast cancer microarray data to detect cancer genes
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Fig. 3. Cancer gene outlier detection for breast cancer microarray data: plotted are 8 top-ranking genes that were
identified by the ORT and confirmed associated with the breast cancer in the literature. The lymph node–negative
samples (LN−) serve as the normal group, and we look for outlier samples in the lymph node–positive (LN+) group.
We have added some jittering to the horizontal positions to distinguish among close points. The title lists the gene
names. Within the parentheses are those outlier statistics that have ranked the gene in top 25.

with down-expressed outlier disease samples, the OS, COPA, and ORT have very similar performance.
Overall, ORT has the best detection power. Complete lists of all the identified genes for different methods
are available at the supplementary web site (http://www.biostat.umn.edu/∼baolin/research/ort.html).

The proposed ORT is intuitively motivated from the widely used t-statistic with the robustness con-
sideration. Compared to the COPA and OS, ORT more appropriately takes into account the difference
between the normal and disease groups, for example, the proper estimation of median absolute devia-
tion (2.7) and the use of normal group median instead of the overall median (2.8). Through simulation
studies and application to public cancer microarray data, we have illustrated the competitive performance
of the proposed ORT. In this paper, we have focused on comparing 2 groups. The study of multigroup
comparisons will be reported in the future.

http://www.biostat.umn.edu/~baolin/research/ort.html
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Fig. 4. Cancer gene outlier detection for breast cancer microarray data: plotted are 5 top-ranking genes missed by the
ORT but identified by the other 3 methods that were confirmed related to the breast cancer in the literature. The lymph
node–negative samples (LN−) serve as the normal group, and we look for outlier samples in the lymph node–positive
(LN+) group. We have added some jittering to the horizontal positions to distinguish among close points. The title
lists the gene names. Within the parentheses are those outlier statistics that have ranked the gene in top 25.
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