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We present CisGenome, a software system for analyzing genome-wide chromatin immunoprecipitation (ChIP) data. CisGenome

is designed to meet all basic needs of ChIP data analyses, including visualization, data normalization, peak detection, false

discovery rate computation, gene-peak association, and sequence and motif analysis. In addition to implementing previously

published ChIP–microarray (ChIP-chip) analysis methods, the software contains statistical methods designed specifically

for ChlP sequencing (ChIP-seq) data obtained by coupling ChIP with massively parallel sequencing. The modular design of

CisGenome enables it to support interactive analyses through a graphic user interface as well as customized batch-mode

computation for advanced data mining. A built-in browser allows visualization of array images, signals, gene structure,

conservation, and DNA sequence and motif information. We demonstrate the use of these tools by a comparative analysis of

ChIP-chip and ChIP-seq data for the transcription factor NRSF/REST, a study of ChIP-seq analysis with or without a negative

control sample, and an analysis of a new motif in Nanog- and Sox2-binding regions.

Chromatin immunoprecipitation followed by either genome tiling
array analysis (ChIP-chip)1–3 or massively parallel sequencing
(ChIP-seq)4–10 enables transcriptional regulation to be studied on a
genome-wide scale (Supplementary Fig. 1 online). By systematically
identifying protein-DNA interactions of interest, studies using these
technologies provide information on cis-regulatory circuitry under-
lying various cellular processes. However, analysis of the massive and
heterogeneous datasets from these studies poses several challenges,
including effective data visualization, seamless connection of low-level
(close to raw data) and high-level (close to answering biological
questions) analysis, integration of data from multiple technological
platforms, and flexibility to customize the analysis so that specific
biological questions can be addressed. Although there are several
recently developed programs11–31 that target some of the individual
steps, an integrated tool that can satisfy all basic needs in ChIP data
analyses is not yet available (see Supplementary Notes online).

We developed a set of methods to meet these needs in ChIP data
analyses and implemented them in an integrated software package
(Fig. 1). CisGenome provides a wide range of functionalities for
ChIP data analyses that can be accessed through a menu-driven
system in a graphic user interface (GUI). The results are automatically
linked to the CisGenome browser, which is designed for data
visualization. CisGenome is a standalone system that bench biologists
can use to analyze their own data locally on personal computers.
At the same time, most CisGenome functionalities can also be
accessed in a command-line manner. This modular design allows

computational biologists to build large batch jobs for customized
analyses on computer servers.

RESULTS

CisGenome basic functionalities are listed below.

Data processing and binding region identification

Finding regions harboring protein-DNA association is the critical first
step of ChIP data analyses. CisGenome can detect these regions (or
peaks) from raw tiling array probe intensities or mapped sequence
reads. For example, using the GUI, one can directly load Affymetrix
CEL and BPMAP tiling array data, examine raw array images to detect
hybridization artifacts, normalize data across different arrays and then
detect binding regions (Supplementary Fig. 2a–c online). CisGenome
can also take as input the binding regions or peak scores obtained
from other preprocessing programs, such as MAT11 for ChIP-chip and
QuEST30 for ChIP-seq data. CisGenome uses TileMap12 for internal
ChIP-chip peak calling and false discovery rate (FDR) estimation
(Supplementary Methods online).

Visualization of results

Convenient visualization of raw and processed data provides a useful
way to assess data quality and generate scientific hypotheses. In
CisGenome, the peak signals, including fold changes and summary
statistics, are reported in tables and linked to the CisGenome browser.
Using the browser, one can visualize at the probe or read level
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data together with gene structures, conservation scores and DNA
sequences (Supplementary Fig. 2d). One can freely zoom in
and out, move left and right, search for genes and regions, or
add and delete annotation tracks. By clicking a location of
interest, one can link to external resources such as NCBI32, UCSC33

and Ensembl34 to obtain more comprehensive information. The
CisGenome browser also supports visualization of raw array images
and sequence logos of motifs. The memory requirement (~64 M) is
minimal. This built-in browser makes it easy and efficient to visualize
millions of data points without the need to transfer them to Web
services such as the UCSC genome browser. This often becomes
inefficient in large-scale analyses.

Statistical summaries

Predicted binding regions need to be linked to gene annotations to
provide functional contexts for interpreting the results. Tools for
establishing such links automatically are crucial for efficient analysis
of thousands of predictions. The CisGenome GUI enables one to
associate binding regions with neighboring genes and to study
statistical properties of the binding regions in relation to various
genome annotation features. For example, one can extract the fre-
quency of regions found in exons, introns and untranslated regions
and summarize the conservation level of each individual binding
region (Supplementary Fig. 2e).

Motif analysis

Many transcription factors recognize specific DNA sequence patterns
(that is, motifs). Finding motifs from ChIP data and locating them in
the genome will provide clues on how transcriptional regulatory
programs are encoded in DNA. CisGenome contains many functions
related to sequence and motif analyses. It can be used to retrieve DNA
sequences on binding-regions, map transcription factor binding
motifs to the genome, and search for novel motifs35 and cis-regulatory
modules36. A de novo motif search may return multiple motifs;
CisGenome identifies the functionally relevant ones by comparing
the occurrence rates of the motifs in binding regions to those in
matching genomic control regions37 (Supplementary Fig. 2e–h and
Supplementary Methods).

Support for different species

Although CisGenome currently supports only human, mouse,
Drosophila and Arabidopsis for species-dependent analyses (for exam-
ple, peak-gene association), users can add support for other species
(Supplementary Methods).

Modular structure

CisGenome has a modular design so that most of its functions can be
accessed in command mode and from the GUI. The command mode
functions can be conveniently embedded into users’ own programs.
Interfaces that allow users to link their own programs to the
CisGenome browser are provided. Interfaces that allow users to plug
their own tools into the CisGenome GUI are being developed.

Open source and user support

The program download, frequently asked questions document, file
formats, tutorial and user manual can be found at http://biogibbs.
stanford.edu/~jihk/CisGenome/index.htm. Developing language and
operating systems are discussed in Supplementary Methods. We
provide source codes to enable customization by users.

Processing of ChIP-seq data

Compared to ChIP-chip, the recently developed ChIP-seq technology
is able to provide higher resolution and more comprehensive genome
coverage for identification of protein-DNA interactions. The proces-
sing of ChIP-seq data, however, is still in its infancy. CisGenome can
handle data from two types of designs common in ChIP-seq experi-
ments (see Methods and Fig. 2): one-sample analysis, where only a
ChIP sample is sequenced5,9, and two-sample analysis4,6,8,10, where
both a ChIP sample and a negative control sample are sequenced. In
one-sample analysis, CisGenome scans the genome with a sliding
window and identifies regions with read counts greater than a user-
chosen cutoff for bona fide binding regions. FDRs are estimated by
modeling the read count in nonbinding windows using a negative
binomial distribution. In contrast to the constant rate assumed in the
widely used Poisson background model, the negative binomial model
allows the background rate of occurrence of the reads to vary across
the genome and to have a more flexible gamma distribution. For many
datasets, the negative binomial model provides a much better fit to the
data than does the Poisson model (Fig. 2b,c). A systematic evaluation
of the method is provided in Supplementary Data 1, Supplementary
Figs. 3–7 and Supplementary Tables 1–3 online.

In two-sample analysis, where a negative control sample is also
available, CisGenome uses a conditional binomial model to identify
regions in which the ChIP reads are significantly enriched relative to
the control reads. Windows passing a user-specified FDR cutoff are
used to generate predicted binding regions. Both one- and two-sample
analyses use the directionality of reads to refine peak boundaries and
filter out low-quality predictions. These are provided as two post-
processing options—boundary refinement and single-strand filtering
(Fig. 2d).

External data
resources: UCSC,

Affymetrix, etc.

User input:
CEL + BPMAP, BAR, 

TXT, COD,
BED, FASTA, etc.

Output:
BAR, TXT, BED, FASTA,

COD, etc.

Genome database
construction

Precompiled
database

GUI

Tiling array analysis
(ChIP-chip)

Sequencing data
analysis (ChIP-seq)

Motif discovery and
motif mapping

Annotation and
sequence retrieval

Core data
analysis

programs

GUI and
CisGenome

browser

Figure 1 The basic framework of CisGenome. CisGenome contains three

core components: a GUI, the built-in CisGenome browser and a set of

underlying data analysis algorithms. The GUI allows users to load raw data

and choose specific analysis functions. Core programs carry out the analysis,

and results displayed in the CisGenome browser can be exported in various

formats. Precompiled genome databases are required to support analyses

involving sequence and gene annotation information. CisGenome contains

functions to construct such databases from standard external data resources.
Databases for a few commonly used species can be downloaded directly

from the CisGenome website.
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Comparative analysis of NRSF ChIP-chip and ChIP-seq data

To demonstrate the basic functions provided by CisGenome, we
analyzed whole-genome ChIP-chip and ChIP-seq datasets generated
for the neuron-restrictive silencer factor (NRSF, also known as
REST)38,39 in Jurkat cells (see Methods). NRSF is a zinc finger
repressor that negatively regulates many neuronal genes in stem and
progenitor cells and nonneuronal cell types. Following the steps shown
in Supplementary Figure 2, we identified 7,114 binding regions at a
10% FDR level (median length, 616 bp) from the ChIP-chip data. The

NRSF motif was successfully discovered by de novo motif discovery
and had the highest enrichment level among all the discovered motifs.

We then applied both one- and two-sample analyses to the
corresponding ChIP-seq data. One-sample analysis identified 3,312
NRSF binding regions before postprocessing (FDR r 10%; median
length, 269 bp), from which the NRSF motif was recovered by de novo
motif discovery (Supplementary Fig. 8 and Supplementary Table 4
online). Motif mapping (Table 1) showed that among the initial 3,312
peaks, 1,277 contained Z1 NRSF motif. Boundary refinement greatly
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Figure 2 ChIP-seq data processing. (a) The GUI can be used to explore and analyze ChIP-seq data. (b) In data exploration, parametric models are fitted to

describe the distribution of read count n in background windows. Both negative control samples and the lower end of ChIP samples can be fitted well by

the negative binomial (NegBinom) model, whereas the Poisson model generally cannot provide satisfactory fitting. Fitting to the NRSF data are shown as an

example. (c) In one-sample analyses of NRSF4, Oct4 (ref. 10) and Nanog10 data, FDR estimates based on the negative binomial and Poisson models were

compared to model-independent reference FDRs. The reference FDRs were obtained by incorporating information from negative control samples and were
defined as number of predictions in the control sample divided by number of predictions in the corresponding ChIP sample with equal amount of reads.

(d) Peak detection results can be visualized using the CisGenome browser. 5¢ Reads that are aligned to the forward strand of the genome (pink) and 3¢ reads

aligned to the reverse complement strand of the genome (blue) are usually shifted away from each other and form two separate peaks resulting from the

nature of sequencing49 (Supplementary Fig. 1). CisGenome uses the modes (red vertical lines) of the 5¢ and 3¢ peaks to refine the boundaries of binding

regions (boundary refinement) and reports the center (black vertical line) as well. CisGenome can also filter out low-quality binding regions if 5¢ and 3¢ peaks

do not show up as a pair (single-strand filtering).

Table 1 Summary of NRSF ChIP-chip and ChIP-seq binding regions

Region length percentile (bp)

Data and analysis method Peaks Peaks with NRSF motif Motifs per kb 10 25 50 75 90

Affymetrix-TileMap 7,114 1,001 (14.1%) 0.15 211 323 616 1,274 2,311

Seq-S1w100 3,312 1,277 (38.6%) 1.26 122 173 269 444 598

Seq-S1w100 (B) 3,312 1,223 (36.9%) 5.54 29 30 60 82 113

Seq-S1w100 (B + S) 1,861 1,051 (56.5%) 6.98 41 59 73 90 122

Seq-S2w100 3,317 1,280 (38.6%) 1.28 116 161 261 445 604

Seq-S2w100 (B) 3,317 1,211 (35.5%) 5.53 29 30 59 85 119

Seq-S2w100 (B + S) 1,794 1,041 (58.0%) 7.31 40 57 73 94 125

S1w100, one-sample analysis for ChIP-seq data (window length w ¼ 100 bp); S2w100, two-sample analysis for ChIP-seq data (window length w ¼ 100 bp); B, applying boundary
refinement; S, applying single-strand filtering. The choice of window size w ¼ 100 bp represents a tradeoff between sensitivity and specificity (see Methods). Methods for motif
mapping are described in Supplementary Methods. A likelihood ratio Z500 was used as the cutoff to define NRSF motif sites. To facilitate a fair comparison between different
datasets, the TRANSFAC40 NRSF motif M00256 was used in the motif mapping. Using the NRSF motif recovered from de novo motif discovery did not change the results
qualitatively (data not shown).
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reduced the median length of these 3,312 regions (from 269 to 60 bp),
with only a slight decrease in the number of NRSF site–containing
regions (from 1,277 to 1,223). The further step of single-strand
filtering reduced the number of regions from 3,312 to 1,861 but
retained most (1,051 of 1,223) of the NRSF site–containing regions.
Even before postprocessing, there were substantially more NRSF sites
in ChIP-seq regions (1.26/kb) than in ChIP-chip regions (0.15/kb).
The rate was further increased after each step in the postprocessing (to
5.54/kb after boundary refinement and 6.98/kb after single-strand
filtering). This increase of signal-to-noise ratio could potentially
improve the possibility of de novo discovery of weak unknown motifs.
Predictions with a higher resolution can also provide more focused
targets for future experimental studies, such as those seeking the
minimal cis-regulatory elements sufficient and necessary to drive
target gene expression.

Using both the ChIP and negative control
samples, two-sample analysis identified 3,317
initial binding regions (FDR r 10%; median
length, 261 bp). Postprocessing reduced the
median region length to B65 bp and the
number of regions to 1,794 (Table 1). After
postprocessing, there was a 96% overlap
between the peaks detected in one-sample
analysis and those detected in two-sample
analysis (Fig. 3a,b).

Comparisons between array and sequencing technologies showed
that peak signals produced by the two platforms had a clear correla-
tion (Fig. 3c,d). However, peaks called in the tiling array analysis
were generally longer than the corresponding ChIP-seq peaks, and the
array peaks were less likely to contain the NRSF motif (Table 1). In all
studies, binding regions were more likely to be located near promoters
(Supplementary Table 5 online). They were substantially more
conserved than randomly selected genomic regions (Fig. 3e), and
they were able to cover 10–13% of all NRSF motif sites in the genome
(Supplementary Table 6 online). Notably, 5,517 (78%) of 7,114 array
peaks did not overlap with any ChIP-seq peak (Fig. 3a). We carried
out motif analyses to investigate whether these regions represent noise
in the tiling array technology or signals missed by ChIP-seq. De novo
motif discovery was not able to recover the NRSF motif from the
array-specific peaks, and only 68 (1.23%) of 5,517 array-specific peaks
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Figure 3 Comparisons between NRSF ChIP-seq

and ChIP-chip data. (a) Overlap among ChIP-chip

and ChIP-seq binding regions before applying

boundary refinement and single-strand filtering.

*Because a peak from one dataset can overlap

multiple peaks from another dataset, the

intersection involved 1,385 one-sample and

1,387 two-sample ChIP-seq peaks; **10 ChIP-
chip peaks and 22 two-sample ChIP-seq peaks;

***1,587 ChIP-chip peaks and 1,677 one-

sample and 1,671 two-sample ChIP-seq peaks.

(b) Overlap among ChIP-chip and ChIP-seq

binding regions after applying postprocessing to

ChIP-seq data. *1,378 ChIP-seq and 1,379

ChIP-chip peaks overlapped. (c) Visual

comparison of ChIP-seq and ChIP-chip signals in

CisGenome browser. FC, fold change; MA, moving

average. (d) Using CisGenome, the NRSF motif

was mapped to the human genome, and log2 fold

changes for IP over control were extracted for the

motif sites from both ChIP-chip and ChIP-seq.

Comparison of these site-level signals revealed a

strong correlation between ChIP-chip and ChIP-

seq (r ¼ 0.73). The CisGenome functions used

here can be applied to construct genome-wide

tissue-specific activity maps of transcription

factor binding motifs in future studies.
(e) Conservation levels of ChIP-chip and

ChIP-seq binding regions were higher than the

corresponding conservation level of randomly

chosen nonrepeat genomic regions (dotted line).

The ranked binding regions were grouped into

tiers of 300. Mean phastCons48 conservation

score was computed for each tier (see Methods).

Data shown characterize the conservation at the

binding region level rather than motif site level.

Results were obtained before postprocessing.

Applying postprocessing to ChIP-seq produced

similar results (data not shown).
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contained Z1 NRSF motif. For comparison, 1,001 (14.1%) of all
7,114 array peaks, 290 (20.9%) of the 1,385 peaks common to the
ChIP-seq analyses but not found by arrays, and 933 (58.8%) of the
1,587 peaks common to all three analyses contained the motif. As
analyses using noncanonical NRSF motifs yielded similar results
(Supplementary Data 2, Supplementary Fig. 9 and Supplementary
Tables 7 and 8 online), the array-specific peaks in this example are
unlikely to represent true signals.

Merits and limitations of one-sample ChIP-seq analyses

One-sample design has been used in many ChIP-seq experiments5,9. It
allows more biological contexts to be analyzed within a fixed sequen-
cing budget. To study the merits and limitations of this design, we
analyzed ChIP-seq data for two additional transcription factors, Oct4
and Nanog, which are crucial regulators for self-renewal and pluri-
potency of embryonic stem cells10. Again, there was good agreement
between one-sample and two-sample analyses after postprocessing,
with 96% concordance in the case of Oct4 and 83% in the case of

Nanog (Supplementary Data 3 and Supple-
mentary Figs. 10 and 11 online). These
examples suggest that under certain condi-
tions, a one-sample experiment can provide a
cost-effective alternative to the two-sample
experiment, albeit perhaps at the expense of
some specificity.

To gain a better understanding of limita-
tions of one-sample analysis, we applied it to
negative control samples. Although no peaks
were expected, a small number of peaks were
reported at the 10% FDR level (Supplemen-
tary Table 3). This was caused by the residual
background variation that the negative bino-
mial model was not able to explain (Poisson
model performed even worse; Fig. 2b). Sys-
tematic evaluation using simulated spike-in
data showed that, although the one-sample
analysis can provide reasonable FDR estimates
when the overall binding signal is strong, the
method may underestimate the real FDR
significantly when the overall binding in the
sample is weak (Supplementary Data 1).
Fortunately, poor peak reliability and proble-
matic FDR estimation can often be diag-
nosed through several criteria, such as highly
repeat-rich predictions, predictions covering a
low percentage of reads, and lack of motif
enrichment (Supplementary Data 1). We
recommend using two-sample experiments
whenever it is affordable or when little is
known about the transcription factor. When
cost constraints necessitate one-sample ana-
lyses, a negative binomial rather than Poisson
background model should be used to exclude
background noise, and prediction quality
should be evaluated using multiple criteria
as described above. CisGenome is designed to
support these types of analyses.

Analysis of a novel motif in Sox2 and

Nanog binding regions

The basic functionalities of CisGenome can be
used in combination to address many different biological questions.
For example, de novo discovery from peak regions may yield new
sequence motifs. Bench biologists can use the motif mapping and
statistical summary functions to systematically evaluate the functional
implications of these motifs. As an example, we studied a novel motif
discovered from a Sox2 and Nanog ChIP-chip dataset on human
promoter arrays2. This motif (Fig. 4a), identified by de novo motif
discovery along with the bona fide Oct4 and Sox2 motifs37, is highly
sequence specific but does not correspond to any known motif stored
in TRANSFAC40 (Supplementary Data 4 online). To address its
function, we applied CisGenome to determine whether the motif
sites are phylogenetically conserved, whether they function in clusters
and whether their locations are associated with structural features of
genes (see Supplementary Fig. 12 online).

Mapping the motif to the human genome yielded a total of 17,740
motif sites, of which 4,543 (25.6%) were phylogenetically conserved. In
comparison, only 16.3% of the nonrepeat base pairs in the genome had
the same level of conservation (see Supplementary Table 9 online).
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positions were extracted using CisGenome (Supplementary Fig. 12d). The score drops sharply at the
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users to link to external Web resources (Supplementary Fig. 12c).

NATURE BIOTECHNOLOGY VOLUME 26 NUMBER 11 NOVEMBER 2008 1297

A R T I C L E S
©

20
08

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



When motif sites that were physically clustered together were
collected, they were more than twice more conserved than nonclus-
tered sites. Among the 1,674 sites that were separated from another
site by r500 bp, 934 (55.8%) were phylogenetically conserved (versus
4,543 (25.6%) of the 17,740 general sites conserved; Supplementary
Table 9).

There were 705 clustered conserved motif sites (defined as two
conserved sites separated by r500 bp). Visual examination showed
that, for the majority of these sites, only sequences within the sites
were conserved, and the conservation dropped sharply at the site
boundaries (Fig. 4b,c). Moreover, the most conserved positions
coincided well with the most informative positions in the motif.
Plotting the mean conservation scores for the flanking positions of the
motif clearly verified the observation (Fig. 4b).

A summary of physical distributions of the motif sites revealed a
strong correlation between the clustered sites and promoters
(Table 2). Whereas only 1,920 (10.8%) of all 17,740 sites were located
within 1 kb upstream of a transcription start site, 835 (49.9%) of the
1,674 clustered sites were within this region. This level increased to 420
(59.6%) of the 705 clustered conserved sites.

Repeating the same analyses on the mouse genome produced
essentially the same results (Table 2, Fig. 4 and Supplementary
Table 9). The motif is thus highly likely to be a functional promoter
element. Our findings suggest that future investigation of the motif is
worthwhile, although the context of the motif’s function awaits
further exploration (Supplementary Data 5 and Supplementary
Table 10 online).

DISCUSSION

Compared to commonly used algorithms such as MAT11, TAS13 and
Tilescope21, CisGenome’s internal ChIP-chip peak caller provides
competitive or higher sensitivity and specificity when applied to the
recently published benchmark spike-in datasets41 for ChIP-chip ana-
lysis (Supplementary Data 6, Supplementary Figs. 13 and 14 and
Supplementary Table 11 online). The existing tools for ChIP-seq
analysis, GeneTrack29 and CPF4, do not provide statistical estimates of
FDR. QuEST30 provides FDR estimates only when the negative control
sample is available and when the control has twice as many reads as
the ChIP sample. SISSRs31 estimates FDR in the one-sample analysis
based on a Poisson model. Compared to these tools, CisGenome
provides not only high sensitivity and specificity, but also better
methods for estimating FDR (Supplementary Data 7 and 8 and
Supplementary Fig. 15 online). In the one-sample analysis, the
negative binomial model provides a better model of background.
In the two-sample analysis, the conditional binomial model does
not impose special requirements on the number of negative
control reads.

As summarized in Supplementary Table 12 online, most peak
detection tools do not support both ChIP-chip and ChIP-seq analyses
and do not support high-level analyses such as motif discovery and
peak-gene association. Traditionally, one requires other tools, such as
MEME42 and MDSCAN25 (for motif discovery) and Galaxy43 (for
linking peaks to gene annotations). IGB can visualize Affymetrix tiling
array data, and SignalMap is a proprietary tool for visualizing
NimbleGen data. Both are platform specific and do not handle
ChIP-seq data. Genome browsers at UCSC and Ensembl are useful
for general purposes but are not optimized for handling ChIP data
analyses. They do not provide certain functions that are particularly
useful for ChIP data analyses, such as visualization of array images and
motif logos, which are currently processed by independent tools such
as WebLogo44. Furthermore, the need to constantly transfer data over
the Internet makes large-scale interactive data analyses inefficient.
Thus, the tools required to integrate different types of ChIP data and
conduct various upstream and downstream analyses are currently
distributed across at least a dozen programs. A considerable effort is
required to reformat output of one piece of software before feeding it
to the other. Although Web services such as CEAS28 try to integrate
multiple analysis functions, they usually only carry out analyses in a
predefined manner, and there is limited flexibility to customize the
analysis to answer the questions of most interest to the user (for
example, analysis of the novel motif described above). In this context,
the development of CisGenome has filled an urgent need for a single
user-friendly environment with all the basic functionalities for ChIP-
chip and ChIP-seq analyses. We believe the availability of CisGenome
will significantly enhance the ability of experimental biologists to
extract information from their ChIP datasets and from data provided
by large-scale efforts such as the ENCODE45 project.

In the interests of space, we only included in the main text the
analyses that directly relate to our demonstration of CisGenome.
Many issues not covered are nevertheless important, including likely
reasons for the observed differences between the NRSF ChIP-chip and
ChIP-seq data, whether these differences represent a general phenom-
enon, their relationship with previous comparisons of array and
sequencing technologies5,46, and different types of negative controls.
Further analyses and discussions of these topics are provided in
Supplementary Data 9–13 and Supplementary Figure 16 online.

METHODS
Datasets. Data used in this study are summarized in Supplementary Table 1.

The NRSF ChIP-chip data (GEO accession no. GSE8489) were obtained by

analyzing the bound DNA fragments in Jurkat cells with Affymetrix Human

Tiling 2.0R arrays. Two independent ChIP samples and two mock immuno-

precipitation samples were profiled. The NRSF ChIP-seq data were collected

from a previous study4. In that study, DNA fragments bound by NRSF in Jurkat

Table 2 Physical distribution of the new motif in human and mouse genomes

Within 1kb upstream of TSS Within 1 kb downstream of TES Intragene Intergene Total sites

Human (hg17 assembly)

All sites 1,920 (10.8%) 179 (1.0%) 7,168 (40.4%) 8,788 (49.5%) 17,740

Clustered sites 835 (49.9%) 37 (2.2%) 599 (35.8%) 336 (20.1%) 1,674

Clustered conserved sites 420 (59.6%) 18 (2.6%) 232 (32.9%) 104 (14.8%) 705

Mouse (mm7 assembly)

All sites 1,530 (8.5%) 234 (1.3%) 6,532 (36.4%) 9,866 (55.0%) 17,940

Clustered sites 591 (46.7%) 46 (3.6%) 384 (30.4%) 318 (25.1%) 1265

Clustered conserved sites 303 (62.4%) 12 (2.5%) 118 (24.3%) 81 (16.7%) 486

TSS, transcription start site; TES, transcription end site. Number of motif sites and corresponding percentage among total sites are shown for each category.
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cells were sequenced with the next-generation sequencer made by Illumina/

Solexa. These experiments involved sequencing a ChIP sample and a negative

control sample generated from reverse–cross-linked genomic DNA that had not

undergone immunoprecipitation. The Oct4 and Nanog ChIP-seq data were

collected from ref. 10.

Outline of ChIP-seq data analysis. Most sequencing platforms will output

mapped sequence reads up to a specified number of mismatches and will allow

elimination of reads that map to multiple locations. CisGenome can accept

the mapped reads as input. CisGenome also accepts mapping output from

SeqMap47, a program that allows mapping of sequence reads in more

customized ways, such as accounting for insertions and deletions (see Supple-

mentary Methods).

For FDR computation from a ChIP sample only, the genome is divided into

nonoverlapping windows with length w (typically 100 bp). The number of

reads (ni) within each window i is counted. It is assumed that in nonbinding

regions, ni|li BPoisson (li), and lI B gamma (a,b). This implies that the

background read occurrence rate varies across the genome, and marginally

ni Bnegative binomial (a,b). To estimate a and b, a truncated negative

binomial distribution is fitted to the number of windows with a small number

of reads (two or fewer). This estimated null distribution is used to compute the

FDR for each level of read counts. In the widely used Poisson model, li is

assumed to be a constant l0 across the genome, rather than a random variable.

To estimate l0, a truncated Poisson is fitted using the windows with one or

fewer reads. The FDR computation and model fitting details are provided in

Supplementary Methods. The fitting method assumes that most windows with

small read counts represent noise. The assumption usually holds true with

sufficient depth of sequencing. For studies in which signals cover a large

fraction of the genome (for example, histone modifications) but the sequencing

coverage is not deep enough, the true targets may be covered by only one or

two reads in a short window. When this is the case, our model-fitting approach

may be applicable after increasing the window size, or may not be applicable,

depending on how long a typical peak extends.

In a specific location, the counts of the reads from the ChIP sample are

subjected to biases that may arise during sample preparation, amplification or

sequencing procedures. To correct for these biases, sequence reads can be

generated from negative control samples in the same experiments. Supple-

mentary Figures 5 and 17 and Supplementary Table 13 online show that the

read sampling rates from the ChIP and control samples at the same genomic

loci are correlated. Therefore, false signals caused by unknown systematic bias

can be eliminated by excluding regions if both the ChIP and negative control

samples show strong signals but the former is not significantly stronger than

the latter. When reads are also available from a negative control sample, the

genome is divided into nonoverlapping windows with length w. For each

window i, the number of reads in the ChIP sample (k1i), the number of reads in

the control sample (k2i) and the total read number (ni ¼ k1i + k2i) are counted.

When there is no IP enrichment in the window, the conditional distribution of

the count in the ChIP sample (k1i) given the total count (ni) is assumed to

follow a binomial (ni, p0) distribution. p0 is estimated based on windows with

small total counts and used to estimate the FDR associated with each level of ni
and k1i/ni (see Supplementary Methods).

For binding region detection, the genome is scanned with a sliding window

of width w to detect all windows with FDR smaller than a user-chosen cutoff.

Detected windows that overlap with each other are merged into one region. If a

region contains more than one overlapping window, the minimal FDR among

the overlapping windows is taken as the FDR of the region. In the two-sample

analysis, for each sliding window i, a fold enrichment (yi + 1) / (r0*zi + 1) is

computed where yi is the number of ChIP reads in the window, zi is the number

of control reads in the window and r0 ¼ p0 / (1 – p0). To avoid dividing by 0, 1

is added to both the numerator and denominator. The biggest fold change

among all the overlapping windows within a binding region is recorded as the

fold change of the region.

For peak localization and filtering, CisGenome uses the counts of 5¢ and 3¢
reads within each candidate binding region to further pinpoint the location of

transcription factor binding sites within the region (Fig. 2d) and to filter out

regions enriched for reads of only one direction, based on the assumption that

these are unlikely to represent real binding events. Regions that are retained

after the boundary refinement and single-strand filtering are defined as high-

quality binding regions (see Supplementary Methods).

To ensure adjustment for DNA fragment length, CisGenome uses a two-pass

algorithm for peak detection. High-quality peaks detected in the first

pass will be used to estimate the DNA fragment length, which is computed

as the median distance between the modes of the coupling 5¢ and 3¢ peaks.

In the second pass, the reads are shifted toward the center of the ChIP

fragments by half of the estimated fragment length, and FDR computation

and peak detection will be run again on the shifted reads to get the

final predictions.

The default choice of window size w (100 bp) represents a tradeoff between

sensitivity and specificity based on the analysis of the NRSF data (Supplemen-

tary Tables 14 and 15 online). With a smaller w, one can get sharper

boundaries of binding regions. However, more noise will be introduced, and

fewer regions containing the NRSF motif will pass the significance cutoff (FDR

r 10%). A bigger w may dilute the signals, resulting in a lower resolution of

binding region call and a lower percentage of regions that contain the

NRSF motif. In future transcription factor studies, one can fine-tune the

choice of window size w in a similar fashion by using either the known

transcription factor binding motifs or motifs recovered from the de novo

motif discovery.

Analysis of phylogenetic conservation. To characterize the conservation level

of the binding regions, CisGenome allows users to first choose a t such that x

percent of the whole genome has a phastCons48 score Zt. For each peak,

positions with phastCons score Zt are picked up, and the average phastCons

score for these positions is computed to serve as the peak’s conservation level. If

a peak has no position with phastCons score Zt, its conservation level is 0. A

high cutoff t (or a small x) will help users focus on the most conserved part of

each binding region. To generate Figure 3e, the default value x ¼ 10 was used.

To generate Figure 3e, we used x = 10 as the default value. The ranked binding

regions were grouped into tiers of 300. Peak conservation levels within a tier

were averaged. In CisGenome, phastCons score is transformed linearly from

[0, 1] to [0, 255] so that each computer byte can store the score for a single

genomic position.

Accession numbers. NRSF ChIP-chip (GEO: GSE8489); NRSF ChIP-seq

(GEO: GSE13047); Oct4 and Nanog ChIP-seq (GEO: GSE 11724).

Note: Supplementary information is available on the Nature Biotechnology website.
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