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Abstract

We present a formalism for unifying the inference of population size from genetic sequences and math-

ematical models of infectious disease in populations. Virus phylogenies have been used in many recent

studies to infer properties of epidemics. These approachesrely on coalescent models that may not be

appropriate for infectious diseases. We account for phylogenetic patterns of viruses in SI, SIS, and SIR

models of infectious disease, and our approach may be a viable alternative to demographic models used to

reconstruct epidemic dynamics. The method allows epidemiological parameters, such as the reproductive

number, to be estimated directly from viral sequence data. We also describe patterns of phylogenetic clus-

tering that are often construed as arising from a short chainof transmissions. Our model reproduces the

moments of the distribution of phylogenetic cluster sizes and may therefore serve as a null hypothesis for

cluster sizes under simple epidemiological models. We examine a small cross-sectional sample of HIV-1

sequences collected in the United States and compare our results to standard estimates of effective popu-

lation size. Estimated prevalence is consistent with estimates of effective population size and the known

history of the HIV epidemic. While our model accurately estimates prevalence during exponential growth,

we find that periods of decline are harder to identify.
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Coalescent theory has found wide applications for inference of viral phylogenies (NEE et al., 1996; DRUMMOND

et al., 2005; ROSENBERGand NORDBORG, 2002) and estimation of epidemic prevalence (YUSIM et al., 2001; WIL -

SON et al., 2005; ROBBINS et al., 2003), yet there have been few attempts to formally integrate coalescent theory with

standard epidemiological models (PYBUS et al., 2001; GOODREAU, 2006). Whilst epidemiological models such as

SIR consider the dynamics of an entire population going forwards in time, the coalescent theory operates on a small

sample of an infected sub-population and models the mergingof lineages backwards in time until a common ancestor

has been reached. The original coalescent theory was based on a population of constant size with discrete genera-

tions (KINGMAN , 1982b,a). Numerous extensions have been made for populations with overlapping generations in

continuous time, exponential or logistic growth (GRIFFITHS and TAVARE, 1994), and stochastically varying size (KAJ

and KRONE, 2003). However, infectious disease epidemics are a special case of a variable size population, often

characterized by early explosive growth followed by decline that leads to extinction or an endemic steady-state.

If super-infection is rare and if mutation is fast relative to epidemic growth, each lineage in a phylogenetic tree

corresponds to a single infected individual with its own unique viral population. An infection event viewed in reverse

time is equivalent to the coalescence of two lineages and every transmission of the virus between hosts can generate a

new branch in the phylogeny of consensus viral isolates frominfected individuals. Recently diverged sequences should

represent transmissions in the recent past, and branches close to the root of a tree should represent transmissions from

long ago. Consequently, branching patterns provide information about the frequency of transmissions over time (WIL -

SONet al., 2005). The correspondence between transmission and phylogenetic branching is easiest to detect for viruses

such as HIV and HCV which have a high mutation rate relative todispersal. Underlying SIR/SI/SIS dynamics also

apply to other pathogens, although in some cases it may be more difficult to reconstruct the transmission history.

We examined the properties of viral phylogenies generated by the most common epidemiological models based

on ordinary differential equations (ODEs). We are able to fitepidemiological models to a reconstructed phylogeny

for sampled viral sequence data and make inferences regarding the size of the corresponding infected population.

Our solution takes the form of an ODE analogous to those used to track epidemic prevalence and thereby provides a

convenient link between commonly used epidemiological models and phylodynamics. Virtually all coalescent theory to

date has been expressed in terms of integer-valued stochastic processes. Our motivation for using differential equations

to describe the coalescent process is a desire to formalise alink with standard epidemiological models which are also

expressed in terms of differential equations.

We use our method to calculate the distribution of coalescent times for samples of viral sequences, fit SIR models to

a viral phylogeny and calculate median time to the most recent common ancestor (MRCA) of the sample. Our method

also provides equations that describe the time-evolution of the cluster size distribution (CSD)– the distribution of the

number of descendants of a lineage over time. Clusters of related virus are often interpreted as epidemiologically

linked. For example, clusters of acute HIV infections may represent short transmission chains between high-risk
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individuals (GOODREAU, 2006; LEWIS et al., 2008; DRUMRIGHT and FROST, 2008; YERLY et al., 2001; HUE et al.,

2005; PAO et al., 2005; BRENNER et al., 2007). Because our model reproduces the moments of the cluster size

distribution, it can be used to predict the level of clustering as a function of epidemiological conditions. The moments

could be directly compared to empirical values, or they could be used to reconstruct the entire CSD, whereupon

standard statistical tests could be used for comparing distributions.

Although our equations describe the macroscopic properties of the population distribution of cluster sizes, we gen-

eralize our method to the case of a small cross-sectional sample of sequences. This allows us to develop a likelihood-

based approach to fitting SIR models to observed sequences.

By considering variable degrees of incidence and the size ofthe infected population, our solution sheds light on

the relationship between coalescent rates and epidemic dynamics. Coalescent rates are low near peak prevalence, but

higher when there is a large ratio of incidence to prevalence. This can occur early on, when the epidemic is entering its

expansion phase, as well as late if the epidemic has multipleperiods of growth.

1 Methods

Consider a population of sizeN comprising susceptible (S), infected (I) and recovered (R) individuals. The deter-

ministic limiting behavior ofS = |S|/N , I = |I|/N andR = |R|/N asN → ∞ and with all variables≫ 1/N

is described by a set of coupled ordinary differential equations, with time-dependent rates of change from stateX to

stateY denoted asfXY (t). For instance, the classical mass-action SIR model (KERMACK and MCKENDRICK, 1927;

BAILEY , 1975; ANDERSONand MAY , 1991)

Ṡ = −βSI, İ = βSI − γI, Ṙ = γI. (1)

is obtained by settingfSI(t) = βS(t)I(t), fIR(t) = γI(t) and all other rates to0. We will omit the explicit dependence

of terms on time when it is unambiguous.

Classical coalescent inference operates on a small subsample of the larger evolving population, taken at a single

time point, and infers properties of the population at an earlier time point, e.g. what is the expected number of lineages

at a given timet? Here, we denote the time of sampling byT and consider the evolution of the population backwards in

time towards timet = 0. Whilst this differs from the conventional temporal notation for coalescent theory (where the

sampling, or present, time is denoted 0, and as we move backwardst denotes the number of years before the present),

it allows us to develop a system of equations which link coalescent inference with standard epidemiological models.

We apply the coalescent model to the population of infecteds(I) and draw upon the dynamical system to provide

parameters such as the rate of lineage coalescence. The practical questions that we seek to address include:
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• If n individuals are sampled at timeT , how many lineages exist at timet ≤ T?

• How many lineages extant at timet have surviving progeny at timeT? We defineprogeny of a viral lineage

extant from timet ≤ T as those individuals infected at timeT whose virus can be traced back to that viral

lineage at timet. For instance, in Figure 1, fromt = t1 the progeny of lineage6 has4 individuals (5, 6, 8 and9),

but fromt = t2, the progeny of lineage6 consists of only5 and6.

• Can we describe the distribution of the number of progeny from timet (a timet cluster),X(t), using its distribu-

tional moments? For instance, in Figure 1, at timet = t2 this distribution is given by(2, 2, 2), while for t = t1

the distribution is(4, 2).

Note that a transmission does not always result in an observable coalescent event depending on which lineages

expire due to recovery or are not sampled (e.g. the transmission from 7 to 10 in figure 1). And a transmission to an

individual that recovers may still correspond to a coalescent event if that person transmits prior to recovering (e.g. the

transmission from6 to 7 in figure 1).

1.1 Coalescent model for SIR epidemics

In an SIR epidemic, a branch in the tree corresponds to a transmission event, and as a lineage is traced backwards

in time, it traverses multiple infected hosts. A recovery event before the sample timeT does not alter the number of

lineages with progeny because no progeny of this individualcan be sampled at a later time. In a standard coalescent

model,n lineages merge in reverse time at a rate proportional to
(

n
2

)

. Given that a coalescent event occurs among the

individuals inI , the probability of observing it among then observed lineages is

(

n

2

)

/

(|I|
2

)

=
n(n − 1)

|I|(|I| − 1)
.

We will introduce the dimensionless variableA(t; T ) which is the fraction of the population att with sampled

progeny extant atT . A(t; T ) is proportional to the number of ancestors of a sample of sequences, and is analogous

to the integer-valued ancestor function used in standard coalescent theory (GRIFFITHS and TAVARE, 1994). We will

consider howA evolves ast moves into the past, withT fixed.

If a fractionφ of the infected population is sampled at timeT , then we observe a numbern = φ|I(T )| lineages.

Initially, t = T , andA(T ; T ) = φI (the ancestor of each sequence is itself). The sample fraction φ is not always

known, but ifφ = 1, our solution will describe the evolution of the fraction ofextant lineages for the entire population.

Using the definition ofA and assumingA ≫ 1/N , the probability of a transmission event causing a coalescent
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Figure 1: An example of a phylogeny that could be generated byan epidemic process. The number of lineages at time

t for a population observed at timeT is plotted below. A branch in the tree corresponds to a transmission event, and as

a lineage is traced backwards in time, it traverses multipleinfected hosts.
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event to be observed in our sample is

pc(t; T ) = lim
N→∞

(

A(t;T )N
2

)

(

NI(t)
2

)
=

(

A(t; T )

I(t)

)2

.

The rate of coalescence for a sample of sequences is analogous to the rate of change of the ancestor function,A. We

can write the coalescence rate for the sample of sequences asthe product of the number of transmissions per unit time,

fSI(t) and the probabilitypc that a transmission results in a coalescence being observedin our sample. The ancestor

functionA(t; T ) can be found by integrating the following backwards ordinary differential equation from timeT :

−dA

dt
:=

−·

A = −fSIpc = −fSI

(

A

I

)2

. (2)

This equation works even whenφ = 1, in which case,A represents the number of ancestors of the entire populationof

infecteds observed at timeT .

1.2 Cluster size distribution

Let X1(t; T ) denote the number of progeny atT of a random infected host from timet ≤ T , given that such progeny

exist. We denote the expected value ofX1 by x1(t; T ), and interpret it as themean cluster size from timet. X2(t; T )

(andx2 = E(X2)) will be a random variable which describes the size of the cluster if it is selected with probability

proportional to the cluster’s size. This is the same distribution of cluster sizes as if we select an infected at timeT and

determine the size of the cluster to which that infected belongs.

Below, we show thatx1 andx2 can be found by integrating the ordinary differential equations

−·

x 1(t; T ) = fSI(t)I(T )/I(t)2, (3)

−·

x 2 = 2
−·

x 1 (4)

backwards in time fromT with initial prevalenceI(T ) taken from the epidemic model. Also, initially (att = T ), all

cluster sizes are unity, andx1(T ; T ) = x2(T ; T ) = 1.

The set of infectedsI(T ) will be distributed across a numberA(t; T )N clusters, and for any0 ≤ t ≤ T , the

average number of infecteds per time-t cluster isI(T )/A(t; T ). This implies

A(t; T ) = I(T )/x1(t; T ). (5)
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Evaluating the backwards derivative att yields

−·

A = −−·

x 1I(T )/x2
1 (6)

Using equation 6 in conjunction with equations 2 and 5 yieldsequation 3.

Dynamics ofx2 can be found by directly quantifying the mean field behavior of X2. Consider the size of a cluster

to which a focal individual, a sampled infected at timeT , belongs. As before,pc × fSI gives the rate of coalescence.

Two clusters merge at each coalescent event, so there is a probability proportional to2/A that a focal individual belongs

to a cluster that takes part in the event. And given that the individual’s cluster coalesces, the average amount by which

the cluster increases isx1. Multiplying these factors and probabilities together yields

−·

x2 = pcfSI

2

A
x1 = 2

−·

x1. (7)

As with x1, this can be solved by integrating in reverse time with initial conditionsx2(T ; T ) = 1.

The variance ofX1 can be found by noting that

E(X2
1) =

∑

i

i2Pr{X1 = i} =

(

∑

i

iPr{X1 = i}
)

(∑

i i2Pr{X1 = i}
∑

i iPr{X1 = i}

)

(8)

Recall thatX2 is the size of a cluster selected with probability proportional to size, so

Pr{X2 = i} = iPr{X1 = i}/
∑

j

jPr{X1 = j},

Combining the last two expressions with the definition ofx1 =
∑

i iPr{X1 = i} gives

E(X2
1) = x1x2

Then, the variance in cluster size is

Var(X1) = E(X2
1) − (E(X1))

2 = x1x2 − x2
1. (9)

Higher moments can also be derived recursively from earliermoments . We now show that then’th moment of the

CSD,Mn, can be found by solving the following differential equation with initial conditionsMn(T ) = 1:

−·

Mn = fSI

A

I2

n−1
∑

i=0

(

n

i

)

MiMn−i, (10)
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where we defineM0 := 1 for convenience. Equations 3 could be derived using equation 10 as a starting point.

Equation 10 is obtained by multiplying the rate at which a cluster merges with other clusters (fSIA/I2) and the

expected change in then′th moment when two clusters merge. When a cluster of sizei merges with a cluster of sizej,

then′th moment to be considered will change from that for a clusterof sizei to that for a cluster of size(i+ j). To find

the expected change in then′th moment when two clusters merge, we sum over all possible combinations of clusters

of sizesi andj.

∑

i

∑

j

Pr{X1 = i}Pr{X1 = j}(i + j)n − in

= −Mn +
∑

i

Pr{X1 = i}
∑

j

Pr{X1 = j}
n
∑

m=0

(

n

m

)

in−mjm

= −Mn +
∑

i

Pr{X1 = i}
n
∑

m=0

(

n

m

)

in−m
∑

j

Pr{X1 = j}jm

= −Mn +
∑

i

Pr{X1 = i}
n
∑

m=0

(

n

m

)

in−mMm

= −Mn +

n
∑

m=0

(

n

m

)

Mn−mMm

=

n−1
∑

m=0

(

n

m

)

Mn−mMm

The product of the coalescent ratefSIA
2/I2 and the factor1/A which accounts for the probability that a focal

lineage takes part in a coalescent event, along with the expected size function yields equation 10. In theSupporting

Information(Figure S1) ,we compare solutions of this equation to the 2ndthrough 5th moments from simulations. .

1.3 Fitting epidemic models to sequence data

If we know the branching timest1, t2, · · · , tn−1 for a phylogeny constructed fromn sequences, we can use equation 2

to fit an SIR model. In practice, there is considerable uncertainty about the exact genealogy and branching times given

a sample of sequences. The theory developed here is based on afixed genealogy with no uncertainty about branch

lengths, but it should be straightforward to generalize these results to cope with error in theti (DRUMMOND et al.,

2005).

The total number of coalescent events observed between times t andT is proportional toA(T ; T ) − A(t; T ), and

at some timet < τ < T , the fraction of the coalescent events which have occurred is

F (τ) =
A(T ; T )− A(τ ; T )

A(T ; T )− A(t; T )
. (11)
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This provides a cumulative distribution function for the distribution of coalescent times. Differentiating with respect

to τ yields the density

−
−·

A/ (A(T ; T )− A(t; T )) .

We will make the approximation that when two lineages coalesce, the rates at which other lineages coalesce remain

unchanged. Then each coalescent time will be an i.i.d. random variable with the distribution (11). The probability of

observing a particular sequence of branching times will be proportional to the product of the density evaluated at each

branching time. Consequently, we can construct the log likelihood function out of anA-trajectory:

Λ(t1, · · · , tn − 1|θ) =
n−1
∑

i=1

log(−
−·

A(ti)/ (A(T ) − A(t))) (12)

= −(n − 1) log(A(T ; T )− A(t; T )) +
n−1
∑

i=1

log(−
−·

A(ti; T )), (13)

whereθ denotes the parameters of the SIR model, such as transmission and recovery rates. In theSupporting Informa-

tionwe also present a likelihood function based on the Kolmogorov-Smirnov statistic for comparing distributions.

2 Results

Equation 3 indicates some simple relationships that governcoalescent rates in epidemics. Coalescent rates are pro-

portional to epidemic incidence (fSI ) and inversely proportional to square prevalence (I−2). Rates will be highest

when prevalence is low and incidence is high, such as at the beginning of an epidemic, during the expansion phase, or

following a trough in prevalence.

Equation 9 implies that variance of the CSD asymptotically approaches the mean squared. This is similar to what is

seen in the offspring distribution of forward time branching processes, such as the Galton-Watson process (ATHREYA

and NEY, 2004).

The point in time where the ancestor function (5) crosses thevalue1/N is the point at which the phylogeny of the

virus has collapsed to a single lineage– the most recent common ancestor (MRCA) of the sequences. Therefore, if we

collect a sample of sizen at timeT , and solve equation 2 to time zero, withA(T ) = n/N , the timeτ which satisfies

A(τ) = 1/N corresponds to the time to the most recent common ancestor ofthe sample. Although our differential

equations should not serve as an adequate description of thediscrete valued processes for values close to1/N , we

find that this approximation works quite well. A demonstration with comparison to simulations is provided in the

Supporting Information(Figure S11).
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Figure 2: The moments of the cluster size distribution over time as calculated by equations 3 and 9 (lines,log-scale).

Four trajectories of the cluster size moments were generated for four sample timesT . And for each trajectory, simulated

moments were calculated for ten threshold timest. Error bars show the 90% interval for 100 agent-based simulations

(N = 105 andI(0) = 1%). The SIR model isṠ = −βSI, İ = βSI − γI, Ṙ = γI. Epidemic prevalence (dotted line)

is shown on right axis. Transmission rateβ = 1, and recovery rateµ = 0.3.

2.1 Simulations

In order to assess the peformance of our model, we carried outstochastic simulations of SIR epidemics. Simulations

were individual-based and in continuous time. Transmission events and recovery events were queued using exponen-

tially distributed lag times, similar to the Gillespie algorithm . Each transmission event was recorded, which allowed

us to simulate viral phylogenies under controlled conditions, and to test the accuracy of equations 3 and 9. The trans-

mission data were then converted into phylogenetic trees with known branching times.

Simulation code was independently written by SDF and EMV in Python and C. Results from both models were

compared to insure accuracy.

To assess the accuracy of the equations we have derived, we developed a simulation experiment with103 (1%)

initially infected agents out of a population of total sizeN = 105 otherwise identical agents. Transmission and

recovery rates were such thatR0 = 10/3 . Figure 2.1 shows equations 3 and 9 (lines) and the 90% confidence

intervals from simulations at ten thresholds (t values). The exact values oft andT are reported in theSupporting

Information. Each trajectory corresponds to a cross-sectional census of the infected population at four time-points (T

values) corresponding to maximum prevalence, as well as 86%, 68% and 22% of maximum prevalence after the peak.

As we go backwards in time, all moments of the CSD increase, until the entire census of infecteds falls into a single

cluster. Many of the trajectories intersect, which demonstrates that the CSD is complex function of botht andT , and

could therefore not be reduced to a simple forward-looking model.
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2.2 Comparison with the generalized skyline

Further simulations were developed to test the suitabilityof the model for estimating epidemiological parameters.

When the number of infecteds is small, epidemic dynamics will be subject to large stochastic fluctuations. To determine

if equation 12 can be used to fit SIR models when the populationsize is small, we conducted a set of simulations with

only a single initial infected in a population of ten thousand agents.

The simulations were also designed to determine if SIR models that are fit via the likelihood equation 12 can

provide advantages beyond methods that are commonly used toestimate effective population size (Ne). For purposes

of comparison, we used the generalized skyline model (OPGEN-RHEIN et al., 2005) (ape library in R), and compared

the estimated effective population size to the best-fit SIR models and the known epidemic prevalence from simulations.

Details of the simulations are provided in theSupporting Information.

We found that the accuracy of the best-fit SIR models exceededthat of the generalized skyline by 8-30% as mea-

sured by the root mean square error (RMSE) of estimated prevalence. It may seem surprising that the SIR model based

on ODEs out-performs the generalized skyline even in the presence of stochasticity at small population sizes. This is

due to the fact that population dynamics converge to the deterministic SIR model as the infected population increases in

size. Fluctuating incidence due to stochastic effects whenthe number of infecteds is small has the effect of shifting the

distribution of coalescence times to the left or right, but does not fundamentally change the shape of the distribution.

This is easily accounted for by including a parameter which varies the fraction initially infected in the deterministic

SIR model.

Figure 3 shows the distribution of RMSE over 300 simulations. The mode of RMSE for the SIR model is zero

for all experiments, whereas the skyline is slightly biased. Increasing sample size decreases RMSE for both SIR and

skyline. Taking the sample at a later time (corresponding to20% of peak prevalence) decreases the accuracy of both

SIR and skyline, although in general the SIR models cope better with late sample times than does the skyline. In the

Supporting Information(Figure S10), we show several representative SIR and skyline fits. It is usually the case that the

generalized skyline fails to detect a decrease in prevalence and over-estimates in the latter stages of the epidemic.

The SIR models also provide a quite accurate estimate ofR0 (R0 = 2, R̂0 = 1.95 (95%:1.71-2.17)).

2.3 The effect of sample fraction

In the Kingman coalescent, the fraction of the population that is sampled is assumed to be small, such that the prob-

ability that more than two individuals have the same parent in the preceding generation is negligible. For example,

Kingman showed that the probability thatn sampled sequences will not have a common ancestor in the preceding

generation is
∏

i<n

(1 − i/N) = 1 −
∑

i<n

i

N
+ O(N−2) = 1 −

(

n

2

)

/N + O(N−2)
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three hundred simulated epidemics (R0 = 2). RMSE is averaged over one hundred time points.
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Figure 4: The empirical distribution of coalescence times based on 150 simulated SIR epidemics. Transmission rate =
2, recovery rate = 1. The expected distribution based on equation 11 is shown in red.

Kingman then made the approximation that theO(N−2) terms are zero, which yields a minimum requirement that

n <
√

2N .

Analytical work has been carried out to investigate the effect on coalescent processes of violating the assumption

of a small sample fraction (see for example (FU, 2006)) using discrete mathematics similar to the originalKingman

model. Such work has indicated that the Kingman coalescent can be a surprisingly good approximation even when the

sample fraction is large.

Nevertheless, our model is not an approximation, and takes the sample fraction into account. This gives some

insight into how the fraction of the infected population sampled affects the distribution of coalescent times, and thus

the shape of the reconstructed phylogeny of viral sequences.

Figure 4 shows the empirical distribution of coalescence times for 150 simulations (R0 = 2) with samples taken

at peak prevalence. The sample fraction was varied from 5% to40%. When the sample fraction is small (5%) , the

distribution is skewed left, meaning the phylogeny is starlike, which is in agreement with conventional notions for an

exponentially growing population. However, as the sample fraction is increased to 10, 20 and 40%, the shape of the

distribution changes until it is skewed right, which means that most of the branches occur close to the tips. These

qualitatively antipodal distributions are generated by the same underlying population dynamics, with only the sample

fraction being varied. This observation is of practical as well as theoretical interest, since many serological surveys for

HIV may reach more than 20% of infected individuals within a given locality(LEWIS et al., 2008).

Equation 11 gives the analytical distribution of coalescence times and is shown in red. It also provides some simple

intuition for why most coalescence events will happen closeto the sample time (T ) when the sample fraction is large.

We use the initial conditionsA(T ) = n/N , so that whenn is large, the term(A(T )/I(T ))2 is also large, which is the

probability that two individuals in a transmission event represent sample lineages. Conversely, ifn and(A(T )/I(T ))2

are small, fewer coalescent events will occur untilI converges toA, which will occur early in the epidemic.
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2.4 Estimating HIV prevalence

Equation 2 gives the rate of coalescence at any time prior to the sample time (T) and, by extension, the distribution

of coalescence times. This allowed us to derive the likelihood function (12), which we used to fit a simple mass-

action SIR model to 55 HIV-1 sequences of thepol gene collected as part of the ACTG241 clinical trial (D’AQUILA

et al., 1996; LEIGH BROWN et al., 1999). All sequences were collected from men who have sex with men (MSM)

over a short period of time (May - July, 1993) within the United States. Because the sequences were collected within

a short window of time, it is valid to make the approximation that all sequences were sampled simultaneously. To

estimate a phylogeny, we used a general-time-reversible model of nucleotide substitution (TAVARE, 1986) with gamma

distributed variation in site-to-site substitution rates. The root giving the most clock-like rates was determined by

maximum likelihood and the null hypothesis of a molecular clock could not be rejected at the 5% significance level.

The epidemiology of HIV has several factors that are important to include in a model. Upon infection, individuals

progress through an acute phase lasting one to three months,and then progress to a chronic phase lasting many years.

The transmission probability per act is much greater duringthe acute phase. Furthermore, since we wish to model the

epidemic over a period of 25 years, we must consider natural mortality and immigration into the susceptible pool. All

of these factors are considered in the following model:

Ṡ = −Sα(β1I1 − β2I2) + µ − µS (14)

İ1 = Sα(β1I1 + β2I2) − γ1I1 − µI1 (15)

İ2 = γ1I1 − γ2I2 (16)

I1 andI2 respectively represent the fraction of the population thatare at the acute and chronic stages of infection.

Parameters we wish to estimate include

• β1: The transmission rate of acute infecteds.

• β2: The transmission rate of chronic infecteds.

• µ: The immigration rate into the susceptible population. We consider the total population to have constant size.

• α: A parameter which controls how incidence scales with cumulative incidence.

• ǫ: The fraction of the population infected at the TMRCA of the sample.

Many more parameters could be included in a model for HIV among MSM, but since our purpose is to fit a model

to only 55 sequences, we choose to keep the number of free parameters to a minimum. In addition we assumed an

acute phase which lasts two months on average (γ1 = 1/60), and a chronic phase that lasts ten years on average

(γ2 = 1/(10 × 265)).
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Prior distributions are given in theSupporting Information.

Givenn = 55 sequences, we use the initial conditionsA(T ) = 55/N , I1(0) = ǫ, andS(0) = 1 − ǫ. Since we are

including equations for two types of infecteds, we must keeptrack of ancestor functions for both types.A1 andA2 will

be the fractions of the population which are respectively acute and chronic infected and which has sampled progeny at

timeT . We have:

−·

A2 = −γ1I1(A2/I2) + β2I2S
α(A1/I1)((I2 − A2)/I2) (17)

−·

A1 = γ1I1(A2/I2) − β1I1S
α(A1/I1)

2 − β2I2S
α(A1/I1) (18)

For purposes of fitting the SIR model, we useA = A1 + A2 and
−·

A =
−·

A1 +
−·

A2. A derivation is provided in the

Supporting Information.

Fitting the model proceeded in two steps. First we fit a model using equation 12 as described above. The second step

made use of sero-surveillance data of MSM in the United States (HALL et al., 2008). These data provided estimates

of HIV incidence based on back-calculation for the period 1977-2006. To ameliorate error from uncertainty in the

chronological values of phylogenetic branch lengths, we adjusted the timescale of the epidemic and rescaled estimated

rates to gain the greatest fit with incidence data by a least-squares criterion.

Figure 5 shows the best fit SIR model. The median posterior estimates were

• Acute transmission rate,̂β1 =1 transmission per 47 days

• Chronic transmission rate,̂β2 =: 1 transmission per 1207 days

• Immigration rate to susceptible state,µ̂ = 1 per 19.5 years

• Incidence scaling parameter,α̂ = 9.77

Together, these parameters imply anR0 value of 2.24 (seeSupporting Information). They also imply that 41% of

transmissions occur during the acute stage.

For comparison with our SIR model, effective population size (Ne) was calculated using the skyline plot (PYBUS

et al., 2000).Ne was re-scaled so thatmin(Ne) = min(I). Figure 5 shows the re-scaled skyline and an SIR trajectory

which was integrated with parameters from the median of the posterior distribution. Confidence intervals are also

given, which show the upper and lower bounds within which 95%of posterior epidemic prevalence falls. Figure 5 also

compares the best fit SIR model with the estimated cumulativeincidence among MSM in the United States based on

sero-surveillance data. The SIR model is in broad agreementwith the data from public health sources regarding the

early rate of growth and saturation in early nineties. The skyline also reproduces the growth rate during the expansion

phase and the tapering of epidemic growth in the early nineties. However, the skyline predicts a rise inNe between

1980 and 1993, which probably over-estimates the true prevalence.
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Figure 5: Left: Estimated epidemic prevalence (logarithmic scale) of HIV among MSM in the United States. A solution

to equation 17 is compared to the skyline plot, re-scaled such that minimum effective population size equals minimum

prevalence. The thin lines show 95% confidence intervals. Right: Estimated cumulative incidence of HIV among

MSM versus time (years prior to 1993). A solution to equation17 is compared to estimates based on sero-surveillance

data (HALL et al., 2008).

We have also compared the CSD mean and variance from our best-fit SIR model to the empirical values from the

ACTG 241 data (figure 6). The SIR model successfully reproduces the mean cluster size throughout the course of the

epidemic. However, there is substantial deviation betweenthe actual and predicted variance of cluster sizes. As the

clustering threshold is increased, all sampled infecteds eventually fall within a single cluster, and in a finite population,

variance converges to zero (not shown).

3 Discussion

The distribution of cluster sizes is a function of the timeT at which we observe a population, such as by taking a sample

of sequences, andt < T , which is a clustering threshold (if the MRCA of two sequences occurs aftert, then those

sequences are clustered). We have derived differential equations that describe how the moments of the CSD change

as the thresholdt moves into the past. This could be used to calculate the distribution of cluster sizes to arbitrary

precision at any time. It is straightforward to use the modelto calculate the probability that an infected host will have

viral progeny at a later time point, and conversely, the expected number of ancestor lineages of a sample taken atT .

The model promises to serve as a null hypothesis for clustering of infecteds under various epidemiological scenarios,

and could possibly be used to detect effects that may distortthe CSD such as selection and population structure.
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Figure 6: The mean cluster size (dashes) and variance of cluster sizes (dotted line) are calculated from the empirical

observations from the ACTG 241 sequences (dashed lines) andcompared to our best-fit SIR model(solid lines). The

horizontal axis gives the clustering threshold as the year of the MRCA of a cluster.

The CSD is sensitive to details of the underlying populationdynamics. Most coalescent approaches only take

into account variable population size, such as epidemic prevalence, but not variable birth-rates, analogous to epidemic

incidence. Such approaches can give misleading results forepidemics. For example, in both SI models (no recovery)

and SIS models (recovery into the susceptible state), prevalence rapidly approaches an equilibrium. However, a naive

coalescent model based on constant population size would erroneously predict identical coalescent patterns in these

two cases. In fact, the SIS case is very similar to a standard constant-population size coalescent, but the lineages in an

SI epidemic only coalesce during exponential growth, not atequilibrium (Figures S2 and S3).

We observed drastically less precision when estimating recovery rates than when estimating transmission rates.

Consequently, decline in prevalence is much harder to detect than growth. This has been observed previously (LAVERY

et al., 1996) in other biological systems due to differences in thetimescale of population change and genetic variation.

We nevertheless found that our estimation procedure is robust to mis-specification of priors that include zero recovery,

and it is feasible to distinguish SI from SIR dynamics(Figures S6-S9).

4 Conclusion

Coalescent-based estimates of effective population size,such as the generalized skyline, have wide applicability and

require minimal consideration of underlying population dynamics. However, in the case that the epidemic dynamics

are well understood, the potential is raised for a population genetic model that takes into account the precise effects of

transmission and recovery, thereby predicting populationdynamics with greater accuracy. We have developed a model
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which provides a step towards the formal integration of phylodynamics and epidemiology and which can be used to

estimate epidemiological and demographic parameters directly from viral sequence data.

Fitting population-models to data requires biological simplifications to make the model tractable, which presents

the danger of making the model useless for real systems (WILSON et al., 2005). Pathogens require both successful

reproduction within and between hosts, whereas we have focused entirely on transmission of lineages to uninfected and

immunologically naive hosts. We have not considered biological nuances such as super-infection and recombination or

the possibility that different strains will have differentepidemiological characteristics. Consequently, there are many

ways that our model could be extended and improved.

We have calculated coalescent rates and CSD moments only forthe most simple mass-action SIR models. But mod-

ern mathematical epidemiology has progressed in the direction of incorporating variable host susceptibility, pathogen

virulence, geographical heterogeneity, and host contact network structure. Reproducing our derivations for such mod-

els would be a difficult but worthy enterprise.

While we have focused on variable population size in epidemics, a second pillar of phylodynamics concerns the

effects of immune selection on viral phylogenies (GRENFELL et al., 2004). A major limitation of our approach is that

we adopt the standard assumption of selective neutrality. It is unknown how our method would perform for genes under

strong immune selection, such as influenza virus hemagglutinin.

We have made a first attempt at a method for fitting arbitrary SIR models to cross-sectional samples of viral se-

quences. Many challenges remain for increasing the utilityof the method. It may be possible to improve estimation of

model parameters when historical prevalence data are available. However, it is not known how to discriminate between

competing models when only sequence data are available. Theestimation theory developed here is based on a fixed

genealogy of virus with no uncertainty about branch lengths; in reality there can be a great deal of uncertainty about the

structure of the genealogy, and it should be straightforward to generalize the method to account for this (DRUMMOND

et al., 2005). Finally, it should also be possible to extend our solutions to heterochronous samples– sequence data

collected at multiple time-points over the course of an epidemic.
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