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Abstract

We present a formalism for unifying the inference of popolasize from genetic sequences and math-
ematical models of infectious disease in populations. 3/phylogenies have been used in many recent
studies to infer properties of epidemics. These approaeigon coalescent models that may not be
appropriate for infectious diseases. We account for pleregjc patterns of viruses in Sl, SIS, and SIR
models of infectious disease, and our approach may be a\adternative to demographic models used to
reconstruct epidemic dynamics. The method allows epidegical parameters, such as the reproductive
number, to be estimated directly from viral sequence dataaMb describe patterns of phylogenetic clus-
tering that are often construed as arising from a short cbfiransmissions. Our model reproduces the
moments of the distribution of phylogenetic cluster sized may therefore serve as a null hypothesis for
cluster sizes under simple epidemiological models. We @x@a small cross-sectional sample of HIV-1
sequences collected in the United States and compare alisresstandard estimates of effective popu-
lation size. Estimated prevalence is consistent with eggsof effective population size and the known
history of the HIV epidemic. While our model accurately egties prevalence during exponential growth,

we find that periods of decline are harder to identify.



Coalescent theory has found wide applications for infezesfoviral phylogenies (He et al., 1996; DRUMMOND
et al., 2005; RoseNBERGand NORDBORG 2002) and estimation of epidemic prevalence&éym et al., 2001; WL-
SONet al., 2005; PoBBINS et al., 2003), yet there have been few attempts to formally integraalescent theory with
standard epidemiological modelsYBUS et al., 2001; GOODREAU, 2006). Whilst epidemiological models such as
SIR consider the dynamics of an entire population going éds in time, the coalescent theory operates on a small
sample of an infected sub-population and models the megfitigeages backwards in time until a common ancestor
has been reached. The original coalescent theory was basagopulation of constant size with discrete genera-
tions (KINGMAN, 1982b,a). Numerous extensions have been made for pamdatiith overlapping generations in
continuous time, exponential or logistic growth§GFITHS and TAVARE, 1994), and stochastically varying sizeAK
and KRONE, 2003). However, infectious disease epidemics are a dpease of a variable size population, often
characterized by early explosive growth followed by dezlinat leads to extinction or an endemic steady-state.

If super-infection is rare and if mutation is fast relativeepidemic growth, each lineage in a phylogenetic tree
corresponds to a single infected individual with its ownqu viral population. An infection event viewed in reverse
time is equivalent to the coalescence of two lineages ang éransmission of the virus between hosts can generate a
new branch in the phylogeny of consensus viral isolates frdected individuals. Recently diverged sequences should
represent transmissions in the recent past, and branaeestol the root of a tree should represent transmissions from
long ago. Consequently, branching patterns provide indbion about the frequency of transmissions over timeL(\W
SONet al., 2005). The correspondence between transmission andgemngtic branching is easiest to detect for viruses
such as HIV and HCV which have a high mutation rate relativdispersal. Underlying SIR/SI/SIS dynamics also
apply to other pathogens, although in some cases it may be difficult to reconstruct the transmission history.

We examined the properties of viral phylogenies generayetthd® most common epidemiological models based
on ordinary differential equations (ODEs). We are able tefidemiological models to a reconstructed phylogeny
for sampled viral sequence data and make inferences regatti size of the corresponding infected population.
Our solution takes the form of an ODE analogous to those us&@d¢k epidemic prevalence and thereby provides a
convenientlink between commonly used epidemiologicalet®dnd phylodynamics. Virtually all coalescent theory to
date has been expressed in terms of integer-valued stacpastesses. Our motivation for using differential eqoiasi
to describe the coalescent process is a desire to formdiisie with standard epidemiological models which are also
expressed in terms of differential equations.

We use our method to calculate the distribution of coaletomes for samples of viral sequences, fit SIR models to
a viral phylogeny and calculate median time to the most trea@mmon ancestor (MRCA) of the sample. Our method
also provides equations that describe the time-evolutidheocluster size distribution (CSD)- the distribution bét
number of descendants of a lineage over time. Clusters afetlvirus are often interpreted as epidemiologically

linked. For example, clusters of acute HIV infections magresent short transmission chains between high-risk



individuals (GOODREAU, 2006; LEwIS et al., 2008; DRUMRIGHT and FRROST, 2008; YERLY et al., 2001; HJE et al.,
2005; RO et al., 2005; BRENNER €t al., 2007). Because our model reproduces the moments of theckige
distribution, it can be used to predict the level of clustgras a function of epidemiological conditions. The moments
could be directly compared to empirical values, or they ddug used to reconstruct the entire CSD, whereupon
standard statistical tests could be used for comparinghlisions.

Although our equations describe the macroscopic propaufithe population distribution of cluster sizes, we gen-
eralize our method to the case of a small cross-sectiongllsashsequences. This allows us to develop a likelihood-
based approach to fitting SIR models to observed sequences.

By considering variable degrees of incidence and the sizheoinfected population, our solution sheds light on
the relationship between coalescent rates and epidemantigs. Coalescent rates are low near peak prevalence, but
higher when there is a large ratio of incidence to prevalemhés can occur early on, when the epidemic is entering its

expansion phase, as well as late if the epidemic has muftgrieds of growth.

1 Methods

Consider a population of siz& comprising susceptibleS)), infected ) and recoveredR) individuals. The deter-
ministic limiting behavior ofS = |S|/N, I = |Z|/N andR = |R|/N asN — oo and with all variabless> 1/N
is described by a set of coupled ordinary differential eiguat with time-dependent rates of change from skt
stateY” denoted agxy (t). For instance, the classical mass-action SIR modeRi{ack and MCKENDRICK, 1927,

BAILEY, 1975; ANDERSONand May, 1991)

S =—BSI,T=pBSI—~IR=nI. (1)

is obtained by settingis; (t) = 8S(t)I(t), fir(t) = vI(t) and all other rates t@. We will omit the explicit dependence
of terms on time when it is unambiguous.

Classical coalescent inference operates on a small sutesafihe larger evolving population, taken at a single
time point, and infers properties of the population at atieraime point, e.g. what is the expected number of lineages
ata giventime? Here, we denote the time of samplingbBwand consider the evolution of the population backwards in
time towards time = 0. Whilst this differs from the conventional temporal notatifor coalescent theory (where the
sampling, or present, time is denoted 0, and as we move bad&wdenotes the number of years before the present),
it allows us to develop a system of equations which link ceadat inference with standard epidemiological models.

We apply the coalescent model to the population of infecf@)land draw upon the dynamical system to provide

parameters such as the rate of lineage coalescence. Thiegirguestions that we seek to address include:



e If n individuals are sampled at tin¥e, how many lineages exist at time< 7'?

e How many lineages extant at tintehave surviving progeny at timé? We defineprogeny of a viral lineage
extant from timet < T as those individuals infected at tinfTe whose virus can be traced back to that viral
lineage at time. For instance, in Figure 1, from= t; the progeny of lineagé has4 individuals 6, 6, 8 and9),

but fromt¢ = ¢4, the progeny of lineagé consists of only and6.

e Can we describe the distribution of the number of progenyftinet (a timet cluster),X(t), using its distribu-
tional moments? For instance, in Figure 1, at time ¢, this distribution is given by2, 2, 2), while fort = ¢;

the distribution ig4, 2).

Note that a transmission does not always result in an obislereaalescent event depending on which lineages
expire due to recovery or are not sampled (e.g. the tranemi§®m 7 to 10 in figure 1). And a transmission to an
individual that recovers may still correspond to a coalasegent if that person transmits prior to recovering (ehg. t

transmission fron6 to 7 in figure 1).

1.1 Coalescent model for SIR epidemics

In an SIR epidemic, a branch in the tree corresponds to anige®n event, and as a lineage is traced backwards
in time, it traverses multiple infected hosts. A recovergmbefore the sample tinié does not alter the number of
lineages with progeny because no progeny of this individaalbe sampled at a later time. In a standard coalescent
model,n lineages merge in reverse time at a rate proportion(ag)o Given that a coalescent event occurs among the

individuals inZ , the probability of observing it among theobserved lineages is

n |Z| n(n—1)
6)(3) - A=

We will introduce the dimensionless variabig¢; 7') which is the fraction of the population atwith sampled
progeny extant af’. A(t; T) is proportional to the number of ancestors of a sample ofeseeps, and is analogous
to the integer-valued ancestor function used in standaatbsoent theory (&FFITHS and TAvARE, 1994). We will
consider howA evolves ag moves into the past, witlh' fixed.

If a fraction ¢ of the infected population is sampled at tifiethen we observe a number= ¢|Z(T")| lineages.
Initially, ¢t = T, and A(T;T) = ¢I (the ancestor of each sequence is itself). The sampledrastis not always

known, but if¢p = 1, our solution will describe the evolution of the fractioneoftant lineages for the entire population.

Using the definition ofdA and assumingl > 1/N, the probability of a transmission event causing a coafgsce
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Figure 1: An example of a phylogeny that could be generatemhigpidemic process. The number of lineages at time
t for a population observed at timieis plotted below. A branch in the tree corresponds to a tréssam event, and as

alineage is traced backwards in time, it traverses muliigécted hosts.



event to be observed in our sample is

| C(AEDNY AT
pe(t;T) = lim (V1) :( I(t) ) '

The rate of coalescence for a sample of sequences is analtmgitwe rate of change of the ancestor functibnye
can write the coalescence rate for the sample of sequentss poduct of the number of transmissions per unit time,
fs1(t) and the probability,. that a transmission results in a coalescence being obsereen sample. The ancestor

function A(¢; T') can be found by integrating the following backwards ordyrdifferential equation from timé™:

—. 2
A A= —fsipe = —[s1 <?> : @

ot
This equation works even when= 1, in which caseA represents the number of ancestors of the entire populattion

infecteds observed at tin¥e.

1.2 Cluster sizedistribution

Let X, (¢; T) denote the number of progeny&tof a random infected host from time< 7', given that such progeny
exist. We denote the expected valueXf by x;(¢; T'), and interpret it as themean cluster size from timet¢. Xo(¢; 7))
(andze = E(X3)) will be a random variable which describes the size of theteluif it is selected with probability
proportional to the cluster’s size. This is the same distidn of cluster sizes as if we select an infected at tifnend
determine the size of the cluster to which that infected figgo

Below, we show that; andzs can be found by integrating the ordinary differential eqprag
1 (T) = fsr(tI1(T)/1(8)?, ®)
Ty =21 (4)

backwards in time fromT" with initial prevalence (T') taken from the epidemic model. Also, initially (at= T), all
cluster sizes are unity, and (T; T) = xo(T;T) = 1.
The set of infectedg(T") will be distributed across a numbel(¢; T) N clusters, and for ang < ¢t < T, the

average number of infecteds per timeluster isI(T)/A(t; T). This implies

At;T) = I(T) /a1 (1 T). (5)



Evaluating the backwards derivativetatields
A=—7,I(T)/a? (6)

Using equation 6 in conjunction with equations 2 and 5 yielglsation 3.

Dynamics ofz, can be found by directly quantifying the mean field behavioKg. Consider the size of a cluster
to which a focal individual, a sampled infected at tiffigbelongs. As befores. x fs; gives the rate of coalescence.
Two clusters merge at each coalescent event, so there ibalplity proportional t®/ A that a focal individual belongs
to a cluster that takes part in the event. And given that tiidual’s cluster coalesces, the average amount by which

the cluster increases s . Multiplying these factors and probabilities togetherdgse

2 _.
Ty = pcfSIzh = 2x1. (7)

As with 1, this can be solved by integrating in reverse time with ahigonditionsz. (7, 7) = 1.

The variance oX; can be found by noting that

E(X?) = ZiQPT{Xl =i} = <Zipr{X1 - i}) (Zzi-ii;:{{;lz}}) Y

Recall thatX, is the size of a cluster selected with probability propardito size, so

Pr{X, = i} = iP{Xy =i}/ Y jPH{X: = j},
J
Combining the last two expressions with the definitionpf= >, iP{X, = ¢} gives
E(X2) = z129
Then, the variance in cluster size is

Var(Xl) = E(X%) - (E(Xl))2 = T1T2 — IE% (9)

Higher moments can also be derived recursively from earli@ments . We now show that th&h moment of the

CSD, M, can be found by solving the following differential equatigith initial conditionsi, (T") = 1:

. A n—1 n
Mn:fSIﬁ; <i>MiMni; (10)



where we defind/, := 1 for convenience. Equations 3 could be derived using equafloas a starting point.
Equation 10 is obtained by multiplying the rate at which astdu merges with other clustergs¢A/7%) and the
expected change in théth moment when two clusters merge. When a cluster ofisizerges with a cluster of sizg
then’th momentto be considered will change from that for a clustsize: to that for a cluster of sizg + ;). To find
the expected change in théth moment when two clusters merge, we sum over all possilstéoamations of clusters

of sizes; andj.

ZZPr{Xl = i}Pr{X; = j}(i 4+ j)" —i"

? J

e P =) s =) mi_o (1 )irmye
- S e = mz_ () Spe = )"
M, Z Pr{X,; =i} nijo (:1) "M,

— M, + an <;‘1) My My,

m=0

n—1

m=0

The product of the coalescent rafg; A% /12 and the factor /A which accounts for the probability that a focal
lineage takes part in a coalescent event, along with thectsgeize function yields equation 10. In t8apporting

Information(Figure S1) ,we compare solutions of this equation to thetBralgh 5th moments from simulations. .

1.3 Fitting epidemic models to sequence data

If we know the branching times, ¢, - - - , t,,_1 for a phylogeny constructed fromsequences, we can use equation 2
to fit an SIR model. In practice, there is considerable uadet about the exact genealogy and branching times given
a sample of sequences. The theory developed here is basefixed genealogy with no uncertainty about branch
lengths, but it should be straightforward to generalizes¢heesults to cope with error in thie (DRUMMOND et al.,
2005).

The total number of coalescent events observed between tievel T is proportional toA(T; ) — A(t; T'), and

at some time < 7 < T, the fraction of the coalescent events which have occusred i

(11)

10



This provides a cumulative distribution function for thetdibution of coalescent times. Differentiating with resp

to 7 yields the density

—A/(A(T:T) — A(1:T)).

We will make the approximation that when two lineages caaethe rates at which other lineages coalesce remain
unchanged. Then each coalescent time will be an i.i.d. rangwiable with the distribution (11). The probability of
observing a particular sequence of branching times willfopgrtional to the product of the density evaluated at each

branching time. Consequently, we can construct the lodjltiged function out of amd-trajectory:

At st = 119) = 3 g A1)/ (AT) ~ A) 12)
—(n—1)log(A(T;T) — A(t;T)) + Z log(—A(t;; T)), (13)

wheref denotes the parameters of the SIR model, such as transmassirecovery rates. In tt@ipporting Informa-

tionwe also present a likelihood function based on the Kolmog@&@mirnov statistic for comparing distributions.

2 Resaults

Equation 3 indicates some simple relationships that goveatescent rates in epidemics. Coalescent rates are pro-
portional to epidemic incidence’{;) and inversely proportional to square prevalente?j. Rates will be highest
when prevalence is low and incidence is high, such as at thiatieg of an epidemic, during the expansion phase, or
following a trough in prevalence.

Equation 9 implies that variance of the CSD asymptoticgliyraaches the mean squared. This is similar to what is
seen in the offspring distribution of forward time branahprocesses, such as the Galton-Watson processqAvA
and Nev, 2004).

The point in time where the ancestor function (5) crossesdhee1/N is the point at which the phylogeny of the
virus has collapsed to a single lineage— the most recent conamcestor (MRCA) of the sequences. Therefore, if we
collect a sample of size at timeT’, and solve equation 2 to time zero, wit7") = n/N, the timer which satisfies
A(r) = 1/N corresponds to the time to the most recent common ancestbe afample. Although our differential
equations should not serve as an adequate description digbete valued processes for values closé/ty, we
find that this approximation works quite well. A demonswatiwith comparison to simulations is provided in the

Supporting Information(Figure S11).
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Figure 2: The moments of the cluster size distribution oieetas calculated by equations 3 and 9 (lines,log-scale).
Four trajectories of the cluster size moments were gergtfatéour sample timeg'. And for each trajectory, simulated
moments were calculated for ten threshold timeBrror bars show the 90% interval for 100 agent-based stiouka

(N =10° andI(0) = 1%). The SIR model is§ = —3S1,1 = 3ST —~I, R = vI. Epidemic prevalence (dotted line)

is shown on right axis. Transmission rate= 1, and recovery ratg = 0.3.

2.1 Simulations

In order to assess the peformance of our model, we carriestochastic simulations of SIR epidemics. Simulations
were individual-based and in continuous time. Transmissi@nts and recovery events were queued using exponen-
tially distributed lag times, similar to the Gillespie atgbm . Each transmission event was recorded, which allowed
us to simulate viral phylogenies under controlled condgicand to test the accuracy of equations 3 and 9. The trans-
mission data were then converted into phylogenetic tretdskmiown branching times.

Simulation code was independently written by SDF and EMV ythBn and C. Results from both models were
compared to insure accuracy.

To assess the accuracy of the equations we have derived,wetoged a simulation experiment witl)? (1%)
initially infected agents out of a population of total si2é8 = 10° otherwise identical agents. Transmission and
recovery rates were such th&) = 10/3 . Figure 2.1 shows equations 3 and 9 (lines) and the 90% caowcide
intervals from simulations at ten thresholdsv@lues). The exact values ofandT" are reported in th&upporting
Information. Each trajectory corresponds to a cross-sectional cerishe mfected population at four time-points (
values) corresponding to maximum prevalence, as well as 88% and 22% of maximum prevalence after the peak.
As we go backwards in time, all moments of the CSD increast, the entire census of infecteds falls into a single
cluster. Many of the trajectories intersect, which demtss that the CSD is complex function of betand?’, and

could therefore not be reduced to a simple forward-lookiogleh.
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2.2 Comparison with the generalized skyline

Further simulations were developed to test the suitabilftyhe model for estimating epidemiological parameters.
When the number of infecteds is small, epidemic dynamiddisisubject to large stochastic fluctuations. To determine
if equation 12 can be used to fit SIR models when the populati@mis small, we conducted a set of simulations with
only a single initial infected in a population of ten thoudayents.

The simulations were also designed to determine if SIR nsothelt are fit via the likelihood equation 12 can
provide advantages beyond methods that are commonly usstinoate effective population siz&/(). For purposes
of comparison, we used the generalized skyline modeldEnRHEIN et al., 2005) (ape library in R), and compared
the estimated effective population size to the best-fit StiRlefs and the known epidemic prevalence from simulations.
Details of the simulations are provided in tBapporting Information.

We found that the accuracy of the best-fit SIR models excetfaaf the generalized skyline by 8-30% as mea-
sured by the root mean square error (RMSE) of estimated leres@ It may seem surprising that the SIR model based
on ODEs out-performs the generalized skyline even in thegmee of stochasticity at small population sizes. This is
due to the fact that population dynamics converge to theiahatéstic SIR model as the infected population increases in
size. Fluctuating incidence due to stochastic effects vihemumber of infecteds is small has the effect of shiftirgg th
distribution of coalescence times to the left or right, boesl not fundamentally change the shape of the distribution.
This is easily accounted for by including a parameter whiaties the fraction initially infected in the deterministic
SIR model.

Figure 3 shows the distribution of RMSE over 300 simulatiolBe mode of RMSE for the SIR model is zero
for all experiments, whereas the skyline is slightly biasedreasing sample size decreases RMSE for both SIR and
skyline. Taking the sample at a later time (corresponding0% of peak prevalence) decreases the accuracy of both
SIR and skyline, although in general the SIR models copebefth late sample times than does the skyline. In the
Supporting Information(Figure S10), we show several representative SIR and skiits It is usually the case that the
generalized skyline fails to detect a decrease in prevaland over-estimates in the latter stages of the epidemic.

The SIR models also provide a quite accurate estimaf@ @Ry = 2, Ry = 1.95 (95%:1.71-2.17)).

2.3 Theeffect of samplefraction

In the Kingman coalescent, the fraction of the populatiat th sampled is assumed to be small, such that the prob-
ability that more than two individuals have the same panertheé preceding generation is negligible. For example,
Kingman showed that the probability thatsampled sequences will not have a common ancestor in thedinec

generation is

H(I—Z/Nfl—Z—wLO 1<Z>/N+O(N2)

<n <n
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Accuracy of SIR and Generalized Skyline
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Figure 3: Root mean square error of SIR and generalizedskgtimates of epidemic prevalence. Data are based on
three hundred simulated epidemiég (= 2). RMSE is averaged over one hundred time points.
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Distribution of coalescent times
Sample fraction 5.00% Sample fraction 10.00% Sample fraction 20.00% Sample fraction 40.00%

00 05 1.0 15 20 25 3.0 35 4.0 0 1 2 3 4 0 1 2 3 4 o 1 2 3 4 5
Time in past (sample taken at zero)

Figure 4: The empirical distribution of coalescence timasdua on 150 simulated SIR epidemics. Transmission rate =
2, recovery rate = 1. The expected distribution based ontenual is shown in red.

Kingman then made the approximation that th&V—2) terms are zero, which yields a minimum requirement that
n < v2N.

Analytical work has been carried out to investigate theatfte coalescent processes of violating the assumption
of a small sample fraction (see for exampleJ(R2006)) using discrete mathematics similar to the origikiagman
model. Such work has indicated that the Kingman coales@mbe a surprisingly good approximation even when the
sample fraction is large.

Nevertheless, our model is not an approximation, and takesample fraction into account. This gives some
insight into how the fraction of the infected population $ded affects the distribution of coalescent times, and thus
the shape of the reconstructed phylogeny of viral sequences

Figure 4 shows the empirical distribution of coalescences for 150 simulationsH, = 2) with samples taken
at peak prevalence. The sample fraction was varied from 5840%. When the sample fraction is small (5%) , the
distribution is skewed left, meaning the phylogeny is gtarlwhich is in agreement with conventional notions for an
exponentially growing population. However, as the samgetfon is increased to 10, 20 and 40%, the shape of the
distribution changes until it is skewed right, which meamat tmost of the branches occur close to the tips. These
qualitatively antipodal distributions are generated kgyshme underlying population dynamics, with only the sample
fraction being varied. This observation is of practical &dl&s theoretical interest, since many serological sig¥ery
HIV may reach more than 20% of infected individuals withinizeg locality(LEwIS et al., 2008).

Equation 11 gives the analytical distribution of coaleseetimes and is shown in red. It also provides some simple
intuition for why most coalescence events will happen ctoshe sample timel() when the sample fraction is large.
We use the initial conditiond (7') = n/N, so that whem is large, the terni A(T")/I(T'))? is also large, which is the
probability that two individuals in a transmission eveninesent sample lineages. Conversely, énd(A(7)/1(T))?

are small, fewer coalescent events will occur uhtibnverges tod, which will occur early in the epidemic.

15



2.4 Estimating HIV prevalence

Equation 2 gives the rate of coalescence at any time pridiegsample time (T) and, by extension, the distribution
of coalescence times. This allowed us to derive the likelthéunction (12), which we used to fit a simple mass-
action SIR model to 55 HIV-1 sequences of fia gene collected as part of the ACTG241 clinical trial (RIBILA
et al., 1996; LEIGH BROWN et al., 1999). All sequences were collected from men who have sd#xmwen (MSM)
over a short period of time (May - July, 1993) within the Uditgtates. Because the sequences were collected within
a short window of time, it is valid to make the approximatibiattall sequences were sampled simultaneously. To
estimate a phylogeny, we used a general-time-reversibiiehod nucleotide substitution BVARE, 1986) with gamma
distributed variation in site-to-site substitution ratehe root giving the most clock-like rates was determined by
maximum likelihood and the null hypothesis of a moleculac&lcould not be rejected at the 5% significance level.
The epidemiology of HIV has several factors that are impura include in a model. Upon infection, individuals
progress through an acute phase lasting one to three mamith&hen progress to a chronic phase lasting many years.
The transmission probability per act is much greater duttiegacute phase. Furthermore, since we wish to model the
epidemic over a period of 25 years, we must consider natuvetiahity and immigration into the susceptible pool. All

of these factors are considered in the following model:

S = =SB\ — Palz) + pp— pS (14)
I = SO + Bolz) — 1 — ply (15)
I =yl — @y (16)

I, and I, respectively represent the fraction of the population #ratat the acute and chronic stages of infection.

Parameters we wish to estimate include
e [31: The transmission rate of acute infecteds.
e [35: The transmission rate of chronic infecteds.
e 12 The immigration rate into the susceptible population. \Gesider the total population to have constant size.
e «: A parameter which controls how incidence scales with cative incidence.
e ¢ The fraction of the population infected at the TMRCA of tlzargple.

Many more parameters could be included in a model for HIV agnidi$M, but since our purpose is to fit a model
to only 55 sequences, we choose to keep the number of fremptaes to a minimum. In addition we assumed an
acute phase which lasts two months on average=€ 1/60), and a chronic phase that lasts ten years on average

(2 = 1/(10 x 265)).
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Prior distributions are given in thaupporting I nformation.

Givenn = 55 sequences, we use the initial conditiohd’) = 55/N, I;(0) = ¢, andS(0) = 1 — €. Since we are
including equations for two types of infecteds, we must keagk of ancestor functions for both types, and A, will
be the fractions of the population which are respectivelyt@and chronic infected and which has sampled progeny at

timeT. We have:

Ay = =11 (Az/I2) 4 Bal2 S (Ar /1) ((I2 — A2)/12) (17)

A =L (As/B) = Bi11S%(A1/1)? — ol S* (A1 /) (18)

For purposes of fitting the SIR model, we ude= A; + Ao and A = /_1'1 + /_fg. A derivation is provided in the
Supporting Information.

Fitting the model proceeded in two steps. First we fit a mosdielgiequation 12 as described above. The second step
made use of sero-surveillance data of MSM in the United St@taLL et al., 2008). These data provided estimates
of HIV incidence based on back-calculation for the period@72-2006. To ameliorate error from uncertainty in the
chronological values of phylogenetic branch lengths, wasidd the timescale of the epidemic and rescaled estimated
rates to gain the greatest fit with incidence data by a lepstres criterion.

Figure 5 shows the best fit SIR model. The median posterionatts were

e Acute transmission ratg}; =1 transmission per 47 days
e Chronic transmission ratgy =: 1 transmission per 1207 days
e Immigration rate to susceptible stafe= 1 per 19.5 years

e Incidence scaling parametér= 9.77

Together, these parameters imply Bp value of 2.24 (se&upporting Information). They also imply that 41% of
transmissions occur during the acute stage.

For comparison with our SIR model, effective populatioreqi¥.) was calculated using the skyline plotBus
etal., 2000). N, was re-scaled so thatin(N,) = min(7). Figure 5 shows the re-scaled skyline and an SIR trajectory
which was integrated with parameters from the median of th&quior distribution. Confidence intervals are also
given, which show the upper and lower bounds within which @§%osterior epidemic prevalence falls. Figure 5 also
compares the best fit SIR model with the estimated cumulattidence among MSM in the United States based on
sero-surveillance data. The SIR model is in broad agreemi¢imthe data from public health sources regarding the
early rate of growth and saturation in early nineties. Thaisk also reproduces the growth rate during the expansion
phase and the tapering of epidemic growth in the early résetHowever, the skyline predicts a rise/\ between

1980 and 1993, which probably over-estimates the true [meve.
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Figure 5: Left: Estimated epidemic prevalence (logarithsaiale) of HIV among MSM in the United States. A solution
to equation 17 is compared to the skyline plot, re-scaletl st minimum effective population size equals minimum
prevalence. The thin lines show 95% confidence intervalghtRiEstimated cumulative incidence of HIV among
MSM versus time (years prior to 1993). A solution to equatfi@ris compared to estimates based on sero-surveillance

data (HaLL et al., 2008).

We have also compared the CSD mean and variance from oufito®8E8® model to the empirical values from the
ACTG 241 data (figure 6). The SIR model successfully reprediice mean cluster size throughout the course of the
epidemic. However, there is substantial deviation betwitberactual and predicted variance of cluster sizes. As the
clustering threshold is increased, all sampled infectednteially fall within a single cluster, and in a finite poptida,

variance converges to zero (not shown).

3 Discussion

The distribution of cluster sizes is a function of the tifiat which we observe a population, such as by taking a sample
of sequences, and< 7', which is a clustering threshold (if the MRCA of two sequescecurs aftet, then those
sequences are clustered). We have derived differentiatems that describe how the moments of the CSD change
as the threshold moves into the past. This could be used to calculate thelisibn of cluster sizes to arbitrary
precision at any time. It is straightforward to use the madelalculate the probability that an infected host will have
viral progeny at a later time point, and conversely, the etggtnumber of ancestor lineages of a sample také&n at
The model promises to serve as a null hypothesis for clugteri infecteds under various epidemiological scenarios,

and could possibly be used to detect effects that may distei©SD such as selection and population structure.
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Figure 6: The mean cluster size (dashes) and variance dgéckiges (dotted line) are calculated from the empirical
observations from the ACTG 241 sequences (dashed linesy@angdared to our best-fit SIR model(solid lines). The

horizontal axis gives the clustering threshold as the yedre@MRCA of a cluster.

The CSD is sensitive to details of the underlying populatignamics. Most coalescent approaches only take
into account variable population size, such as epidemicatgace, but not variable birth-rates, analogous to epiclem
incidence. Such approaches can give misleading resulepfdemics. For example, in both SI models (no recovery)
and SIS models (recovery into the susceptible state), [ees@ rapidly approaches an equilibrium. However, a naive
coalescent model based on constant population size worddesyusly predict identical coalescent patterns in these
two cases. In fact, the SIS case is very similar to a standarstant-population size coalescent, but the lineages in an
Sl epidemic only coalesce during exponential growth, netaflibrium (Figures S2 and S3).

We observed drastically less precision when estimatinguay rates than when estimating transmission rates.
Consequently, decline in prevalence is much harder to titae growth. This has been observed previoushv@Rry
et al., 1996) in other biological systems due to differences irtithescale of population change and genetic variation.
We nevertheless found that our estimation procedure isstabumis-specification of priors that include zero recoyery

and it is feasible to distinguish Sl from SIR dynamics(FegiE6-S9).

4 Conclusion

Coalescent-based estimates of effective population sireh as the generalized skyline, have wide applicability an
require minimal consideration of underlying populatiomdsynics. However, in the case that the epidemic dynamics
are well understood, the potential is raised for a poputagienetic model that takes into account the precise effécts o

transmission and recovery, thereby predicting populatioramics with greater accuracy. We have developed a model
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which provides a step towards the formal integration of plyhamics and epidemiology and which can be used to
estimate epidemiological and demographic parametersthjifieom viral sequence data.

Fitting population-models to data requires biological giifications to make the model tractable, which presents
the danger of making the model useless for real systemsq®W et al., 2005). Pathogens require both successful
reproduction within and between hosts, whereas we havaéabentirely on transmission of lineages to uninfected and
immunologically naive hosts. We have not considered bickigiuances such as super-infection and recombination or
the possibility that different strains will have differegpridemiological characteristics. Consequently, theeenaany
ways that our model could be extended and improved.

We have calculated coalescent rates and CSD moments omheforost simple mass-action SIR models. But mod-
ern mathematical epidemiology has progressed in the direof incorporating variable host susceptibility, patbag
virulence, geographical heterogeneity, and host conttetark structure. Reproducing our derivations for such mod
els would be a difficult but worthy enterprise.

While we have focused on variable population size in epidspa second pillar of phylodynamics concerns the
effects of immune selection on viral phylogenieREFELL et al., 2004). A major limitation of our approach is that
we adopt the standard assumption of selective neutralityuhknown how our method would perform for genes under
strong immune selection, such as influenza virus hemaggiuti

We have made a first attempt at a method for fitting arbitraR/ ®bdels to cross-sectional samples of viral se-
guences. Many challenges remain for increasing the utifithe method. It may be possible to improve estimation of
model parameters when historical prevalence data areablailHowever, it is not known how to discriminate between
competing models when only sequence data are availableeStieation theory developed here is based on a fixed
genealogy of virus with no uncertainty about branch lengthseality there can be a great deal of uncertainty about the
structure of the genealogy, and it should be straightfodw@pgeneralize the method to account for thisRUMMOND
et al., 2005). Finally, it should also be possible to extend ouuthmhs to heterochronous samples— sequence data

collected at multiple time-points over the course of an epiit.
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