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Genome-wide association (GWA) studies have proved to be extremely successful in identifying novel common
polymorphisms contributing effects to the genetic component underlying complex traits. Nevertheless, one source of, as
yet, undiscovered genetic determinants of complex traits are those mediated through the effects of rare variants. With the
increasing availability of large-scale re-sequencing data for rare variant discovery, we have developed a novel statistical
method for the detection of complex trait associations with these loci, based on searching for accumulations of minor alleles
within the same functional unit. We have undertaken simulations to evaluate strategies for the identification of rare variant
associations in population-based genetic studies when data are available from re-sequencing discovery efforts or from
commercially available GWA chips. Our results demonstrate that methods based on accumulations of rare variants
discovered through re-sequencing offer substantially greater power than conventional analysis of GWA data, and thus
provide an exciting opportunity for future discovery of genetic determinants of complex traits. Genet. Epidemiol.
34 : 188–193, 2010. r 2009 Wiley-Liss, Inc.
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INTRODUCTION

Recent advances in whole genome genotyping technol-
ogies, the availability of large, well-defined population-
based disease cohorts, and a better understanding of
common human sequence variation, coupled with the
development of appropriate quality control and analysis
pipelines, have led to the identification of many novel
common genetic determinants of complex traits [The
Wellcome Trust Case Control Consortium, 2007; Zeggini
et al., 2008; Barrett et al., 2008; Raychaudhuri et al., 2008;
Cooper et al., 2008; Willer et al., 2009; Aulchenko et al.,
2009; Prokopenko et al., 2009]. Nevertheless, despite these
successes, much of the genetic component of these traits
remains unaccounted for. Although there may be many
undiscovered common polymorphisms associated with
complex traits, it seems unlikely that the ‘‘common-disease
common-variant’’ hypothesis is all encompassing. One
unexplored paradigm which may contribute to this
unexplained genetic component is a model of multiple
rare causal variants, defined here to have a minor allele
frequency (MAF) of less than 1%, each of modest effect,
but residing within the same functional unit, for example,
a gene. Joint analysis of rare variants within a gene,
searching for accumulations of minor alleles within the
same individual, may thus provide signals of association
with complex phenotypes that could not have been

identified through traditional association analysis of single
nucleotide polymorphisms (SNPs), typically defined to
have MAF of at least 1%. For example, minor alleles at
multiple rare variants in ABCA1, APOA1 and LCAT have
been demonstrated to contribute collectively to low
plasma levels of high-density lipoprotein cholesterol
[Cohen et al., 2004].

Currently, most studies of rare variants utilise data from
commercially available GWA chips, which are far from
ideal since they are designed for capturing common
human genetic variation. However, the availability of data
more appropriate for rare variant association analysis is
just around the corner, with whole genome re-sequencing
efforts, such as the 1,000 Genomes project (www.1000
genomes.org) soon reaching completion. Furthermore,
large-scale deep re-sequencing technologies are becoming
increasingly efficient and cost effective, and thus may
soon be realistic for rare variant discovery in specific genes
in large disease or population-based cohorts. We have
developed a novel test of association with rare variants
discovered through such re-sequencing efforts, based on
the accumulation of minor alleles within the same
functional unit, for example a gene-coding region
extended up and downstream to incorporate additional
functional elements and the regulatory region. We have
then undertaken a simulation study to focus on two
distinct, but timely, scenarios with the aim of addressing
specific, as yet unanswered, methodological questions in
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each. First, when deep re-sequencing data are available to
discover rare variants, do methods based on accumula-
tions of minor alleles within the same functional unit offer
greater power to detect association with complex traits
than traditional analysis of SNPs on GWA chips? Second,
when only GWA chip data are available, what is the most
powerful strategy for identifying rare variant associations
with complex traits?

METHODS

We consider two specific tests of quantitative trait
association with accumulations of minor alleles across
rare variants within the same functional unit. In the first of
these tests, the phenotype is modelled in a linear
regression framework as a function of the proportion of
rare variants at which an individual carries a minor allele.
In the second, the phenotype is modelled in the same
regression framework, but this time as a function of the
presence/absence of a minor allele at any rare variant
within an individual. This collapsing approach has been
previously proposed in the context of a binary trait [Li and
Leal, 2008], and has been demonstrated to be powerful for
detecting association with rare variants discovered
through re-sequencing.

Consider a sample of unrelated individuals, phenotyped
for a normally distributed trait, and typed for rare variants
in a gene or small genomic region. Let ni denote the
number of rare variants for which the ith individual has
been successfully genotyped, and let ri denote the number
of these variants at which they carry at least one copy of
the minor allele. We can model the phenotype, yi, of the ith
individual in a linear regression framework, given by
yi 5 E[yi]1ei, where ei�N(0,sE), and

E½yi� ¼ aþ l
ri

ni
þ bxi:

In this expression, xi denotes a vector of covariate
measurements for the ith individual, with corresponding
regression coefficients b. The parameter l is the expected
increase in the phenotype for an individual carrying a full
complement of minor alleles at rare variants compared to
an individual carrying none. As an alternative, we can
model the expected phenotype of the ith individual as

E½yi� ¼ aþ lIðriÞ þ bxi;

where I(ri) is an indicator variable taking the value 1 if
ri40, and 0 otherwise, in other words, the presence of at
least one minor allele at any rare variant. Here, the
parameter l is the expected increase in the phenotype for
an individual carrying at least one minor allele at any rare
variant compared an individual carrying none.

For either model, the likelihood contribution of the ith
individual is given by

fðyija; l; b; ri; ni; xiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
E

q exp �
ðyi � E½yi�Þ
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2s2
E

� �
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We thus construct likelihood ratio tests of association of an
accumulation of rare variants with disease by comparing
the maximised likelihoods of two models via analysis of
deviance: (i) the null model where l5 0; and (ii) the
alternative model for which l is unconstrained. The

contribution of the ith individual to the likelihood,
f(yi|a,l,b,ri,ni,xi), is weighted by ni to allow for differential
call rates between samples. We denote the likelihood ratio
test based on the proportion of rare variants at which an
individual carries minor alleles by RVT1, and that based
on the presence/absence of at least one minor allele at any
rare variant by RVT2. Both RVT1 and RVT2 can be
generalised to tests of association with a binary trait
within a logistic regression-modelling framework.

SIMULATION STUDY

In order to evaluate the relative merits of different
analytical approaches to identify rare variant associations
with a quantitative trait, we have performed simulations
using simple models of population genetics to generate
high-density haplotype data in a 50-kb genomic region
used to represent a functional unit of interest. We
considered a range of models for association of the trait
with multiple causal variants in the same region, under
two different assumptions: (i) the mean trait value is
determined by the presence or absence of a minor allele at
any causal variant; and (ii) the mean trait value determined
by the proportion of causal variants at which a minor allele
is present. Trait association models were then parame-
terised in terms of: (i) the maximum MAF of any
individual causal variant; (ii) the total MAF of all causal
variants; and (iii) their joint contribution to the phenotypic
variance. Full details of the simulation process are
described in the Appendix.

We began by simulating a population of 40,000
haplotypes, and selected causal variants according to our
chosen model of association. We selected 10,000 haplo-
types, paired together at random to form 5,000 individuals
in our ‘‘analysis cohort’’, and generated their phenotypes
according to their genotypes at the causal variants. We
then selected a further 2,000 haplotypes in our ‘‘discovery
panel’’, used here to represent the deep re-sequencing data
we expect from the 1,000 Genomes project. Over all
simulations, the mean number of rare variants with at
least two copies of the minor allele in the discovery panel
was 52.2. We assumed that each of these rare variants was
taken forward for genotyping in the analysis cohort, and
tested for association using both RVT1 and RVT2.

Our next step was to select variants in the 50 kb region to
have similar properties to the Affymetrix Human SNP
Array 6.0 in terms of mean density and MAF profile in the
population of 40,000 haplotypes. All SNPs on the GWA
chip were analysed independently, using conventional
trend tests of association, with Bonferroni correction for
multiple testing, and jointly, using standard haplotype-
based techniques. Over all simulations, the mean number
of GWA chip SNPs in the region was 14.8, while the mean
number of SNP haplotypes with population frequency
greater than 1% was 18.0. We attempted to apply RVT1
and RVT2 to the GWA chip data, but the mean number of
rare variants in the region was just 0.2, and provided
minimal power to detect accumulations of minor alleles at
these loci. As a result, we extended our analysis to include
‘‘low-frequency’’ SNPs (1%oMAFo5%), which are less
scarce on the GWA chip (mean 1.6 variants in the region).

Figure 1 shows the power of each of the tests of
association as a function of the percentage of phenotypic
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variation explained by causal variants in the 50 kb region,
assuming the trait mean is determined by the presence or
absence of minor alleles at any of the causal variants.
Results for two models are presented here, each assuming
a total MAF of 5% for all causal variants in the region:
(a) the maximum MAF of any individual causal variant is
0.5%; and (b) the maximum MAF of any individual causal
variant is 2%. Model (b) incorporates fewer and, on
average, more common causal variants than does (a), and
thus represents a lower degree of allelic heterogeneity.
Supplementary Figures 1 and 2 present power for a wider
range of association models encompassing intermediate
levels of allelic heterogeneity, where trait means are
determined by the presence or absence of minor alleles
at any causal variant, and by the proportion of causal
variants at which a minor allele is present, respectively.

Our results highlight a number of general conclusions.
First, when rare variants are discovered through re-
sequencing, RVT1, based on the proportion of rare variants
at which an individual carries minor alleles, is always at
least as powerful as RVT2, based on the presence/absence
of minor alleles. The difference in power between the two
tests is most noticeable when the trait mean is determined
by the proportion of causal variants at which a minor allele
is present, which is not surprising, since this model is
assumed by RVT1 (Supplementary Fig. 2). However, even
when the trait mean is determined by the presence or
absence of a minor allele at any causal variant, RVT1 is
generally more powerful than RVT2. This would suggest
that RVT2 is less robust to the presence of minor alleles at
non-causal rare variants than is RVT1.

Next, there is a clear gain in power for tests based on
rare variants identified through re-sequencing over ana-
lyses of SNPs or low-frequency variants present on the
GWA chip. The greatest gains are observed in the presence
of substantial allelic heterogeneity (Fig. 1a), where rare
causal loci are less likely to be captured by SNPs as a result
of linkage disequilibrium [The International HapMap
Consortium, 2005; Zeggini et al., 2005]. However, the
differences in power between the tests are less noticeable
when there is less allelic heterogeneity (Fig. 1b). Our
results also confirm previous findings that haplotype-
based analyses of SNPs have greater power to detect rare
variant associations than single-locus tests, unless there is
substantial allelic heterogeneity [Morris and Kaplan, 2002].
Finally, low-frequency variants (MAFo5%) on GWA chips
are too scarce to detect accumulations of minor alleles, and
thus RVT1 and RVT2 have minimal power to identify rare
variant associations with this type of data.

DISCUSSION

Our simulations clearly indicate that tests based on the
accumulation of minor alleles at rare variants identified
through re-sequencing are always more powerful than
conventional tests applied to SNPs present on GWA chips,
particularly in the presence of substantial allelic hetero-
geneity. We have assumed a discovery panel of 1,000
individuals from the same population from which the
analysis cohort has been ascertained which may not
always be the case. With the expense of re-sequencing
efforts, focussed studies of samples from the analysis
cohort are likely to be much smaller, and thus less
powerful for rare variant discovery, although pooling
may provide a more efficient initial screening step.
Publicly available re-sequencing panels, such as those that
will be released through the 1,000 Genomes project may
not be matched for ancestry with the analysis cohort.
These panels will miss rare variants specific to the
population from which the analysis cohort has been
ascertained, and may lead to genotyping of variants which
are, in fact, monomorphic.

Our simulations also assume that all rare variants
identified through re-sequencing of the discovery samples
will subsequently be genotyped in the analysis cohort.
However, genotyping these rare variants on a genome-
wide scale will be a considerably more expensive
endeavour than utilising GWA platforms. This approach
may currently be financially infeasible with the large
samples required to detect the modest genetic effects we
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Fig. 1. Power of six tests of rare variant association with a
quantitative trait as a function of the percentage of phenotypic

variation explained by causal variants in a 50 kb region,

assuming the trait mean is determined by the presence or

absence of minor alleles at any of the causal variants. Results for
two models are presented, both assuming a total MAF of 5% for

all causal variants in the region: (a) the maximum MAF of any

individual causal variant is 0.5% and (b) the maximum MAF of
any individual causal variant is 2%. Power is estimated at a 5%

significance level over 10,000 replicates of data. Re-sequencing

RVT1: test of phenotype association with the proportion of rare

variants, discovered through re-sequencing, at which indivi-
duals carry minor alleles. Re-sequencing RVT2: test of pheno-

type association with the presence/absence of minor alleles in

individuals at any rare variant discovered through re-sequen-

cing. GWA o5% RVT1: test of phenotype association with the
proportion of low-frequency variants on the GWA chip at which

individuals carry minor alleles. GWAo5% RVT2: test of

phenotype association with the presence/absence of minor

alleles at any low-frequency variant on the GWA chip. GWA
single SNP: standard trend test of quantitative trait association

with each SNP on the GWA chip, with Bonferroni correction for

multiple testing. GWA SNP haplotypes: haplotype trend test of
association with the quantitative trait across all SNPs on the

GWA chip.
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expect for complex traits, particularly for rare variant
associations. One possible approach to reduce genotyping
costs is to focus on potentially functional rare variants
(for example those leading to non-synonymous changes
or located within exons and regulatory regions). However,
at present, there is no unbiased evidence to suggest
that causal variants are more likely to aggregate in such
regions and current annotation of the genome is incom-
plete, making identification of potentially functional loci
difficult.

Experience with current genotyping technologies would
suggest that rare variants are more difficult to type than
SNPs, and thus stringent quality control procedures are
required to avoid increased false-positive error rates as a
result of genotype misspecification. To increase power, an
obvious step would be to combine results of rare variant
studies through meta-analysis. Although each study may
genotype different loci, we can combine results on the
level of the functional unit. This may reduce, or even
eliminate, the need for imputation, which may be
potentially prone to bias because the spectrum of rare
variants is more diverse than that of SNPs, even between
populations sharing relatively recent common ancestry,
and therefore more difficult to predict [Anderson et al.,
2008]. This highlights the need for replication in large
samples from closely related populations to confirm rare
variant association signals.

The field of complex trait genetics is moving rapidly
towards an understanding that deep re-sequencing tech-
nologies will provide the necessary data to unearth novel-
associated loci. It is anticipated that researchers will soon
be faced with the challenge of selecting the appropriate
analytical strategy for these data sets, which will be of
unprecedented scale and depth. In this study, we have
developed and evaluated targeted rare variant analysis
methods and have provided insights into their relative
merits. The methodology we have developed here for
detecting rare variant associations is extremely simplistic,
and as technologies probing human genome sequence
variation move rapidly forward, the development and
testing of analytical strategies that maximise output
from these investments will continue to be of critical
importance.
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Morris AD, Naitza S, Orrù M, Palmer CN, Pouta A, Randall J,

Rathmann W, Saramies J, Scheet P, Scott LJ, Scuteri A, Sharp S,

Sijbrands E, Smit JH, Song K, Steinthorsdottir V, Stringham HM,

Tuomi T, Tuomilehto J, Uitterlinden AG, Voight BF, Waterworth D,

Wichmann HE, Willemsen G, Witteman JC, Yuan X, Zhao JH,

Zeggini E, Schlessinger D, Sandhu M, Boomsma DI, Uda M,

Spector TD, Penninx BW, Altshuler D, Vollenweider P,

Jarvelin MR, Lakatta E, Waeber G, Fox CS, Peltonen L,

Groop LC, Mooser V, Cupples LA, Thorsteinsdottir U,

Boehnke M, Barroso I, Van Duijn C, Dupuis J, Watanabe RM,

Stefansson K, McCarthy MI, Wareham NJ, Meigs JB, Abecasis GR.

2009. Variants in MTNR1B influence fasting glucose levels. Nat

Genet 41:77–81.

Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C,

Burtt NP, Gianniny L, Korma BD, Padyukov L, Kurreeman FA,

Chang M, Catanese JJ, Ding B, Wong S, van der Helm-van Mil AH,

Neale BM, Coblyn J, Cui J, Tak PP, Wolbink GJ, Crusius JB, van der

191Rare Variant Association Analysis

Genet. Epidemiol.



Horst-Bruinsma IE, Criswell LA, Amos CI, Seldin MF, Kastner DL,

Ardlie KG, Alfredsson L, Costenbader KH, Altshuler D,

Huizinga TW, Shadick NA, Weinblatt ME, de Vries N,

Worthington J, Seielstad M, Toes RE, Karlson EW, Begovich AB,

Klareskog L, Gregersen PK, Daly MJ, Plenge RM. 2008. Common

variants at CD40 and other loci confer risk of rheumatoid arthritis.

Nat Genet 40:1216–1223.

The International HapMap Consortium. 2005. A haplotype map of the

human genome. Nature 437:1299–1320.

The Wellcome Trust Case Control Consortium. 2007. Genome-wide

association study of 14,000 cases of seven common diseases and

3,000 shared controls. Nature 447:661–678.

Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM,

Berndt SI, Elliott AL, Jackson AU, Lamina C, Lettre G, Lim N,

Lyon HN, McCarroll SA, Papadakis K, Qi L, Randall JC,

Roccasecca RM, Sanna S, Scheet P, Weedon MN, Wheeler E,

Zhao TH, Jacobs LC, Prokopenko I, Soranzo N, Tanaka T,

Timpson NJ, Almgren P, Bennett A, Bergman RN, Bingham SA,

Bonnycastle LL, Brown M, Burtt NP, Chines P, Coin L, Collins FS,

Connell JM, Cooper C, Smith GD, Dennison EM, Deodhar P,

Elliott P, Erdos MR, Estrada K, Evans DM, Gianniny L, Gieger C,

Gillson CJ, Guiducci C, Hackett R, Hadley D, Hall AS,

Havulinna AS, Hebebrand J, Hofman A, Isomaa B, Jacobs KB,

Johnson T, Jousilahti P, Jovanovic Z, Khaw KT, Kraft P,

Kuokkanen M, Kuusisto J, Laitinen J, Lakatta EG, Luan J,

Luben RN, Mangino M, McArdle WL, Meitinger T, Mulas A,

Munroe PB, Narisu N, Ness AR, Northstone K, O’Rahilly S,

Purmann C, Rees MG, Ridderstråle M, Ring SM, Rivadeneira F,
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APPENDIX

We have performed simulations to evaluate the relative
merits of different analytical approaches to identify rare
variant associations with a quantitative trait: (i) tests of
association of rare variants (MAFo1%) discovered
through re-sequencing based on accumulations of minor
alleles in the extremes of the phenotype distribution;
(ii) the same tests applied to low-frequency variants
(MAFo5%) on GWA chips and (iii) conventional
single-locus and haplotype-based tests of association with
SNPs (MAF41%) on GWA chips. We considered a range
of models for association of the trait with multiple causal
variants in the same region, under two different assump-
tions: (i) the mean trait value is determined by the
presence or absence of a minor allele at any causal variant
and (ii) the mean trait value determined by the proportion
of causal variants at which a minor allele is present. Trait
association models were then parameterised in terms of:
(i) the maximum MAF, d, of any individual causal variant;
(ii) the total MAF, Q, of all causal variants and (iii) their
joint contribution to the phenotypic variance, expressed as
100l%. For each model, we generated 10,000 replicates of
data as follows:

1. Generate an ancestral recombination graph [Griffiths
and Marjoram, 1997] for a population of 40,000
haplotypes from a realisation of the coalescent process
with recombination, obtained using the MS software
[Hudson, 2002]. We assumed a mutation rate of 10�8

per base (in each generation) and a recombination rate
of 1 cM per Mb, for an effective population size of
10,000 individuals, corresponding to scaled recombina-
tion and mutation rates of r5 y5 20 across the 50 kb
region [Nordborg, 2001].

2. Calculate the MAF at each variant across the popula-
tion, denoted qj for the jth locus. Select a random subset
of variants as causal, each with MAF qjod, and with
total MAF of approximately Q.

3. Select a random sample of 10,000 chromosomes from
the population, paired together at random to form an
‘‘analysis cohort’’ of 5,000 individuals to be genotyped
for association testing. Determine the number of minor
alleles across all causal variants carried by the ith
individual, denoted mi. Under the assumption that the
trait mean is determined by the presence or absence of
minor alleles at any causal variant, we simulate the
phenotype, yi, of the ith individual from a N(I(mi40),s)
distribution. Conversely, under the assumption that the
trait mean is determined by the proportion of causal
variants at which a minor allele is present, we simulate
the phenotype, yi, from a N(mi,s) distribution. In both
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scenarios, the standard deviation, s, is determined by
the spectrum of causal variants and their joint con-
tribution, l, to the phenotypic variance.

4. Select a random sample of 2,000 chromosomes from the
population, representing 1,000 individuals in the ‘‘dis-
covery panel’’. Identify all variants that have at least
two occurrences of the minor allele, but with MAF of
less than 1%, in the discovery panel. Record the
genotypes of each individual in the analysis cohort at
all rare variants identified in the discovery panel.
Apply the two proposed tests of quantitative phenotype
association with accumulations of minor alleles across
rare variants, RVT1 and RVT2, and record P-values.

5. Select 15 variants, at random, with probability 4qj(1�qj),
as present on the GWA chip. Record the genotypes of
each individual in the analysis cohort at all variants on
the chip, and apply our two proposed tests of

quantitative phenotype association with accumulations
of minor alleles across low-frequency variants, record-
ing P-values. Apply a standard trend test of quantita-
tive trait association with each SNP on the GWA chip,
and record the minimum Sidak-corrected P-value to
account for multiple comparisons. Estimate population
haplotype frequencies across all common SNPs using
an expectation maximisation algorithm [Excoffier and
Slatkin, 1995]. Apply a haplotype trend test of associa-
tion with the quantitative trait [Zaykin et al., 2002]
across all SNPs on the GWA chip, pooling all rare
haplotypes (MAFo1%) in a single class, and record the
resulting P-value.

For each model, we recorded the proportion of replicates
of data for which the P-value of each test was less than a
5% significance threshold.
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