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Methods for Detecting Associations
with Rare Variants for Common Diseases:
Application to Analysis of Sequence Data

Bingshan Li,1 and Suzanne M. Leal1,*

Although whole-genome association studies using tagSNPs are a powerful approach for detecting common variants, they are underpow-

ered for detecting associations with rare variants. Recent studies have demonstrated that common diseases can be due to functional var-

iants with a wide spectrum of allele frequencies, ranging from rare to common. An effective way to identify rare variants is through direct

sequencing. The development of cost-effective sequencing technologies enables association studies to use sequence data from candidate

genes and, in the future, from the entire genome. Although methods used for analysis of common variants are applicable to sequence

data, their performance might not be optimal. In this study, it is shown that the collapsing method, which involves collapsing genotypes

across variants and applying a univariate test, is powerful for analyzing rare variants, whereas multivariate analysis is robust against

inclusion of noncausal variants. Both methods are superior to analyzing each variant individually with univariate tests. In order to unify

the advantages of both collapsing and multiple-marker tests, we developed the Combined Multivariate and Collapsing (CMC) method

and demonstrated that the CMC method is both powerful and robust. The CMC method can be applied to either candidate-gene or

whole-genome sequence data.
Introduction

For the mapping of common disease susceptibility genes,

hundreds of thousands of SNPs are genotyped to facilitate

genome-wide association studies in either family- or popu-

lation-based data. In order for this study design to be

successful, the common disease common variant (CDCV)

hypothesis must hold true. The CDCV hypothesis asserts

that common diseases are caused by common variants

with small to modest effects.1–4 This is currently the

most popular theory underlying complex-disease etiology.

A well-known example supporting this hypothesis is the

APOE gene, in which a single common allele ð34Þ confers

high risk of Alzheimer disease and heart disease.5

The HapMap project and advances in large-scale SNP

genotyping facilitate the identification of disease-suscepti-

bility genes through indirect linkage disequilibrium (LD)

mapping. The nonrandom association (i.e., LD) of SNPs

is appealing for disease-gene mapping, because a subset

of SNPs (tagSNPs) can capture the information of corre-

lated SNPs that are not genotyped, thus vastly reducing

the number of SNPs that need to be genotyped for an asso-

ciation study when the CDCV hypothesis holds.1,6,7 An

alternative theory is the common disease rare variant

(CDRV) hypothesis, which states that for complex traits

there is extreme allelic heterogeneity and that disease etiol-

ogy is caused collectively by multiple rare variants with

moderate to high penetrances.2,4 Studies based on evolu-

tion theories have demonstrated that for complex diseases,

allelic heterogeneity might be extensive, with multiple sus-

ceptibility alleles of independent origin.8,9 Analysis based

on HapMap data has illustrated that rare variants are

more likely to be disease predisposing than are common
variants.10 There is also empirical evidence supporting

this hypothesis; e.g., multiple rare variants have also

been recently identified to be associated with low plasma

levels of HDL cholesterol,11–15 obesity (MIM 601665),16 co-

lorectal adenomas (MIM 608456),17 and schizophrenia

(MIM 181500).18 Although there is substantial evidence

that both the CDRV and the CDCV hypotheses are valid,

probably a more realistic model for complex traits is that

functional variants have a wide spectrum of allele frequen-

cies, which range from rare to common even within the

same susceptibility gene.2

Recent association studies have been successful for

a number of traits, such as age-related macular degenera-

tion (AMD [MIM 603075])19,20 and Crohn disease (MIM

266600).21 However, critical assumptions for the efficient

detection of associations through LD mapping are that

for a specific susceptibility locus there is only low-level al-

lelic heterogeneity and that the variants are common.6,22

In the presence of allelic heterogeneity, although the

power of linkage analysis is not influenced, association

studies based on LD mapping will inevitably be low-pow-

ered.10,23 Low frequencies of functional variants result in

low r2 values, with tagSNPs of R 5% frequency, and there-

fore, the power of the indirect LD-mapping approach is

low. Alternative approaches are necessary to efficiently

identify loci with extreme allelic heterogeneity, i.e., multi-

ple rare variants. Directly sequencing candidate genes—or,

in the future, entire genomes—instead of genotyping

tagSNPs is an optimal approach for the identification of

rare variants associated with disease susceptibility.13 Re-

cently, candidate-gene resequencing was employed to

discover variants in the population for the association of

complex traits.11–17 A major sequencing effort is currently
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being carried out by an international consortium to se-

quence at least 1000 genomes, in order to produce the

most detailed map of human genetic variations for the

support of disease studies (1000 Genomes Project, Interna-

tional Consortium).

Statistical methods for the detection of associations of

common variants have been extensively developed and suc-

cessively applied to numerous studies of complex traits.

However, methods for statistical analysis of rare variants

are limited. Some methods used for analysis of common var-

iants are readily applicable to rare variants, but their perfor-

mancemay not be optimal. In the next fewyears, sequencing

technology (e.g., 454 and Solexa) will enable the production

of large quantities of sequence data on large numbers of indi-

viduals and allow for the cost-effective identification of rare

variants. This data will enable researchers to investigate the

role that rare variants play in disease etiology. In addition

to uncovering functional variants, sequence data will also re-

veal many variants that are not functional. Bioinformatics

tools24 can be used to classify variants as functional or non-

functional or to quantify the functionality of the variants.

In this article, new methods for the analysis of sequenc-

ing data, which are robust and powerful in the presence of

allelic heterogeneity and low allele frequencies, are devel-

oped, and their performance is evaluated. Although under-

standing the effect of individual rare variants is ultimately

important, an effective first approach is to identify the

genes that are involved in the disease etiology. One ap-

proach is the single-marker test, whereby individual variant

sites within a gene are tested for an association with the

disease outcome, with standard univariate statistical tests

used (e.g., c2 test, Fisher’s exact test, or Cochran Armitage

test for trend) and with the family-wise error rate (FWER)

controlled by a multiple-comparison correction (e.g., Bon-

ferroni, permutation). Another approach is to perform

a multiple-marker test, which tests multiple variant sites

simultaneously with the use of multivariate methods,

such as the Fisher product method,25 Hotelling’s T2

test,26,27 or logistic regression. Both single-marker and mul-

tiple-marker tests involve multiplicity (i.e., multiple-testing

correction or multiple degrees of freedom), which will re-

duce power. On the other hand, collapsing methods, which

combine information across multiple variant sites, could

enrich the association signals and at the same time reduce

the number of the test’s degrees of freedom. However, col-

lapsing nonfunctional variants together with functional

variants could adversely affect power. In this article, the per-

formance of single-marker tests, multiple-marker tests, and

collapsing methods are investigated analytically and empir-

ically. Additionally, the effects of misclassification on power

are evaluated. Misclassification can occur when noncausal

variants are included in the analysis or when functional var-

iants are excluded from the analysis because the region has

not been sequenced or the variants are falsely deemed non-

functional through bioinformatics tools. It is demonstrated

that collapsing methods are potentially more powerful

than are single-marker and multiple-marker tests; however,
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collapsing methods are not always robust to misclassifica-

tion of nonfunctional variants, and power loss can be sub-

stantial. Although they are less powerful than collapsing

methods, multivariate tests are more robust in the presence

of misclassification of nonfunctional variants. In order to

unify the advantages of both collapsing and multiple-

marker tests, the Combined Multivariate and Collapsing

(CMC) method is developed. This CMC method is shown

to be both powerful and robust against misclassification.

Material and Methods

In this article, both analytical and empirical results are presented.

Simulations were used for empirical evaluation of type I error and

the effect of LD on power; all other power calculations were carried

out analytically. Although approximations of prevalence and

wild-type penetrance are described here for easier interpretation,

only exact analytical calculations were implemented.

Genetic Model
Assume that within a locus there are M variants that can indepen-

dently cause disease susceptibility. The term ‘‘locus’’ refers to the

unit in which the variants will be collectively analyzed. The variants

can reside within a gene or a single genomic region. Usually, rare

mutations occur on different haplotypes within a locus8,9 and,

therefore, correlation between variants is low. For the analytical

calculations, it is assumed that variants are independent. Each of

the variants has two alleles, denoted as Ai and ai, i ¼ 1,2,.,M, in

which Ai is the rare and high-risk allele and has an allele frequency

of pi. The total frequency of the rare variants in a locus is p ¼
PM

i¼1 pi.

Let Gk, k ¼ 0,1,2 denote the genotypes aa, Aa, and AA, respectively.

The genotype frequencies under Hardy-Weinberg Equilibrium

(HWE) at the ith variant site are piðG0Þ ¼ ð1� piÞ2,

piðG1Þ ¼ 2pið1� piÞ and piðG2Þ ¼ p2
i . Let the penetrances of geno-

types at the ith variant site be represented by fki for genotypes

Gk, k ¼ 0,1,2. The locus wild-type penetrance, denoted by f0, is the

probability of an individual being affected if the genotypes across

all variant sites are wild-type aa. The overall and individual wild-

type penetrances satisfy f0 ¼ 1�
QM

i¼1ð1� f0iÞ: For low wild-type

penetrances at individual variant sites, the higher-order product

terms can be ignored, and the relationship can be approximated

by f0 ¼
PM

i¼1 f0i: If the assumption is made that wild-type genotypes

at different sites have the same penetrance, the relationship can be

simplified to f0 ¼ Mf0i: The locus relative risk (RR) at the ith variant

site is defined as g1i ¼ f1i/f0, g2i ¼ f2i/f0. For the additive model,

g2i ¼ 2g1i � 1; for the multiplicative model, g2i ¼ g2
1i; for the dom-

inant model, g2i ¼ g1i; for the recessive model, g1i ¼ 1. The preva-

lence of the disease caused by each individual variant is calculated as

Ki ¼
X2

k¼0

piðGkÞfki:

Under the heterogeneity model, the prevalence caused by the

entire locus is given by

K ¼ 1�
YM
i¼1

ð1� KiÞ:

If individual prevalences due to a single variant are low, the

higher-order product terms can be ignored and the total
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prevalence can be approximated by the sum of the individual

prevalences: K ¼
P

M
i¼1Ki:

As a result of allelic heterogeneity, affected individuals can have

the same phenotype due to different causal variants. The propor-

tion of individuals affected as a result of the ith variant in the

ascertained cases is given by

pi ¼
KiX
M
j¼1Kj

:

Individuals with diseases due to the ith variant are members of

the ith ‘‘group,’’ with a total of M groups in the ascertained cases,

and the relative sample size of the ith group is pi. For the ith group,

the expected genotype frequency at the ith variant site in cases is

piðGk j giÞ ¼
piðGkÞfki

Ki

, k ¼ 0,1,2:

The expected frequency of genotype Gk at the ith variant site

across all M groups in cases is given by

pD
i ðGkÞ ¼ pipðGk j giÞ þ ð1� piÞpðGkÞ, k ¼ 0,1,2:

The controls are disease-free, and the expected genotype fre-

quencies at the ith variant site in controls is given by

pN
i ðGkÞ ¼

piðGkÞ
�
1� fki

�
1� Ki

, k ¼ 0,1,2:

Information on the expected genotype frequencies at each variant

site in the sample can be used for various methods to analytically

calculate the power to detect an association. The focus in this article

is the omnibus test, which provides an association test of the entire

locus and is not focused on any specific variant within the locus.

Single-Marker Test
One approach of association studies is to test each variant site

individually with the use of a univariate test and assess the signif-

icance of the omnibus test after correction for multiple compari-

sons. For univariate tests, a 233 contingency table can be con-

structed to compare genotype frequencies at each variant site in

cases and controls. Because an observation of individuals that

are homozygous for the high-risk rare allele is extremely rare, AA

genotypes are collapsed with Aa genotypes, and a 232 table is con-

structed. For an equal number of cases and controls, NA ¼ N�A ¼ N,

the classical Pearson c2 statistic28 for testing equal genotype

frequencies in cases and controls is given by

X2
i ¼ N

(hbpD
i ðaaÞ � bpN

i ðaaÞ
i2

bpD
i ðaaÞ þ bpN

i ðaaÞ

þ

hbpD
i ðAaÞ þ bpD

i ðAAÞ � bpN
i ðAaÞ � bpN

i ðAAÞ
i2

bpD
i ðAaÞ þ bpD

i ðAAÞ þ bpN
i ðAaÞ þ bpN

i ðAAÞ

)

in which each bpi is the observed genotype frequency at the ith var-

iant site in cases and controls. The power of the test is dependent

on the noncentrality parameter (NCP), denoted as vi, of a noncen-

tral c2
1 distribution, and the NCP is given by

ni ¼ N

(�
pD

i ðaaÞ � pN
i ðaaÞ

�2
pD

i ðaaÞ þ pN
i ðaaÞ

þ
�
pD

i ðAaÞ þ pD
i ðAAÞ � pN

i ðAaÞ � pN
i ðAAÞ

�2
pD

i ðAaÞ þ pD
i ðAAÞ þ pN

i ðAaÞ þ pN
i ðAAÞ

)
:

The American
The power to detect an association at the ith variant site at level a is

hi ¼ Pr
�

c2
1ðniÞRc2

1;1�a

�
:

Because M tests are performed at M variant sites, it is necessary to

correct for multiple comparisons in order to control the FWER.

Because all rare variants are assumed to be independent, a Bonfer-

roni correction is used, and after controlling for the FWER, the

power of the ith test is

hB
i ¼ Pr

�
c2

1ðniÞRc2
1;1�a=M

�
:

The power of the omnibus test for the locus is given by

hS ¼ 1�
YM

i

�
1� hB

i

�
:

Multiple-Marker Test
Another approach for the study of association is to test all variants

simultaneously with the use of a multivariate test; e.g., the Fisher

product method, Hotelling’s T2 test, or multiple logistic regression.

Hotelling’s T2 test is used as an example of multivariate tests, and

the power is calculated analytically for the analysis of rare variants.

Following Xiong et al.,27 an indicator variable is defined for the

genotype at the ith variant site for the jth individual in the case

population:

Xji ¼
1
0
�1

Genotype is AA
Genotype is Aa
Genotype is aa

8<:
Similarly, Yji is defined for the control population. Let Xj ¼
(Xj1,.,XjM)T, Yj ¼ (Yj1,., YjM)T. Then Xi ¼ 1=NA

PNA

j¼1 Xji, Yi ¼
1=N�A

PN�A

j¼1 Yji and X ¼ ðX1,.,XMÞT , Y ¼ ðY1,.,YMÞT . The covari-

ance matrix of the pooled sample for the indicator variables across

M variants is given by

S ¼ 1

NA þ N�A � 2

(XNA

j¼1

�
Xj �X

��
Xj �X

�Tþ
XN�A

j¼1

�
Yj � Y

��
Yj � Y

�T

)
:

Hotelling’s T2 statistic is defined as

T2 ¼ NAN�A

NA þN�A

ðX� YÞTS�1ðX� YÞ:

Under the null hypothesis that none of the variants is associated

withdisease susceptibility, fora large sample sizeofcases andcontrols,

NA þN�A �M � 1

MðNA þ N�A � 2Þ T2

is asymptotically distributed as an F distribution, with M and

NA þN�A �M � 1 degrees of freedom. Under the alternative hy-

pothesis that at least one of the variants is associated with the dis-

ease, the T2 statistic is asymptotically distributed as a noncentral

c2
M distribution, with M degrees of freedom, and the NCP is given by

nH ¼ mT

 
1

NA

X
A
þ 1

N�A

X
�A

!�1

m,

in which m is the vector of expected difference between cases and

controls, m¼ (m1,.,mM)T, and mi ¼ E½Xi �E½Yi�
�

. The covariance ma-

trices, SA for cases and S�A for controls, can be simplified under the

assumption of independence of the rare variants. The ith diagonal
Journal of Human Genetics 83, 311–321, September 12, 2008 313



element of the matrix is the variance of the indicator variable at

the ith variant site, and off-diagonal elements of the matrix are

zero. From the expected genotype frequencies at each variant

site, pD
i ðGkÞ for cases and pN

i ðGkÞ for controls, m, SA, and S�A can

be calculated, and the power to detect an association for at least

one variant is given by

hH ¼ Pr
�

c2
MðnHÞRc2

M,1�a

�
:

Collapsing Method
Given that single-marker tests involve correcting for multiple

comparisons and that multiple-marker tests can have a large num-

ber of degrees of freedom, another approach, which collapses the

genotypes across variants and results in enriched signals and a

reduced number of degrees of freedom, is proposed.

For this method, define an indicator variable X for the jth case

individual as

Xj ¼
1 rare variants present
0 otherwise

�
Yj is similarly defined for control individuals. Due to the rarity of

variants, the probability of carrying more than one variant for

an individual is low, and the method collapses genotypes across

all variants, such that an individual is coded as 1 if a rare allele is

present at any of the variant sites and as 0 otherwise. The detection

of an association of multiple rare variants is transformed into a test

of whether the proportions of individuals with rare variants in

cases and controls differ. Let fA and f�A denote the frequencies of

individuals carrying rare variants, in cases and controls, respec-

tively. The probability of no variants at all sites in the ith group

in cases is given by

li ¼ piðaa j giÞ
Y
jsi

pjðaaÞ: (1)

Summing over all groups, the proportion of individuals with at

least one variant in cases is given by

fA ¼ 1�
XM
i¼1

ðpiliÞ:

In controls, the probability of carrying no variants at all M sites isQM
i¼1pN

i ðaaÞ, and therefore, the proportion of rare-variant carriers

in controls is given by

f�A ¼ 1�
YM
i¼1

pN
i ðaaÞ: (2)

The classic Pearson c2 statistic can be used to test the null hy-

pothesis that fA ¼ f�A, and the NCP of the noncentral c2
1 distribu-

tion is

nc ¼ N

"
ðfA � f�AÞ

2

fA þ f�A

þ ðfA � f�AÞ
2

2� fA � f�A

#
:

The power of the c2 test for the collapsing method is given by

hc ¼ Pr
�

c2
1ðncÞRc2

1,1�a

�
:

CMC Method
The CMC method is a unified approach that combines collapsing

and multivariate tests. For the CMC method, markers are divided
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into subgroups on the basis of predefined criteria (e.g., allele

frequencies), and within each group, marker data are collapsed.

A multivariate test (e.g., Hotelling’s T2 test) is then applied for

analysis of the groups of marker data. Suppose the M markers at

the locus are classified into k groups, {gj, j ¼ 1,.,k}, and that the

number of markers in group gj is nj. Within gj, the nj markers in

the set are collapsed as described in the previous section (Collaps-

ing Method). Collapsing is carried out for each of the groups in the

same manner. For those groups in which the number of markers

equals 1, no collapsing is necessary. A multivariate test can then

be applied to the data, in which within each group the individuals

are coded as either 1 (a carrier of one or more variants) or 0 (wild-

type). With Hotelling’s T2 test used, the power of the CMC method

is calculated on the k dimensional data in the same manner as

described in the Multiple-Marker Test section.

Misclassification
Two types of misclassifications are considered: inclusion of non-

functional variants and exclusion of functional variants. First,

consider inclusion of W nonfunctional variants in the analysis.

For the single-marker test, the power to detect an association at

nonfunctional variant sites is equal to a and the total number of

tests is M þ W. For Hotelling’s T2 test, the mean vector m and

covariance matrices SA and S�A are modified by appending the

zero vector of length W to the m vector and adding variances of

nonfunctional variants to the diagonal entries of the covariance

matrices SA and S�A. For the collapsing method, the genotype

frequencies of nonfunctional variants are included in Equation

(1), for cases, and in Equation (2), for controls, to calculate fA

and f�A. For the CMC method, the modification is made within

each collapsing group and then the power of Hotelling’s T2 test

is calculated.

For the case in which T functional variants are excluded from

the analysis, the power calculations for the single-marker test,

Hotelling’s T2 test, and the collapsing method are carried out in

the same manner, except that only M � T out of M variants are an-

alyzed. The number of tests for the single-marker test is M� T, and

the number of degrees of freedom for Hotelling’s T2 test is M � T.

The collapsing method remains a univariate test in this situation.

For the CMC method, the power of Hotelling’s T2 is calculated on

the basis of the modified data within each collapsing group.

Effects of Linkage Disequilibrium
Simulation was used to investigate the effect of LD on power for

the single-marker test, Hotelling’s T2 test, and the collapsing

method. The locus has six variants, with a total allele frequency

of 0.05. Four of the variants have an allele frequency of 0.01 and

are on different haplotypes. Each of the remaining two variants,

with allele frequencies of 0.005, is on one of the haplotypes where

a variant with allele frequency of 0.01 resides; there is complete LD

between these variants (r2z0:5). For comparison purposes, a sec-

ond simulation was carried out, in which all variants were on sep-

arate haplotypes. For generating the data, two haplotypes were

randomly sampled and assigned to either case or control status

on the basis of an additive model with a locus RR of 2.0, assuming

that variants on different sites cause the disease independently.

The process was repeated until a sample of 250 cases and 250

controls was obtained, and the single-marker test, Hotelling’s T2

test, and the collapsing method were applied to the generated

sample. One thousand replicates were generated, and the power

was evaluated for an a level of 0.001.
ber 12, 2008



Evaluation of Type I Error Rate
In order to evaluate the type I error rate for each test, simulation

was used to generate data under the null hypothesis of no associ-

ation between variants and disease status. Genotypes for each of

the M variants within a locus were generated on the basis of

population allele frequencies. This sequence of M genotypes was

randomly assigned either case or control status. This process was

repeated until the desired sample sizes for cases (NA) and controls

(N�A) were obtained for each replicate, and the tests of interest were

performed on the data set. This process was repeated for 5000 rep-

licates. It was then evaluated whether or not each replicate had a

p value % 0.05. The type I error rate was estimated by the propor-

tion of replicates with a p value % 0.05. A type I error rate > 0.05

signifies a higher false-positive rate, and conversely, a type I error

rate < 0.05 indicates a conservative test.

Parameters
In order to evaluate power and type I error rate, total sample sizes

of 500 and 2000 were used, with an equal number of cases and

controls. For the analysis, total locus variant frequencies of 0.05

and 0.01 were utilized, with each locus composed of 5–20 rare var-

iants with equal or unequal frequencies. The power at the a level

of 0.001 was evaluated at the locus RRs of 1.5, 2.0, and 3.0 for

the additive model, in which the locus wild-type penetrance f0 ¼
0.01. For comparison purposes, the power was also calculated at

the locus RR of 2.0 for the multiplicative, dominant, and recessive

models. Unless otherwise stated, the results are given for a sample

size of 250 cases and 250 controls, for a total locus variant fre-

quency of 0.05, with ten variants of equal frequency and a locus

RR of 2.0 under the additive model.

Results

Evaluation of Type I Error

The type I error rate is well controlled and slightly conser-

vative for Hotelling’s T2 test and the collapsing method

(Table 1). This is not the case when logistic regression is

used for the multiple-marker test and the likelihood-ratio

test is performed on the basis of an asymptotic c2 distribu-

tion. Logistic regression is anticonservative, and type I

Table 1. Type I Error Rates at the a Level of 0.05 for Data
Analyzed with and without Collapsing

Freq.

No. of

Variants

Collapsing and

Logistic Reg.

Collapsing and

Pearson c2
Hotelling’s

T2
Logistic

Reg.

0.05a 5 0.054 0.033 0.045 0.074

10 0.051 0.032 0.028 0.115

20 0.048 0.029 0.010 0.204

0.01b 5 0.051 0.032 0.044 0.084

10 0.054 0.034 0.020 0.115

20 0.054 0.032 0.006 0.191

Type I error rates were evaluated, for a total variant frequency (‘‘Freq.’’) of

0.05 and 0.01 with 5, 10, and 20 variants. Pearson c2 test and logistic

regression were applied on the collapsed data. Hotelling’s T2 test and

logistic regression were applied on data that were not collapsed. Results

are based on 5000 replicates.
a Sample size of 250 cases and 250 controls.
b Sample size of 1000 cases and 1000 controls.
The American
error is inflated. This inflation increases with decreasing

allele frequencies (Table 1). For the CMC method, when

either the multivariate Hotelling’s T2 test or logistic regres-

sion is used for analysis of the data, the type I error is well

controlled (Table 2).

Analysis of Functional Variants

For a total locus variant frequency of 0.01 and a locus RR of

2.0, the power is the lowest for the single-marker test, with

an increase in power for the multiple-marker test (Hotel-

ling’s T2) and the greatest power observed for the collaps-

ing method (analysis of the collapsed genotypes with the

use of the Pearson c2 test statistic). When there are ten var-

iants within the locus, the power is 0.05, 0.39, and 0.83 for

the single-marker test, Hotelling’s T2 test, and the collaps-

ing method, respectively (Table 3). As the number of vari-

ants within the locus is increased from 5 to 20, the power

for both the single-marker test and the multiple-marker

test decreases but, conversely, the power for the collapsing

method increases (Table 3; Figure S1). For example, when

the total locus variant frequency is 0.05 and the number

of variants is increased from 5 to 20, the power for the sin-

gle-marker test decreases from 0.14 to 0.02, the power for

Hotelling’s T2 test decreases from 0.52 to 0.25, and the

power for the collapsing method increases from 0.81 to

0.88. This effect holds when the total locus variant fre-

quency is decreased to 0.01, when one variant’s frequency

is half of the total variant frequency and the other variant

frequencies are equal, and when half of the variants have

a locus RR of 3.0 and the remaining variants have a lower

locus RR (e.g., 2.0 or 1.5) (Table 3). For these situations, the

power of the single-marker test is always the smallest of the

three tests. Increasing the frequency of one of the variants

to half of the total variant frequency increases the power of

the single-marker test, whereas the power for the other

tests remains approximately the same (Table 3).

Table 2. Type I Error Rates at the a Level of 0.05 for the CMC
Method

Minor-Allele Frequency of a High-Frequency Variant

0.02 0.05

Freq.

No. of

Variants Hotelling’s T2
Logistic

Reg. Hotelling’s T2
Logistic

Reg.

0.05a 5 0.050 0.055 0.051 0.054

10 0.050 0.055 0.050 0.053

20 0.043 0.048 0.049 0.052

0.01b 5 0.052 0.054 0.055 0.057

10 0.051 0.052 0.051 0.055

20 0.049 0.053 0.049 0.050

Within the locus, there is one high-frequency variant with an allele

frequency of either 0.02 or 0.05 and 5, 10, or 20 rare variants with a total

variant frequency (‘‘Freq.’’) of 0.05 or 0.01. The CMC method was evaluated

with both Hotelling’s T2 test and logistic regression. Results are based on

5000 replicates.
a Sample size of 250 cases and 250 controls.
b Sample size of 1000 cases and 1000 controls.
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Table 3. The Power of the Single-Marker Test, Hotelling’s T2 Test, and the Collapsing Method

5 10 20

Freq. RR Model S H C S H C S H C

0.05a 2 equal freq. 0.14 0.52 0.81 0.05 0.40 0.86 0.02 0.25 0.88

unequal freq.c 0.24 0.52 0.81 0.20 0.40 0.85 0.17 0.25 0.87

unequal RRd 0.33 0.81 0.96 0.11 0.66 0.97 0.04 0.47 0.97

1.5 equal freq. 0.06 0.23 0.50 0.03 0.17 0.58 0.01 0.10 0.62

unequal freq. 0.10 0.23 0.50 0.08 0.17 0.57 0.06 0.10 0.61

unequal RR 0.32 0.75 0.94 0.10 0.56 0.93 0.03 0.38 0.94

0.01b 2 equal freq. 0.13 0.50 0.78 0.05 0.39 0.83 0.02 0.25 0.85

unequal freq. 0.23 0.50 0.78 0.20 0.39 0.83 0.16 0.25 0.85

unequal RR 0.34 0.82 0.96 0.11 0.67 0.96 0.04 0.49 0.97

1.5 equal freq. 0.05 0.20 0.45 0.02 0.15 0.53 0.01 0.08 0.57

unequal freq. 0.09 0.20 0.45 0.07 0.15 0.53 0.06 0.08 0.56

unequal RR 0.32 0.75 0.92 0.10 0.56 0.91 0.03 0.38 0.93

The power of the single-marker test (S), Hotelling’s T2 test (H), and the collapsing method (C) when there are 5, 10, or 20 causal variants within each locus

that have a total variant frequency of either 0.05 or 0.01. The analytical power is displayed for equal and unequal allele frequencies and for variants having

equal and unequal locus RR.
a Sample size of 250 cases and 250 controls.
b Sample size of 1000 cases and 1000 controls.
c One variant was assigned half of the total allele frequency, and the remaining variants have equal frequencies.
d Half of the variants were assigned an RR of 3.0, and the remaining variants have an RR of either 2.0 or 1.5.
Misclassification: Excluding Functional Variants

In the situation during which functional variants are ex-

cluded from the analysis, the power of the single-marker

test remains consistently low, whereas Hotelling’s T2 test

and the collapsing method decrease in power with the

increasing number of causal variants that are excluded

(Table 4, Figure S2). The collapsing method has much

greater power than does Hotelling’s T2 test when there

are no causal variants missing, but as the proportion of var-

iants excluded from the analysis increases, the power also

decreases more dramatically. For a total locus variant fre-

quency of 0.05, consisting of ten causal variants of equal

frequency and a locus RR of 2.0 when there are no variants

excluded, the power is 0.86 and 0.40 for the collapsing

method and Hotelling’s T2 test, respectively. When 20%

of the causal variants are excluded, the power falls to

0.72 and 0.31 for the collapsing method and Hotelling’s

T2 test, respectively. Even when 60% of the causal variants

are excluded, the collapsing method still has greater power

than does Hotelling’s T2 test (0.28 versus 0.12).

When high-frequency causal variants (e.g., those with

a frequency of 0.02 or 0.05) are excluded from the analysis,

the drop in power is most dramatic for the single-marker

test and Hotelling’s T2 test. For the single-marker test and

Hotelling’s T2 test, the power drops from 0.46 and 0.75

to 0.04 and 0.26, respectively, when a causal variant with

a frequency of 0.05 is excluded from the analysis. Al-

though the initial power is greater and the reduction in

power is not as large for the collapsing method, the de-

crease in power is not inconsequential. For example, the

power for the collapsing method falls from 0.95 to 0.81

when a functional variant with an allele frequency of

0.02 is excluded from the analysis. The reduction in power

is even more dramatic when an allele with a frequency of
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0.05 is excluded from the analysis, with the power decreas-

ing from 0.99 to 0.73.

Misclassification: Inclusion of Nonfunctional Variants

When nonfunctional rare variants with the same allele fre-

quencies as those of functional variants are included in the

analysis, power decreases for all three tests. The power for

the single-marker test is consistently low (Table 4, Fig-

ure S2). The power decreases more slowly for Hotelling’s

T2 test than for the collapsing method (Table 4, Figure S2).

As a result of the higher initial power of the collapsing

method, even when 20 nonfunctional rare variants with

frequencies of 0.005 are included in the analysis, the power

for the collapsing method (0.33) is still greater than the

power for Hotelling’s T2 test (0.16) (Table 4, Figure S2).

When one or more high-frequency noncausal variants

(e.g., those with a frequency of 0.02 or 0.05) are included

in the analysis, the power of the single-marker test remains

lower than that of both Hotelling’s T2 test and the collaps-

ing method. For Hotelling’s T2 test, although there is

a slight drop in power for each additional noncausal vari-

ant included in the analysis, the allele frequency of the

noncausal variant does not affect the power of the test.

For example, the power of Hotelling’s T2 test is 0.4 when

all variants are causal; when a nonfunctional variant is in-

cluded in the analysis, regardless of its allele frequency, the

power drops to 0.38, and the power falls slightly more to

0.36 when two nonfunctional variants are included. This

is not the case for collapsing method; the power decreases

with the increasing allele frequency of the nonfunctional

variant, and the decrease in power is even more drastic

when two high-frequency noncausal variants are included

in the analysis (Table 5, Figure S3). For the collapsing

method, the power decreases from 0.86 to 0.73 when
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one noncausal variant with an allele frequency of 0.02 is

included in the analysis. The power decreases further, to

0.54, when the noncausal variant’s allele frequency is in-

creased to 0.05, and the power reduces further, to 0.32,

when two noncausal variants with allele frequencies of

0.05 are included in the analysis.

Power of the CMC Method

Variants that have an allele frequency % 0.01 are col-

lapsed, whereas variants with a frequency of > 0.01 are

not collapsed. There is a large increase in power if the

CMC method is used when there is misclassification, as

compared to the collapsing method, particularly when

the allele frequency of the noncausal variant is high. For

example, when one noncausal variant with an allele fre-

quency of 0.05 is included in the analysis, the power for

the collapsing method, Hotelling’s T2 test, and the CMC

method is 0.54, 0.38, and 0.80, respectively (Table 5,

Figure S4). Although for the CMC method the allele fre-

quency of the noncausal allele does not affect the power,

the power is reduced as additional noncausal variants are

included in the analysis. However, the CMC method is still

more powerful than both the collapsing method and

Hotelling’s T2 test (Table 5, Figure S4). When two high-fre-

quency noncausal variants with allele frequencies of 0.05

are included in the analysis, the power is 0.74 for the

CMC method, 0.36 for Hotelling’s T2 test, and 0.32 for

the collapsing method (Table 5, Figure S4).

Also evaluated was how much power is lost when the

CMC method is used to analyze data in which high-

Table 4. The Power of the Single-Marker Test, Hotelling’s T2

Test, and the Collapsing Method when Noncausal Rare Variants
Are Included and Causal Rare Variants Are Excluded

Total Variant Frequency

0.05a 0.01b

No. Included S H C S H C

0 0.05 0.40 0.86 0.05 0.39 0.83

5 0.04 0.30 0.70 0.04 0.29 0.68

10 0.03 0.23 0.55 0.03 0.23 0.55

20 0.03 0.16 0.33 0.02 0.15 0.36

No. Excluded S H C S H C

2 0.05 0.31 0.72 0.05 0.30 0.69

4 0.05 0.21 0.52 0.04 0.20 0.50

6 0.04 0.12 0.28 0.04 0.12 0.27

8 0.03 0.05 0.08 0.03 0.05 0.08

The effect of including noncausal variants and excluding causal variants on

the power of the single-marker test (S), Hotelling’s T2 test (H), and the

collapsing method (C) when there are ten rare causal variants in a gene,

with a total variant frequency of either 0.05 or 0.01. In the upper section

of the table, also included in the analysis are 5, 10, and 20 rare noncausal

variants, with the same allele frequencies as the causal variants. In the

lower section of the table, 2, 4, 6, and 8 causal variants are excluded

from the analysis.
a Sample size of 250 cases and 250 controls.
b Sample size of 1000 cases and 1000 controls.
The American
frequency variants included in the analysis are truly func-

tional. It is observed that for the CMC method, when two

functional variants are included in the analysis, there is

only a slight loss in power as compared to the collapsing

method (Table 5, Figure S5). For example, when two causal

variants with allele frequencies of 0.05 are included in the

analysis, the power for the collapsing method is 0.99. The

power drops to 0.98 when the CMC method is used to

analyze the data (Table 5, Figure S5).

Effect of Linkage Disequilibrium

In the presence of LD, the power for the single-marker test,

Hotelling’s T2 test, and the collapsing method is 0.075,

0.63, and 0.85, respectively. For the example in which

the data were generated with each variant on a separate

haplotype, the corresponding powers are 0.011, 0.451,

and 0.737, respectively.

Discussion

Before statistical analysis of sequence data can be carried

out, the first step is quantifying which variants are poten-

tially functional or neutral. Bioinformatics tools24 such as

Polyphen,29 SIFT,30 and Evolutionary Trace31 can be used

to classify variants as potentially functional or neutral or

to quantify the certainty of the functionality. The results

obtained from bioinformatics tools can be used to deter-

mine which variants should be included in the analysis.

In an ideal situation, all variants that are included in the

analysis are functional and no functional variants are

excluded.

When there is no misclassification of variants, the sin-

gle-marker test has the lowest power. Not only does this

Table 5. The Power of the Single-Marker Test, Hotelling’s T2

Test, the Collapsing Method, and the CMC Method when High-
Frequency Causal and Noncausal Variants Are Included in the
Analysis

No. of Variants Freq. S H C CMC

High-Frequency Functional Variants Included

0 NA 0.05 0.40 0.86 NA

1 0.02 0.13 0.57 0.95 0.91

1 0.05 0.46 0.75 0.99 0.97

2 0.02 0.16 0.69 0.98 0.93

2 0.05 0.51 0.86 0.99 0.98

High-Frequency Nonfunctional Variants Included

1 0.02 0.05 0.38 0.73 0.80

1 0.05 0.05 0.38 0.54 0.80

2 0.02 0.05 0.36 0.60 0.74

2 0.05 0.05 0.36 0.32 0.74

The power of the single-marker test (S), Hotelling’s T2 test (H), the collaps-

ing method (C), and the CMC method when there are ten rare causal vari-

ants, with a total variant frequency of 0.05, for a sample size of 250 cases

and 250 controls. Also included in the analysis are one or two high-

frequency causal or noncausal variants with an allele frequency of 0.02

or 0.05.
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test pay a penalty for multiple testing, but it is also affected

by the low allele frequency at each variant, where the

power for each individual c2 test is low. It should be noted

that Fisher’s exact test should be used instead of the c2 test

when the expected cell counts are low, in order to avoid in-

flation of type I error. Because Fisher’s exact test is more

conservative than the c2 test, the power can be even lower

than that shown for the c2 test. The power for Hotelling’s

T2 test is superior to that for the single-marker test but is

less powerful than that for the collapsing method. The

improvement of power for the collapsing method is due

to an enrichment of signals across variants and the single

univariate test performed.

Although the highest power is obtained when all vari-

ants are correctly classified, it is unrealistic to assume,

even when bioinformatics tools are used for classification

of functional status, that errors will not occur. Misclassifi-

cation of rare variants does not have a dramatic effect on

power unless the functional status is incorrectly assigned

for a substantial number of variants. Retention of power

is observed when either rare functional variants are incor-

rectly removed from the analysis or nonfunctional variants

are included in the analysis. The exclusion of rare func-

tional variants has a more striking effect on the reduction

of power than does the inclusion of rare nonfunctional

variants.

When analyzing rare variants, high allele frequency is

not a sufficient basis for excluding variants from the anal-

ysis. The allelic spectrum for complex disease is usually un-

known; however, a number of studies have demonstrated

that alleles with a wide range of frequencies are involved

in disease etiology.11–18,32 For example, for HDL choles-

terol it was recently shown that both common and rare

variants were responsible for modifying HDL cholesterol

levels.32 If high-frequency functional variants are removed

from the analysis, the effect on power can be extremely

detrimental, and if high-frequency nonfunctional variants

are included in the analysis and the collapsing method is

used, the power is also severely weakened. However, with

the use of CMC method, which applies a multivariate

test (e.g., Hotelling’s T2 test) on the collapsed rare variants

and the uncollapsed high-frequency variants, the high

power is retained even if the high-frequency variants are

nonfunctional. If the high-frequency variant is causal,

there is only a slight decrease in power with the use of

the CMC method as compared to the collapsing method.

Although the allele frequency of 0.01 was used for classifi-

cation of rare and high-frequency variants, the cutoff is

subjective and dependent on the spectrum of the variant

frequency within a locus. This cutoff criterion might be

too high if the total allele frequency for the functional

variants is low (e.g., % 0.01). If a wide spectrum of allele

frequencies is observed, several cutoffs can be used for

the classification of variants into multiple groups. Variants

that have very different allele frequencies should not be

collapsed into the same group, in order to avoid a substan-

tial loss of power when misclassification is present.
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If within a locus there are both rare and common func-

tional variants, use of the CMC method can increase

power, as compared to separate analysis of either the rare

variants or the common variants. Although in some cir-

cumstances there might be sufficient power to detect an

association when a single common causal variant is ana-

lyzed, even for a functional variant with allele frequency

of R 0.05 the power to detect an association might be

low if the genotypic RR is small (e.g., 1.0 % RR % 1.2). In

the presence of common variants, it can be advantageous

to analyze both common and rare variants simultaneously

with the CMC method; including rare variants in the anal-

ysis can greatly increase power if the rare variants have

high genotypic RRs and are either numerous or not ex-

tremely rare. The amount of increase in power with the

CMC method will be dependent upon the total minor-

allele frequency of the rare variants, the strength of the

rare variants’ genotypic RRs, and the underlying genetic

model.

In this article, it is shown how the CMC method can be

used to analyze data on the basis of allele frequencies; e.g.,

on the basis of high-frequency or rare variants. The CMC

method can also be used when classification is made on

the basis of certainty of functionality. For example, scores

from Polyphen, Evolutionary Trace, or SIFT can be used

to group variants into multiple classes depending on

user-defined cutoffs that reflect their potential functional

role in disease etiology. Even when classification is made

on the basis of confidence in functionality, it is still in-

advisable to collapse rare and high-frequency variants

because, as previously discussed, if functionality classifica-

tion is incorrect, then a large penalty in power can be in-

curred.

There is a caveat when collapsing rare variants across

multiple markers. When all of the functional variants con-

fer high risk or are protective, collapsing will enrich the

signal. However, the signal will be weakened if some vari-

ants are protective whereas others increase disease risk. Al-

though this situation is probably uncommon, when prior

information is available on high-risk and protective vari-

ants it should be taken into account when deciding how

to collapse variants, in order to obtain optimal power.

The CMC method can be applied when protective and

high-risk variants are collapsed separately.

Due to low allele frequencies of rare variants, the proba-

bility of individuals who are homozygous for the minor

allele being ascertained is extremely low. Therefore, even

though the locus RR for the multiplicative model (i.e.,

g2i ¼ g2
1i) is greater than the locus RR for the additive

model (i.e., g2i ¼ 2g1i � 1), for all of the tests there is little

difference in power between these two models for rare var-

iants, with the power for the multiplicative model being

slightly higher than the additive model. Similarly, there

is only a slight increase in power for the additive model

compared to the dominant model (i.e., g2i ¼ g1i) (data

not shown). The situation is quite different for the reces-

sive model, in which the locus RR g1i ¼ 1 and g2i > 1.
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Due to the rarity of homozygous genotypes for the minor

allele, very large sample sizes are necessary for sufficient

power under the recessive model. For example, for g2i ¼
2.0, a total locus allele frequency of 0.05 with ten causal

variants and an a level of 0.001, a sample size of >

20,000 cases is necessary to obtain a power of 0.8 with

the collapsing method.

For rare variants, it is reasonable to assume that within

a locus they reside on different haplotypes.8,9 Under this

assumption, the frequency of haplotype hA1A2
is zero and

the LD between two rare variants is D ¼ �p1p2z0 and

r2 ¼ D2=p1ð1� p1Þp2ð1� p2Þzp1p2z0, in which hA1A2
is

the haplotype of the two variants. Therefore, it is usually

reasonable to assume that the variants within a locus are

usually independent for power calculation. If this assump-

tion is violated and two functional variants are on the

same haplotype, the power is increased, because there is

a higher probability of carrying more than one functional

variant that increases the probability of an individual be-

ing a case. The application and the validity of the single-

marker test, Hotelling’s T2 test, the collapsing method,

and the CMC method are not altered by the presence of

LD. In the absence or presence of LD between rare variants,

the collapsing and CMC methods are more powerful than

Hotelling’s T2 test and the single-marker test.

A drawback of the described analysis methods is that co-

variates that could be potential confounders are not easily

controlled for in the analysis. It has been demonstrated for

association studies that it is important to control for poten-

tial confounders, including population stratification.33 For

both the collapsing and CMC methods, this problem can

be overcome by implementing logistic regression, in which

covariates can be included in the analysis.

For all of the methods that were evaluated, type I error

was well controlled, except when logistic regression was

implemented to analyze uncollapsed rare variants (Table 1).

It is a well-known phenomenon that low cell counts or

empty cells can cause numerical instability of the maxi-

mum-likelihood estimation.34 When logistic-regression

analysis was applied to collapsed variants or to the CMC

method, type I error was well controlled; however, this

might not be the case if after collapsing the total allele fre-

quency is still very low. This problem can be circumvented

by estimation of empirical p values via permutation or use

of exact logistic regression.35,36

The collapsing method used in this article was based on

whether or not an individual had at least one copy of a rare

variant. There are other collapsing methods, involving

haplotype reconstruction, that can be used. One method

involves testing a 233 table, in which individuals are

classified as homozygous wild-type, having one or more

variants on the same haplotype and the other haplotype

containing only wild-type alleles, or having at least two

variants on different haplotypes. Another approach is to

test a 232 table, in which individual haplotypes are classi-

fied into having at least one variant or no variants; in this

situation, the sample size is 2N. Both of these methods had
The American
power similar to that of the collapsing method described in

this article (data not shown). It should be noted that for

the methods involving haplotype reconstruction, it was

assumed that the haplotypes were known. However, in re-

ality, haplotypes are not known with 100% accuracy, and

these errors in classification will reduce power.

Although it is not necessary to correct for testing multi-

ple variants within a locus when the described methods are

used, if multiple regions are being tested, the FWER should

be controlled. The a value that should be used is depen-

dent on the number of tests that will be performed and

whether or not these tests are independent. Currently, for

whole genome association studies, a p value of 5 3 10�7

or smaller is used for genome-wide significance, and this

criterion takes into consideration the correlation of the

common SNPs.37 For genome-wide association studies

that use sequence data, a more stringent criterion is neces-

sary because rare variants are not highly correlated. The

a level that should be used to sufficiently control type I

error for whole-genome sequence data is currently un-

known; however, it will be dependent not only on the

number of variants that are analyzed but also on how the

data is analyzed. For example, a more stringent criterion

would be necessary if every variant were analyzed sepa-

rately, compared to if variants across a locus were analyzed

simultaneously. The examples in this article are given for

a single locus, and an a level of 0.001 was used. However,

if more than one locus is being analyzed, a more stringent

a value would have to be used in order to control the

FWER.

In this study, the focus is on a locus with multiple vari-

ants and the main interest is the association of the locus

with the disease phenotype. In addition to allelic heteroge-

neity, locus heterogeneity will also be involved in the

etiology of complex traits. The methods described here

are able to detect multiple loci in the case of locus hetero-

geneity by analyzing individual loci separately. However,

the methods are not designed to detect gene 3 gene inter-

actions. The CMC method is a powerful and robust tool for

elucidating the main effects of susceptibility genes that are

involved in complex traits, for which the CDRV hypothe-

sis holds true. This method can be implemented with the

use of standard statistical software packages and readily ap-

plied to candidate-gene sequence data or extended for

analysis of whole-genome sequence data.

Supplemental Data

Supplemental Data include five figures and are available with this

article online at http://www.ajhg.org/.
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