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SUPPLEMENTARY NOTES 

A review of ChIP-chip and ChIP-seq data analysis 

ChIP-chip and ChIP-seq are powerful technologies to study transcriptional regulation in complex 
genomes, however, mining information from the huge datasets generated by these high-
throughput technologies remains to be a non-trivial task. To analyze a ChIP-chip experiment, 
one usually starts with data exploration and then goes through normalization, binding region 
detection, adding gene annotations and finding enriched sequence motifs. This is a multiple step 
procedure, and the data involved are heterogeneous. In the past few years, a number of tools 
targeting each individual steps of the ChIP-chip analysis have been developed. For example, 
microarray blob remover (MBR)24 has been developed to detect and remove blob-like defects 
from array images. Quantile normalization50 which was originally developed for normalizing 
probe intensities across multiple expression arrays, is also used widely in the tiling array analysis. 
MAT model11 was proposed to remove sequence-dependent probe effects in the Affymetrix 
tiling arrays, and MA2C22, a model-based normalization approach based on the GC content of 
probes, was developed for two-color tiling arrays. For detecting binding regions from normalized 
array data, methods based on moving windows (MAT11, TileMap12, TAS13), hidden Markov 
models (HMMTiling51, TileMap12, Du et al.17), hierarchical mixture models (TileHGMM15, 
BAC52), as well as regression and kernel deconvolution (MPeak14, JBD18, MeDiChI23) have been 
proposed. Tilescope21 provides a web-based data processing pipeline for analyzing tiling arrays, 
and Ringo53 is a R/Bioconductor package for ChIP-chip analysis which allows users to take the 
advantage of various functions in R. Other methods often used include TAMAL20, ACME19, 
TiMAT (http://sourceforge.net/projects/timat2), Splitter (http://zlab.bu.edu/splitter), and ADM-1 
(http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2007/PHD/PHD-2007-05.pdf). For 
motif discovery, various methods have been developed, among which the most popular ones are 
MEME42, Gibbs Motif Sampler35, and variants of them54-56. Methods that try to identify cis-
regulatory modules (CisModule36, Gibbs Module Sampler57, EMCMODULE58) and that 
incorporates cross-species information into the de novo motif discovery (Wasserman et al.59, 
PhyloCon60, PhyME61, CompareProspector62, PhyloGibbs63, Ortholog sampler64, MultiModule65, 
etc.) have also been developed. In addition to these general motif discovery methods, methods 
specifically targeting at motif analysis on ChIP-chip data are also available, examples including 
MDSCAN25 and MotifBooster26. To retrieve gene annotations, tools such as Galaxy43 and 
CEAS28 have been made available.  
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Despite the development of various tools, mining information from the huge tiling array datasets 
remains to be a non-trivial task. This is due to multiple reasons. First, many tools for the 
upstream data processing (normalization and peak detection) are designed for a single array 
platform (e.g., TAS and MAT for Affymetrix, MPeak for NimbleGen), making it awkward to 
compare data collected from multiple array platforms. A few tools such as Tilescope can support 
multiple array platforms, but they are incapable of doing ChIP-seq analysis. Therefore it is still 
difficult to integrate information from the ChIP-chip with information from ChIP-seq which 
becomes increasingly useful. Second, different upstream and downstream analysis functions are 
distributed in a dozen of tools, often incompatible with each other. Significant amount of work 
are required to reformat output of one piece of software before feeding it to the other.  The web-
service CEAS28 makes efforts to integrate multiple downstream analysis functions including 
sequence retrieval, adding gene annotations and motif discovery. However, it performs the 
analysis and returns the results in a pre-defined manner, and there is limited flexibility for users 
to customize the analysis procedures to meet their diversified needs. Galaxy allows users to do 
analyses on genomic intervals in a flexible way, but it does not support various kinds of 
upstream analyses (e.g. peak detection) and downstream analyses (e.g. motif discovery) that are 
particularly useful for ChIP data analyses. Third, the ability to visualize the data easily and 
interactively is a critical requirement for effective analysis. Although tools like IGB 
(http://www.affymetrix.com/support/developer/tools/download_igb.affx) and SignalMap 
(http://www.nimblegen.com/products/software/signalmap.html) have been developed for 
visualizing array signals along chromosomes, the former is mainly designed for Affymetrix tiling 
arrays, and the latter is a proprietary software provided for NimbleGen users. General-purpose 
genome browsers such as UCSC33 and Ensembl34 are useful tools to visualize ChIP data. 
However, when thousands of predictions and tens of millions of data points need to be visually 
examined in a large-scale interactive analysis, these browsers become highly inefficient due to 
the need of transferring data over the internet. Moreover, many visualization functions 
particularly useful in the ChIP data analyses are not provided by these tools. For example, to 
visualize motif information, one needs to go to other websites such as WebLogo44. Therefore, in 
order for a bench biologist to efficiently perform all the upstream and downstream analyses, an 
integrated tool that can support flexible and seamless analyses of ChIP-chip data is urgently 
needed. 

Analysis of a ChIP-seq experiment begins with aligning reads to the genome and finding read 
enriched regions. The predicted regions can then be used for downstream analyses including 
motif discovery and annotation retrieval. Although the downstream analyses can be performed in 
a similar fashion as the ChIP-chip analysis, development of methods for the upstream analyses of 
ChIP-seq data is still at its infancy. ELAND (Cox A., unpublished) provides a fast algorithm to 
align millions of reads to the genome, allowing up to two mismatches and no gaps in the 
alignment. More recently, new tools such as SOAP66, RMAP67, ZOOM68 and SeqMap47 have 
also been developed to align reads generated by massively parallel sequencing to reference 

Nature Biotechnology: doi:10.1038/nbt.1505



3 

 

genomes. Given the aligned reads, early ChIP-seq studies4-7 used in-house analysis pipelines to 
detect binding regions which are often difficult for general bench biologists to use. Recently, a 
few tools targeting general users have been developed, including GeneTrack29, QuEST30 and 
SISSRs31. GeneTrack uses a Gaussian smoothing procedure to produce a continuous curve 
representing signals across the genome, it then looks for peaks by finding maxima in the curve. It 
does not provide statistical error rate measurements. QuEST combines a Gaussian kernel with 
the read directionality information to infer binding sites. It provides a false discovery rate (FDR) 
estimate which is obtained using information from the negative control sample. In order to 
compute the FDR, the negative control sample is required to have twice as many reads as the 
ChIP sample, so that it can be divided into two parts to mimic a random two sample comparison. 
When no negative control sample is available, QuEST is not able to provide error rate estimates. 
SISSRs combines the read enrichment with the read directionality to identify binding regions. It 
uses a Poisson model to estimate FDR when only the ChIP’d sample is available. When the 
negative control sample is available, the control sample is used to control specificity and 
sensitivity of the predictions. The control of sensitivity is based on the empirical read distribution 
in the negative control sample, and the control of specificity is based on empirical p-values 
computed for fold changes between the ChIP’d and control sample. No FDR is provided in this 
context. Despite the recent development, our understanding on the basic characteristics of ChIP-
seq data is still limited. In particular, there are two types of ChIP-seq experiments: experiments 
involving negative control samples (two-sample analyses) and experiments that contain only 
ChIP’d samples (one-sample analyses). Knowledge about their relative merits and limitations is 
limited due to lack of a direct comparison between the two types of analyses. Moreover, in the 
one-sample analyses, since no negative control information is available to estimate the noise 
level, evaluation of statistical significance is challenging. Currently, the published methods either 
use a Poisson model5,10,31 or use Monte Carol simulations8 to construct the null distribution in the 
one-sample context. Both approaches implicitly assume that the background read occurrence rate 
is a constant, which is an assumption that has not been carefully examined before. Not only do 
we know so little about the data, our ability to handle the data is also limited due to the same 
reasons that caused the bottleneck in the ChIP-chip analyses. These include lack of tools to 
efficiently visualize tens of millions of reads in the ChIP-seq data (without the need to transfer 
over the internet), tools to integrate ChIP-seq with ChIP-chip data, tools that seamlessly connect 
the upstream analyses to downstream analyses, and tools that allow users to flexibly design 
analysis pipelines to meet the needs of individual studies.  
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SUPPLEMENTARY METHODS 

TileMapv2 – CisGenome’s internal ChIP-chip peak caller 

CisGenome incorporated a new version of TileMap12 as the internal ChIP-chip peak caller. 
Compared to the old version, the new TileMapv2 has incorporated several new features.  

First, the old version supports only the two-sample and multiple-sample tests. In the new version, 
support for one-sample test has been added. The one-sample test is needed for analyzing 
NimbleGen and Agilent ChIP-chip data. Unlike the Affymetrix technology where the ChIP and 
control samples are hybridized to separate arrays, the NimbleGen and Agilent technology 
typically hybridize a ChIP sample and a control sample simultaneously to a single array. Each 
array will produce a log ratio between the two samples. From statistical point of view, we only 
have one group of data (i.e. log ratios) instead of two groups of data (i.e. IP vs. control, such as 
the data in Affymetrix arrays). The one-sample test tries to detect binding regions by evaluating 
whether the log ratios are significantly bigger than zero.  

Second, TileMapv2 has incorporated a new option for computing FDR under the moving average 
(MA) mode. The original FDR computation was based on an unbalanced mixture subtraction 
method (UMS), which tends to generate very conservative FDR estimates. The new option 
makes the assumption that when the distribution of the MA statistics of all probes is plotted in a 
histogram, the left tail of the distribution represents the noise. To estimate FDR, one first 
specifies a MA cutoff c to detect peaks. All probes with a MA statistic ≥ c are selected to form 
peaks. The program will then detect negative control peaks by selecting probes with a MA 
statistic ≤ -c. Let y1 denote the total number of peaks, and let y2 denote the total number of 
negative control peaks. The FDR at the MA cutoff c is then estimated as y2/y1.  Indeed the 
program does not only compute the FDR for the user-specified cutoff c, but also compute the 
FDR for all peaks, by applying the same approach to the MA statistic associated with each 
individual peak. Under this new option, choosing a cutoff around FDR≤5-10% usually optimizes 
the cutoff under the E-O distance criteria defined in ref. 41. This new FDR computation is now 
set as the default for the TileMap-MA and was used throughout the paper. 

Third, a new option has been added to TileMapv2 to allow users to exclude from the analysis the 
outlier probes listed in the outlier section of the Affymetrix CEL files. With this option, users can 
now process files generated by Microarray Blob Remover (MBR)24 which is a software tool to 
remove certain array artifacts. 

Transcription factor binding site mapping 

Both consensus sequences and position specific weight matrices can be mapped to genomes, lists 
of genomic regions, or FASTA sequence files. To map consensus sequences, one can use 
degenerate patterns and choose allowed number of mismatches. To map a matrix, the matrix is 
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used to scan the genome. At each position, the likelihood ratio (LR) between the motif model 
and a third order background Markov model is computed. Sites with LR greater than a user-
chosen cutoff are reported. Users can choose to compute the background model from the input 
sequences or use pre-computed background models. In the latter case, the background models 
are computed using the whole genome sequences and are allowed to vary across the genome.  

De novo motif discovery 

Gibbs motif sampler35 is provided for de novo motif discovery. CisModule36 is provided for 
novel cis-regulatory module discovery. Performance of these algorithms was discussed in their 
original publications as well as in ref. 69-71. New motif discovery algorithms will be added in 
future if they can improve the performance substantially.  

Motif enrichment analysis based on matched genomic control regions  

When applied to analyzing ChIP data, current de novo motif finders often return multiple motifs. 
It is not always clear as to which motif corresponds to the key pattern directly recognized by the 
transcription factor in question, since the reported motif scores (e.g., the MDSCAN25 score) 
often rank the real target motif lower than the more abundant but less relevant GC-rich or highly 
repeated motifs. We have previously shown that this problem can be solved by re-ranking motifs 
according to their relative enrichment levels37. The relative enrichment level of a motif is 
computed as its occurrence rate in the binding regions divided by its occurrence rate in negative 
genomic control regions. When the negative control regions are carefully chosen to match the 
physical distribution of the binding regions, the key motif will usually stand out as the one with 
the highest relative enrichment level. The use of the matched genomic controls is critical, since 
the method will not work if the negative control regions are randomly chosen from the genome. 
Given a genome and a list of binding regions, CisGenome provides a function to generate 
matched genomic control regions using the method described in ref. 37.  

Support for different species 

Many CisGenome functions are species-independent (e.g., ChIP-chip/ChIP-seq peak detection 
and de novo motif discovery). The others require information of a particular species (e.g., gene-
peak association and sequence retrieval). We build genome databases to support species-
dependent analyses. The databases are coded into binary formats to facilitate efficient data access 
and visualization. Precompiled databases for four commonly used species including human, 
mouse, Drosophila and Arabidopsis can be downloaded from the CisGenome website and are 
ready to use. We routinely update these databases to support analyses on new genome assemblies. 
Databases for other species will be gradually added in future. Meanwhile, users can build their 
own databases for other species by applying the database construction functions provided by 
CisGenome to raw data downloaded from the UCSC genome browser.  
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Developing language and operating systems 

CisGenome is developed in ANSI C/C++. The core data analysis functions can be compiled and 
run on multiple platforms including MS Windows, Linux and MacOS. The current version of 
GUI and browser can only be used with MS windows. 

ChIP-seq read mapping by SeqMap 

SeqMap47 is a fast sequence mapping software. Unlike BLAT, SeqMap indexes the short 
sequences rather than the genome. Given the maximal numbers of mutations, insertions and 
deletions allowed, SeqMap splits the short sequences into several parts. By keeping some parts 
rather than all of them to be fixed, the non-candidates can be eliminated in the very first step. All 
the candidates that are left will then be collected and a local alignment algorithm will be run on 
them to finally determine the matched targets. Similar algorithm has been used several times in 
some paper72 and software (ELAND by Illumina/Solexa). However, to the best of our knowledge, 
SeqMap is the first to extend this algorithm for insertion/deletion detection.  . 

Model fitting and FDR computation in the one-sample ChIP-seq analysis 

To fit the Poisson model, for each n = 0, 1, 2, …, we count how many windows have n sequence 
reads and denote the counts by un. We assume that windows with a small number of reads are 
mainly background. Since Pr(n=1)/Pr(n=0) = λ0, the ratio u1/uo provides an estimate for λ0. 
Similarly, u2/u1 provides an estimate for λ0/2, etc. One can take averages of u1/uo, 2u2/u1, … to 
estimate λ0. 

To fit the negative binomial model, since r1=Pr(n=1)/Pr(n=0) = α/(β+1), and r2=Pr(n=2)/Pr(n=1) 
= (α+1)/[2(β+1)], we have α = r1/(2r2-r1), and β = 1/(2r2-r1)-1. We first use u1/uo to estimate r1 

and use u2/u1 to estimate r2, then we plug in r1 and r2 to the formulas above to estimate α and β. 

With λ0, α and β estimated, we also estimate what percentage of windows are background. This 
is estimated by taking the ratio between the theoretical Pr(n=0) and the observed frequency of 
n=0 (One may also use (n=0)+(n=1) instead of (n=0) only). 

With the fitted null model available, CisGenome then counts the number of windows that contain 
n reads for each n = 0, 1, 2, …. The observed number is compared with the number expected by 
the null model, and the ratio between the two is reported, from which a false discovery rate can 
be computed for each n. One can then choose an appropriate cutoff accordingly.  

FDR computation in the two-sample ChIP-seq analysis   

Genome is divided into non-overlapping windows with length w. For each window, the number 
of reads in the ChIP sample k1i, the number of reads in the negative control sample k2i and the 
total read number ni= k1i+k2i are counted. Using windows that contain a small number of reads 
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(i.e., small ni), the expected sampling ratio between the ChIP and the negative control sample in 
non-binding regions is estimated as r0=Σ k1i / Σ k2i. It should be pointed out that this rate usually 
is different from the ratio between the total number of reads in the ChIP sample and the total 
number of reads in the control sample, because in the ChIP sample, a large proportion of reads 
are sampled from binding regions, whereas in the control sample this is not the case.  

Next, we group windows according to ni. For each group (n = 0, 1, 2, …), the observed 
distribution of k1i is compared with what is expected by Binomial(n, p0=r0/(1+r0)), and a false 
discovery rate is computed accordingly.  

With this information, all windows with ni≥c and k1i-k2i large enough to pass the selected FDR 
cutoff will be selected to form binding regions. Here, the cutoff c for ni serves as an auxiliary 
criterion and can be chosen based on the negative binomial model described above. 

Post-processing in the ChIP-seq analysis  

In most sequencing technologies (e.g., Illumina/Solexa), reads are generated from both ends of 
ChIP fragments through 5’ -> 3’ DNA synthesis. Therefore, when one considers reads that are 
aligned to the forward strand of the genome separately from the reads that are aligned to the 
reverse complement strand, one would observe two peaks separated by certain offset at each 
binding location49. The forward strand peak is located on the left, and protein-DNA interaction is 
sitting in between them (Supplementary Fig. 1, Fig. 2d). 

In the post-processing step, we take advantage of the separation between the forward strand and 
reverse strand reads to refine binding region boundaries. We first use a w bp sliding window to 
scan each binding region and count forward strand and reverse strand reads separately. This will 
produce two smooth curves of read counts. We then identify the modes of the two curves and use 
their locations to define binding region boundaries (Fig. 2d). This boundary refinement step can 
greatly improve the resolution of binding region detection. As an optional single strand filtering 
step, one can further filter binding regions by repeating the exploration and peak detection step 
separately for forward strand reads and reverse strand reads, and reporting a binding region only 
if it contains a significant forward strand peak and a significant reverse strand peak 
simultaneously. Regions that are retained after the boundary refinement and single strand 
filtering are defined as high quality binding regions. 
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SUPPLEMENTARY DATA 

1. Evaluation of the FDR estimation method in the one-sample ChIP-seq analysis 

Analysis of real data 

We applied both the negative binomial and Poisson model to three real ChIP samples (NRSF4, 
Oct4 (ref. 10) and Nanog10) (Supplementary Table 1). The estimated FDR based on these two 
models were then compared to a model-independent reference FDR. In order to obtain the 
reference FDR for a particular ChIP sample, we applied the one-sample analysis to the 
corresponding negative control sample with the same number of reads. The reference FDR was 
computed as the (No. of predictions in the control sample / No. of predictions in the ChIP 
sample). The reference FDR was independent of any parametric model assumptions. For all three 
transcription factors, the Poisson model consistently underestimated the reference FDR. In 
contrast, the negative binomial model provided conservative (in the case of NRSF and Oct4) or 
reasonable (in the case of Nanog) FDR estimates when the FDR is in the range from 0.1 to 0.5 
(Fig. 2c). When the reference FDR was small (FDR < 0.1), the negative binomial model was too 
optimistic. In real applications, a comprehensive prediction list is typically obtained by using 
FDR cutoffs in the range 0.1 to 0.5. A smaller FDR may serve as a stringent cutoff to pick up 
high confidence predictions for experimental follow-up. However, for the purpose of selecting 
candidates for experimental follow-up, the limiting factor is usually the number of candidates we 
can afford to test rather than the number of statistically significant candidates. In this context, 
peak ranking is the primary aim and FDR estimation becomes less relevant.  

Analysis of simulated spike-in data 

As indicated by Figure 2b, the empirical distribution of the window read count in negative 
control samples tends to have a heavier tail than the negative binomial model fitting. As a result, 
the negative binomial model tends to underestimate the FDR when the window read count is 
high (Fig. 2c). This suggests that not all variations in the background can be explained by the 
negative binomial model. To understand how much bias this lack-of-fit could introduce to the 
FDR estimation, we performed a systematic simulation study. 18 simulated spike-in data sets 
were generated by introducing varying number of peaks with varying enrichment levels into two 
real negative control samples. The two real negative control samples were collected from the 
NRSF study4 and the embryonic stem cell study10 respectively (Supplementary Table 1,2).  

To generate a simulated spike-in dataset from a real negative control sample, we first computed 
nb = (No. of reads in the real negative control sample / No. of non-overlapping 100bp windows 
in the genome). We then randomly picked up p locations in the genome to serve as simulated 
peak centers. For each peak i, we generated ni=ri*nb reads where ri was a random number drawn 
from a exponential distribution with mean r. The exponential distribution was chosen because it 
roughly matched the observed distribution of IP enrichment in real ChIP samples. r was used to 
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control the overall binding strength (or the IP enrichment). In the real NRSF, Oct4 and Nanog 
ChIP’d samples, this average enrichment was estimated to be 692, 70 and 66 respectively 
(estimated by averaging the ratios [No. of reads in the 100bp window at the peak center / No. of 
reads expected in a random 100bp window] across all the peaks). After reads are generated, they 
are randomly distributed around each peak center, with the distances to the peak center sampled 
from a normal distribution N(μ=0, σ2=225).  Finally, the computer generated reads were 
combined with the reads from the real negative control sample to create the spike-in data. By 
setting peak number p=2000, 10000, 50000, and enrichment ratio r=20, 100, 500, nine data sets 
were generated for each of the two negative control samples (Supplementary Table 2).  

For each simulated dataset, we applied the one-sample analysis to find peaks and estimate the 
FDR. The estimated FDR was compared with the real FDR. The results (Supplementary Fig. 
3,4) show that the bias of FDR estimation is correlated with the peak number and the binding 
strength. When the number of peaks was relatively small (p=2000) and the binding signal was 
weak (r=20), the negative binomial model significantly underestimated the real FDR. The bias 
diminished when the number of real peaks p increased or the binding signal r became stronger. 
When p and r were in the range of what we observed in real data, the estimated FDR was 
reasonably close to the real FDR. 

Also consistent with the simulation results, when we applied the one-sample analysis to the two 
real negative control samples, a small number of peaks were detected at the 10% FDR level, 
even though no peaks should be expected from negative controls (Supplementary Table 3). The 
false predictions are caused by the biased estimates of FDR. 

Nature of the bias  

To understand the nature of unexplained background variations that caused the bias in FDR 
estimation, we have taken a closer look at the “peaks” detected from the negative control 
samples. The peaks from the NRSF control sample covered 0.5% of the reads in the sample. 
Among the reads covered by the peaks, 96.4% were aligned to repeat elements. The peaks from 
the ES control sample covered 1% of the reads, among which 65.4% were aligned to repeats 
(Supplementary Table 3). As a comparison, peaks detected from the real ChIP samples covered 
12-18% of the reads, and among them only 13-28% were aligned to repeats. This suggests that 
repeat regions contributed a significant portion of background variation that was not explained 
by the negative binomial model. Artifacts in repeat regions can happen in many possible ways, 
including but not limited to sequencing errors, polymorphisms, and misalignment caused by 
errors in reference genome assemblies. How to incorporate these artifacts into the background 
model is an interesting topic for future research.  
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Besides the peaks associated with repeats, there are also some peaks detected in non-repeat 
elements. No firm explanations were established for the enrichment of reads in these regions 
although open versus closed chromatin structure has been proposed as a potential cause.  

The peaks detected from the negative control samples represent artifacts that the current one-
sample analyses are not able to control. To remove such biases, two-sample analyses are needed. 
When we checked the length of the “peaks” detected from the negative control samples, it was 
found that reads covered by these peaks were clustered within 150bp in 92% of the peaks 
detected from the NRSF control sample and in 80% of the peaks from the ES control sample (see 
Supplementary Fig. 5a-d for some examples). The remaining peaks (which mainly came from 
repeat regions) can often be decomposed into small clusters of reads, with each cluster 
occupying ~100bp (Supplementary Fig. 5e). Thus, the span of these artifacts matched well with 
the window size (w=100-200bp) typically used in the two-sample analyses.   

Diagnosis of problematic FDR estimation 

Due to the potential bias of the FDR estimation, two-sample experiments are always the 
preferred design. When one-sample experiments are performed for cost consideration or other 
reasons, it would be useful to have some guidelines to tell whether the data quality is good 
enough so that the FDR estimates based on the negative binomial model are not problematic. 
There are multiple types of information that may indicate low data quality (in terms of FDR 
estimation).  

First, the overall signals can be indicated by the number of reads contributing to the peaks. If the 
percentage of reads that are covered by the peaks is low, it may indicate that the FDR estimation 
is problematic. In the simulation study, datasets where the FDR estimation performed well all 
contained more than 5% of the reads within the peak regions. In contrast, in all datasets where 
peaks covered only ~1% of the reads, the FDR estimates were problematic (Supplementary 
Table 2, Supplementary Fig. 3,4). When the real ChIP-seq data were analyzed, in the two 
negative control samples, only ≤1% of the reads were covered by “peaks” detected at the 10% 
FDR level. In contrast, at the same FDR level, peaks identified from the three ChIP samples 
covered ≥10% of the ChIP reads (Supplementary Table 3). Even at the very stringent FDR 
level (e.g. FDR=10-6), the detected peaks still covered ≥5% of the reads in the ChIP samples 
(Supplementary Fig. 6). 

Second, if the detected peaks are repeat-rich, it may indicate low data quality (Supplementary 
Table 3).  

Third, if the binding motif of the transcription factor is known, it can be used as an independent 
source of information to evaluate data quality. In peaks detected from the real ChIP samples, we 
often observe significant enrichment of the key motif, and the enrichment level is expected to 
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clearly decrease with the peak rank (Supplementary Fig. 7). When no such pattern is observed 
and motif enrichment level is low, there is indication of problematic data quality. 

Based on our current knowledge, it is recommended to always use multiple criteria to evaluate 
data quality when one-sample experiments are performed. When the predicted peaks cover ≤10% 
of the reads, or ≥50% reads in the peaks are aligned to repeats, or no expected motif enrichment 
is observed, adding a negative control sample to the experiment is recommended. CisGenome 
provides a useful tool for analyzing such experiments, as the wide range of functionalities 
offered by the software makes these multiple types of composite analyses accessible to the bench 
biologists.  

2. Examination of array-specific peaks using non-canonical NRSF motifs  

The motif used in the NRSF analysis (Table 1) was the canonical NRSF motif which contained 
two half sites separated by 11bp (Supplementary Fig. 9). In a previous study, Johnson et al.4 
showed that many binding regions that do not contain the canonical NRSF motif may contain 
non-canonical NRSF motifs. In the non-canonical motifs, the two half sites are separated by 
16~20bp.  

In the NRSF analysis, we have shown that only 1.23% of the array-specific peaks contained the 
canonical NRSF motif. A natural question is whether the array-specific peaks are more likely to 
contain non-canonical NRSF motifs and therefore do not represent false discoveries. To address 
this issue, we mapped the non-canonical NRSF motifs to the binding regions (using LR≥500 as 
the cutoff) and summarized the results in Supplementary Table 7. Based on the results, only 
0.53% (29/5,517) of the array-specific peaks that do not contain the canonical NRSF motif 
contained the non-canonical NRSF motifs. As a comparison, 2.47% (176/7,114) of all array 
peaks, 9.24% (128/1,385) of ChIP-seq specific peaks, and 9.14% (145/1,587) of peaks common 
to all three analyses contained the non-canonical motifs. 

We further mapped the two half sites of the NRSF motif to the genome and asked whether the 
half sites were enriched in array-specific binding regions (Supplementary Table 8). None of the 
half sites was enriched in array-specific binding regions, but both were enriched in peaks 
common to the ChIP-chip and ChIP-seq analyses, and enriched in peaks that were detected by 
ChIP-seq only. 

Together, these suggest that the non-canonical NRSF motifs are not enriched in array-specific 
peaks. It further confirms that the array-specific peaks may represent technical noise. 

3. Analysis of Oct4 and Nanog ChIP-seq data 

We collected the Oct4 and Nanog ChIP-seq data from ref. 10 (Supplementary Table 1).  The 
experiment contains a negative control sample that was used in both the Oct4 and Nanog 
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analyses. We applied both the one-sample and two-sample analyses to these two transcription 
factors, and the peak detection results are shown in Supplementary Fig. 10. For Oct4, the 
concordance between one-sample and two-sample analysis was 74% before post-processing. 
After post-processing, the concordance increased to 96%. For Nanog, the concordance between 
one-sample and two-sample analysis before post-processing was 59%. After post-processing, the 
concordance increased to 83%. Saturation analysis (Supplementary Fig. 11) showed that the 
Nanog data was close to saturation. Both the Oct4 and NRSF did not show saturation before the 
post-processing, but the curve corresponding to peaks after post-processing started to level off.  

4. Searching TRANSFAC database for matches to the novel motif 

We searched TRANSFAC database (Professional 10.5) to find potential matches to the novel 
motif using three different approaches.  

First, we used the PATCH function provided by the TRANSFAC to search for all known binding 
sites ≥10 bp long that match any part of the GGACTACAATTCCCAGCAA consensus with 
≥70% identity. The returned results contained binding sites that are recognized by transcription 
factors c-Rel, NF-kappaB, p50, RelA-p65, Ncx, STAT3, PEA3, PU.1, STAT5 and STAT6. 
When the sequence logos of the corresponding binding motifs were examined, no pattern was 
found to match the novel motif. 

Next, we collected all 525 human and mouse motif matrices from the TRANSFAC. We 
generated forward and reverse complement sequence logos for all of them using CisGenome 
browser and visually examined them one by one. No match to the novel motif was found. 

Finally, in order to make sure that the visual examination did not miss any potential matches, we 
computed Euclidian distances between the TRANSFAC motifs and the novel motif. Let L1 
denote the length of the novel motif. For each TRANSFAC motif with length L2, we slid the 
TRANSFAC motif along the novel motif and examined all the L1+L2-1 possible alignment 
windows (e.g., if L2=20, then the alignment between position 1 1 of motif 1 and position 
20 20 of motif 2, between position 1 2 of motif 1 and position 19 20 of motif 2, between 
position 1 3 of motif 1 and position 18 20 of motif 2, etc. were examined). For each 
alignment window, a Euclidian distance is computed as the square root of ΣiΣj(p1ij-p2ij)2, where 
pkij is the occurrence frequency of nucleotide j at the window position i for motif k, jϵ{A,C,G,T}, 
and i ϵ [1, window length]. We repeated the same procedure on the reverse complement strand of 
the TRANSFAC motif. Among all the possible alignment windows, the maximal window length 
is min(L1,L2), and the minimal window length is 1. For each window length, the smallest 
Euclidian distance is recorded for the TRANSFAC motif. After this computation, each 
TRANSFAC motif will have several distances recorded, one for each window length. In total, 
the number of distances recorded for each TRANSFAC motif is min(L1,L2). After all 
TRANSFAC motifs have been processed, for each possible window length from 6 to 18, we 
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identified the top 5 TRANSFAC motifs that had the smallest distances to the novel motif. We 
carefully examined the corresponding sequence logos. No matches to the novel motif were found 
in this analysis. We also tried to replace the Euclidian distance by Kullback-Leibler distance, i.e., 
replacing ΣiΣj(p1ij-p2ij)2 by min{ΣiΣj p1ij *log2(p1ij/p2ij), ΣiΣj p2ij *log2(p2ij/p1ij)}, and again no 
matches were found. 

5. Functional context of the novel motif 

The novel motif was discovered by analyzing human Sox2 and Nanog ChIP-chip data set on 
promoter arrays. It can either represent a motif that functions specifically in the embryonic stem 
cell context, or it can represent a general promoter element not directly related to the stem cell 
function. To see whether it is related to general stem cell functions, we further analyzed the 
whole genome ChIP-PET data for Oct4 and Nanog in mouse73. De novo motif discovery on the 
mouse Oct4 and Nanog ChIP-PET binding regions did not find this motif. Further examination 
showed that although the motif was enriched in human Sox2 and Nanog ChIP-chip binding 
regions identified by promoter arrays, it was not enriched in mouse Oct4 and Nanog binding 
regions identified by the genome-wide ChIP-PET (Supplementary Table 10), suggesting that 
this motif may not have a direct role in embryonic stem cells but is more likely to be a general 
promoter element. The strong evidence for the motif being functional though indicates that future 
investigation of the motif in a more general context is worthwhile.  

6. Comparison of ChIP-chip analysis algorithms 

CisGenome uses an upgraded version of TileMap, TileMapv2, as the internal ChIP-chip peak 
detection algorithm (see Supplementary Methods). We compared TileMapv2 with a number of 
other ChIP-chip analysis algorithms using the recently published spike-in data41. The benchmark 
datasets contained spike-in ChIP-chip data generated by different labs and from three different 
array platforms (Affymetrix, Agilent, NimbleGen).  

To analyze the Affymetrix arrays, raw data were quantile normalized, and TileMapv2 was run 
under the Moving Average (MA) mode. To analyze the NimbleGen and Agilent arrays, raw Cy5 
and Cy3 data from all arrays within an experiment were quantile normalized. Log2(Cy5/Cy3) 
ratio was computed, and TileMapv2 (MA) was then applied to the log ratios.  

TileMap-MA method requires users to set a window size W. In the original TileMap paper, W=5 
was recommended for analyzing Affymetrix arrays with a 35bp probe spacing. Under this setting, 
information from 2*5+1=11 probes will be pooled to compute the MA statistics for the center 
probe. To analyze the spike-in data on Affymetrix arrays, we adjusted the W based on the 
platform-specific probe spacing. For Affymetrix Encode 2.0R arrays with a 7bp probe spacing, 
W=25 (=5*35/7) was used. For Affymetrix Encode 1.0R arrays with a 22bp probe spacing, W=8 
(=5*35/22) was used. The NimbleGen Encode arrays had a 38bp probe spacing, and W=5 
(=5*35/38) was used.  Agilent arrays had a 100bp probe spacing, representing a much lower 
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density. If we were to use the same principle, W should be set to 2 (=5*35/100). However, 
according to our previous experience on analyzing Agilent custom arrays with a 125bp spacing74, 
W=2 would not be sufficient to eliminate random noise, and setting W=3-5 would generate more 
robust results. Therefore, for analyzing the Agilent arrays, W was set to 3.   

In TileMapv2, probes with a MA statistic bigger than certain MA cutoff will be picked up to 
form potential binding regions. For each potential binding region, a FDR will then be computed. 
Users have the freedom to choose a FDR cutoff after getting the peak predictions. In the analyses 
here, FDR≤10% was used to define the final peak list in all spike-in data sets, consistent with the 
analysis of the NRSF ChIP-chip data. The default MA cutoff is MA≥3. In some analyses, these 
produced fewer than 100 peaks. When this was the case, we relaxed the cutoff to MA≥2.5 in 
order to obtain approximately 100 peaks, so that the number of true positives (#TP), false 
negatives (#FN) and false positives (#FP) among the top 100 peaks can be compared with the 
other algorithms. Other than the principles described above, we did not try to optimize the 
TileMap parameters. 

Following the previously described procedure in Johnson et al.41, we derived the ROC-like curve 
for TileMap (Supplementary Fig. 13) and computed the area under the ROC curve (AUC) 
(Supplementary Fig. 14), the E-O distance (i.e., the distance between the TileMap 10% FDR 
cutoff and the optimal cutoff), as well as the number of true positives, false negatives and false 
positives among the top 100 peaks (Supplementary Table 11). Compared with the other 
algorithms, TileMap performed as the best or among the best in almost all cases, as indicated by 
the bigger AUC (Supplementary Fig. 13,14), higher numbers of true positives and lower 
numbers of false positives in the top 100 predictions (Supplementary Table 11). For example, 
when analyzing the Affymetrix data, TileMap outperformed MAT in four out of the five 
analyses. In the only case where MAT outperformed TileMap, all algorithms performed poorly, 
which is an indication of extremely low signal-to-noise ratio. In this case, the sequence based 
background correction provided by MAT may help improve the analysis by removing part of the 
systematic variation in the data. Examination of the E-O distance (Supplementary Table 11) 
suggests that the cutoff based on FDR≤10% performed reasonably well to balance the sensitivity 
and specificity when reporting the final peak lists. 

7. Comparison of ChIP-seq analysis algorithms 

We compared CisGenome’s internal ChIP-seq peak caller with QuEST30 and two other existing 
ChIP-seq peak detection algorithms ChIP-seq Peak Finder (CPF)4 and GeneTrack29. Unlike 
CisGenome, CPF and GeneTrack do not provide statistical estimates of FDR, making it difficult 
to choose a cutoff. For example, when applied to the NRSF data, GeneTrack produced a list of 
1,450,624 predictions. It is unlikely that all of them were true. The QuEST algorithm can provide 
an estimate of FDR. However, QuEST only produces FDR for two-sample analyses, and it does 
not support the one-sample analysis in which only the ChIP sample is available. Moreover, to 
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estimate the FDR in the two-sample analysis, QuEST requires an extra negative control sample 
that has the same number of reads as the original ChIP sample. This extra negative control 
sample is required in addition to the original negative control sample. In other words, if the 
original experiment involves one million ChIP reads and one million control reads, then one 
needs to generate an additional one million control reads in order to be able to compute FDR. In 
the FDR analysis, the second control sample will serve as a mock-ChIP, and the original control 
sample will serve as the control. Since the NRSF data had about the same number of ChIP reads 
and control reads, we were not able to apply the QuEST FDR estimation procedure to the NRSF 
analysis. Compared to these methods, CisGenome is the only tool that can produce FDR 
estimates for both one-sample analyses and two-sample analyses. In the two-sample analyses, 
CisGenome does not pose any special requirement on control read numbers, since the ratio p0= 
r0/(1+r0) will be used as the baseline to normalize the data and evaluate signal enrichment, and 
the ratio can be estimated from the data.  When we were revising the paper, a new tool SISSRs31 
has become available. This tool uses a Poisson model to estimate FDR in the one-sample 
analysis. In the two-sample analysis, the control sample is used to control specificity and 
sensitivity of the predictions. The control of sensitivity is based on the empirical read distribution 
in the negative control sample, and the control of specificity is based on empirical p-values 
computed for fold changes between the ChIP’d and control sample. No FDR is provided in this 
context by SISSRs. 

When the top 1,500 peaks of CisGenome, QuEST, GeneTrack and CPF were compared, 
predictions made by GeneTrack had a lower probability to cover the NRSF motif but a longer 
peak length compared to CisGenome predictions (Supplementary Fig. 15a,b). Peaks predicted 
by the CPF had a little higher probability to cover the NRSF motif, but this was because their 
average peak length was ≥10 times longer than CisGenome predictions. QuEST and CisGenome 
had about the same performance in terms of NRSF motif coverage, and they produced the 
highest NRSF motif occurrence rate (i.e., no. of motif sites per kb) in the predicted peaks 
(Supplementary Fig. 15c). We also compared the ChIP-seq analysis results with the ChIP-chip 
analysis results obtained using MAT and TileMap. All ChIP-seq analyses produced better results 
than ChIP-chip analyses. 

8. More on CisGenome’s FDR estimation for ChIP-seq analysis  

In this study, we investigated the basic characteristics of the ChIP-seq data and found that the 
read sampling rate in the background non-binding regions is not a constant. Similar results were 
obtained when analyzing multiple transcription factors, suggesting that the observation is likely 
to be a general phenomenon. This basic data property has important implications in estimating 
the FDR. Previous studies5,8,10,31 either use a Poisson model or use Monte Carlo simulations to 
describe what is expected under no binding. In the Monte Carlo simulations, reads are randomly 
re-distributed to the genome to characterize the expected noise level. Both approaches implicitly 
assume that the background read sampling rate is a constant, which is not true as suggested by 
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the current study. FDR estimates based on constant rate assumptions therefore are very likely to 
underestimate the false positive rate. In order to better characterize the underlying variability of 
the data, we propose to use the negative binomial model to estimate the FDR in the one-sample 
analysis. Figure 2b suggests that even with the negative binomial model, one may still 
underestimate the tail probabilities in the negative control sample. However, compared to the 
Poisson model and the other constant rate based methods, FDR based on the negative binomial 
model represents a more reasonable error rate estimation for excluding background noise. It 
should be pointed out that our negative binomial method was designed for the one-sample 
analysis in which the negative control sample is not available. When the negative control sample 
is not available, it is difficult to perfectly characterize the underlying variability of the noise. To 
the best of our knowledge, the negative binomial model here represents the best solution that we 
currently have for handling this situation. On the other hand, as shown in Supplementary Data 
1, the negative binomial method may seriously underestimate FDR when signals are not strong. 
Therefore, users still need to take cautious when using the model. When the negative control 
sample is available, FDR can be estimated without the negative binomial assumption. In this case, 
CisGenome uses a conditional binomial model to estimate the FDR.  

Using negative binomial as the null model may produce substantially different error rate 
estimates from those based on constant rate assumptions. For example, using a Poisson 
assumption, Robertson et al.5 estimated that there were 41,582 STAT1 binding regions in IFN-–
stimulated HeLa S3 cells cells at a 0.1% FDR level. At the same FDR level, CisGenome’s one-
sample analysis only found 18,896 regions. Only at a 10% FDR level, CisGenome identified 
48,523 regions.  

9. Factors that may cause the observed differences between the NRSF ChIP-chip and 
ChIP-seq results 

Our analysis showed that, compared to the NRSF ChIP-chip results, binding regions detected 
from the NRSF ChIP-seq data had a higher resolution (i.e. shorter peak length), higher signal-to-
noise ratio (i.e. higher probability to cover the NRSF motif), and a more comprehensive genome 
coverage (i.e. array-specific regions are likely to represent noise, but a significant fraction of the 
ChIP-seq specific regions still contain NRSF motifs and are likely to be real signals). 

There are two potential reasons for the higher resolution observed in the ChIP-seq data. First, the 
DNA fragment length in the ChIP-chip experiments are around 1kb. The long fragments are 
required to hybridize to multiple probes in order to generate reliable ChIP-chip signals. On the 
contrary, in the preparation of the Solexa library, a size selection step was introduced to select 
DNA fragments ~150-300bp long for sequencing4. The smaller pieces of DNA are expected to 
improve the resolution of binding site identification, besides increasing the colony size 
uniformity and the effective read number one can obtain. If one were to put the same ChIP 
sample with ~150-300bp long DNA fragments on tiling arrays, most of the signals would be 
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buried among the noise, due to the small number of probes that can be covered by the ChIP 
fragments (data not shown). Second, in the ChIP-seq analysis, the offset between the 5’ and 3’ 
reads produced a natural source of information to determine a “confidence interval” of binding 
sites (i.e., the boundary refinement). Such information is not available in the ChIP-chip 
experiments. 

To understand what contributed to the higher signal-to-noise ratio and a relatively more 
comprehensive coverage of the ChIP-seq analysis, we first analyzed the effects of read numbers. 
Our current analysis of NRSF involved ~2.2 million ChIP reads and ~2.8 million control reads. 
We did a simulation study in which 25%, 50% and 75% of the reads were randomly excluded 
from the analysis. With decreasing read number, the number of binding regions that can be 
detected by ChIP-seq also decreased (Supplementary Fig. 11). Using 25% of the original reads, 
the one-sample analysis only detected 1,973 binding regions at the 10% FDR level (compared to 
the 3,312 peaks detected using all reads). Among the 1,339 lost binding regions, 303 can be 
found by the TileMap ChIP-chip analysis, and 25.08% of them (76/303) contained ≥1 NRSF 
motif. This suggests that with fewer reads, ChIP-seq will start to lose sensitivity and miss true 
binding regions. Therefore, the relatively comprehensive coverage of the NRSF motif observed 
in the current study was at least partly due to the increased read number.   

On the other hand, when only a fixed number of top peaks were compared, decreasing the read 
number did not decrease the percentage of ChIP-seq peaks that cover the NRSF motif, neither 
did it change the peak length and the motif occurrence rate (Supplementary Fig. 16). In other 
words, the effect of reducing the read number is to miss weak peaks, but it will not introduce 
additional noise to the peak predictions. As a result, the specificity of the predictions (i.e., # of 
false positives / [# of false positives + # of true positives]) will not decrease when we fix the 
number of total predicted peaks. This is likely due to the fact that when reads are generated, the 
stronger binding regions always have a higher probability to be sampled first. Thus the effect of 
increasing read number is to find weaker peaks and to increase the comprehensiveness of the 
prediction, and it will not affect the intrinsic signal-to-noise ratio that the technology can achieve. 
Importantly, even with the reduced number of reads, the ChIP-seq predictions were still more 
likely to cover the NRSF motif than the ChIP-chip binding regions. The ChIP-seq predictions 
made using reduced read number were still shorter than ChIP-chip binding regions and still had a 
higher NRSF occurrence rate (i.e. # of NRSF motif per kb). The performance of the ChIP-chip 
results is unlikely due to the specific algorithms used here, since in addition to TileMap, we also 
applied MAT to make predictions. At the 10% FDR level, MAT generated 7,054 NRSF binding 
regions (median length = 1161bp). Supplementary Fig. 16 shows that MAT and TileMap 
performed similarly in the NRSF analysis, and both produced results worse than the ChIP-seq 
analyses. 

We next asked whether the cross-hybridization in the arrays could potentially cause the lower 
specificity of the array predictions. In the array probe design, repeats were masked from the 
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genome by the RepeatMasker. For this reason, we use large segmental duplications in the 
genome to study the potential effect of cross-hybridization. Among the 5,517 array-specific 
peaks, 547 (10.4%) had ≥50bp overlap with segmental duplications. As a comparison, only 2.9% 
(46/1,587) of peaks common to the ChIP-chip and ChIP-seq analyses (i.e., the intersection of 
ChIP-chip, one-sample and two-sample ChIP-seq analyses), and 2.2% (31/1,385) of the ChIP-
seq specific peaks (i.e., the intersection of the one-sample and two-sample ChIP-seq analyses) 
contained ≥50bp overlap with segmental duplications. Therefore, the array-specific peaks were 
more likely to cover sequences that occur more than once in the genome.  This suggests that part 
of the noise in the array was likely due to cross-hybridization issues. 

We then explored whether the array design may affect the comprehensiveness of peak detection 
results. Among the 1,385 ChIP-seq specific peaks, 153 (11.1%) were not tiled in the arrays. 143 
(93.5%) out of the 153 contained repeat elements that occupied more than 50% of the peak 
length. These regions were likely excluded from the array design due to repeat masking. On the 
other hand, 88.9% of the ChIP-seq specific peaks were covered by the array design. We did not 
find a clear reason why they were not detected as peaks by ChIP-chip. 

Finally, another major factor that may affect the performance of the two technologies is the 
sample preparation. Although preparation of the ChIP sample in the two experiments followed 
the same protocol, a size selection step was introduced in preparing the Solexa library before 
sequencing. This step is unique to ChIP-seq and was not applied to ChIP-chip. We speculate that 
it may also affect the signal-to-noise ratio of the final sample to be sequenced. In order to test 
this, a systematic experimental study that compares each individual sample preparation steps is 
needed in future. Such a study is already beyond the scope of our current paper which mainly 
aimed at addressing computational challenges of data analysis.  

To summarize, the observed differences between the NRSF ChIP-chip and ChIP-seq results are 
likely to be contributed by multiple factors, including but not limited to increased depth of 
sequencing, cross-hybridization in the arrays, array design as well as sample preparation 
procedures.  

10. Potential reasons for the differences between the one-sample and two-sample ChIP-seq 
analysis results 

In order to see what contributed to the observed differences in the one-sample and two-sample 
NRSF ChIP-seq analysis results, we focused on the high quality binding regions identified by 
these analyses. Among the high-quality binding regions detected by these two analyses, 69 were 
specific to the one-sample analysis, and there was no region specific to the two-sample analysis 
(Fig. 3b). Among the 69 one-sample analysis specific regions, 61 (88.4%) contained repeat 
elements that that occupied more than 50% of the peak length. As a comparison, only 21.3% 
(88/414) of the high quality regions common to the two analyses contained the same level of 
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repeats. This suggests that the one-sample analysis is more likely to pick up repeat-rich regions. 
Although we only used uniquely mapped sequence reads in the analysis, there could be a chance 
to misalign reads from the repeat regions to a wrong location due to SNPs, sequencing errors, or 
errors in the reference genome assembly. We speculate that this may correlate with the 
observation here although a further examination is needed in future to fully address this issue. In 
the two-sample analysis, these repeat-rich regions were eliminated perhaps due to the same bias 
exists in the negative control sample.  

11. Are the observations in this study a general phenomenon? 

In the NRSF analyses, ChIP-seq results are more sensitive and more specific than ChIP-chip 
results. In general, whether this conclusion will continue to hold true for other transcription 
factors is an important question whose definitive answer must await the availability of similar 
data for a larger number of different transcription factors.  

However, certain aspects of the results in this study might be general. In particular, the fact that 
the background read sampling rate across the genome is not uniform may hold true for other 
ChIP-seq studies. In fact, in addition to the NRSF analysis, the initial analysis of a number of 
other transcription factors showed similar results.  

Secondly, the fact that the ChIP-seq can provide a higher resolution (i.e., shorter peak length) 
than ChIP-chip in the determination of transcription factor binding sites is unlikely to be specific 
to this study. The high resolution is partly due to the size selection in the ChIP-seq protocol, and 
partly due to the additional information provided by the read directionalities. Both are applicable 
to future ChIP-seq studies. On the other hand, the size selection may not be applicable to ChIP-
chip where long DNA fragments are needed in order to hybridize to multiple probes to generate 
reliable signals. Thus the resolution that the current ChIP-chip can achieve is limited intrinsically. 

Finally, many discussions in Supplementary Data 9 may hold true for future studies of other 
transcription factors, such as the potential effect of increasing read numbers and the potential 
effect of cross-hybridization issues. 

12. How do the observations in the current study relate to previous observations? 

Our analysis suggests that the NRSF ChIP-seq analysis performed better than NRSF ChIP-chip. 
In a previous study, Euskirchen et al.46 compared the ChIP-chip and ChIP-PET, and they found 
that the array and sequencing based studies had comparable performance and are complementary 
to each other. The inconsistency in these two studies is likely due to the differences between the 
objects that are compared (e.g., ChIP-seq and ChIP-PET are two different technologies with 
different sample preparation protocols). With the availability of the recently developed massively 
parallel sequencing platform, our current ChIP-seq study involved 2.2 million uniquely mapped 
ChIP reads, representing a increased depth of sequencing compared to the ChIP-PET data in ref. 

Nature Biotechnology: doi:10.1038/nbt.1505



20 

 

46 which contained ~726k paired end tags representing ~328k distinct ChIP DNA fragments. 
The ChIP DNA fragments in the ChIP-PET data ranged from 0.1-6k, whereas the DNA fragment 
length of the ChIP-seq data in our current study is ~150-300bp due to the size selection. 
Furthermore, in our current analysis, we tried to use the read directionalities to refine peak 
boundaries, and this information was not explicitly used in ref. 46. The ChIP-chip data in our 
current study were produced using Affymetrix tiling arrays with 25 bp short oligonucleotides as 
probes, and the ChIP-chip data in ref. 46 were produced with NimbleGen 50 bp oligonucleotide 
arrays. This is another potential factor that may cause differences of the results of the two studies.  

In another study by Robertson et al.5, STAT1 ChIP-chip and ChIP-seq were compared. The 
authors observed that there were much more ChIP-seq peaks at the 0.1% FDR level than ChIP-
chip peaks at the 1% FDR level on the same chromosomes. However, this conclusion was based 
on peaks determined using a Poisson background model, therefore the observation may be partly 
due to an underestimated ChIP-seq FDR. The study did not compare the one-sample analyses 
with two-sample analyses, and it did not compare the gain of using read directionalities. Both 
issues are handled by our current study. 

13. Discussion on different types of negative controls 

The negative control sample used in the current ChIP-seq study is a noIP control (i.e., crosslink 
was reversed but the immnunoprecipitation was bypassed). We do not use mock IP in the ChIP-
seq experiments, since there is so little DNA when we do a mock IP that the sequence reads are 
extremely biased to only a few fragments. Sometimes, ChIP-seq experiments can be performed 
using different cell types, and the cell type that lack the ChIP target may serve as the negative 
control. For example, in ref. 5, the authors studied IFN-γ-stimulated and unstimulated HeLa S3 
cells. The unstimutated cells served as a control for detecting STAT1 targets responsive to the 
stimulation. However, when this type of control is used, it is typically used to detect differences 
of the protein-DNA binding between cell types. It is likely that the cell type “lacking” the ChIP 
targets still contain some base line level binding (e.g., STAT1 binds to a number of targets even 
in the unstimulated cells). If this is the case and if the purpose of the study is to find all binding 
regions as well as differential binding, then one can perform the one-sample analyses to identify 
all binding regions (when the noIP control is not available), and perform the two-sample 
analyses to identify differential protein-DNA binding. 
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Supplementary Figure 1 ChIP-chip and ChIP-seq. Both technologies start by preparing a ChIP sample 
enriched in protein bound DNAs. The ChIP sample will either be hybridized to microarrays that contain 
probes interrogating the whole genome (ChIP-chip), or be sequenced from both ends to generate millions 
of short reads using ultra high throughput sequencing (ChIP-seq).  To eliminate unknown bias that may 
arise during sample preparation, hybridization or sequencing procedures, people often also include one or 
more control samples (e.g., Input or mock IP) in the experiments. 
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a                                                          Step 1 –  load data                                                   

           

b                                               Step 2 – raw array data exploration  

 

Supplementary Figure 2 ChIP-chip analysis using CisGenome. 
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c                                    Step 3 – normalization & peak detection                    

            

d                                   Step 4 – peak & gene structure visualization 

   

Supplementary Figure 2 ChIP-chip analysis using CisGenome (cont.). 

 

Nature Biotechnology: doi:10.1038/nbt.1505



26 

 

e      Step 5 – gene annotation, sequence retrieval, conservation & location analysis            

           

f                                           Step 6 – known motif mapping                      

 

Supplementary Figure 2 ChIP-chip analysis using CisGenome (cont.). 
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g                                Step 7 – de novo motif & module discovery 

 

h          Step 8 – matched genomic control selection & motif enrichment analysis 

 

Supplementary Figure 2 ChIP-chip analysis using CisGenome (cont.). 

Nature Biotechnology: doi:10.1038/nbt.1505



28 

 

 

 

 

Supplementary Figure 3 Evaluation of the one-sample FDR estimates in the simulated spike-in 
experiments using NRSF negative control as background. ‘p’: peak number; ‘r’: average IP/control read 
enrichment ratio. 
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Supplementary Figure 4 Evaluation of the one-sample FDR estimates in the simulated spike-in 
experiments using ES negative control as background. ‘p’: peak number; ‘r’: average IP/control read 
enrichment ratio. 
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a                                                                        b 

  
c                                                                        d 

  
e 

 

Supplementary Figure 5 Examples of sequencing artifacts detected by the one-sample ChIP-seq analysis. 
Raw read alignments are shown in the figure. Most artifacts detected in the negative control samples 
occur within 100-150 bp windows, and they are correlated with artifacts in the corresponding ChIP 
samples.  
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Supplementary Figure 6 Percentage of reads covered by peaks at different FDR cutoffs in the one-
sample analysis. 
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Supplementary Figure 7 Motif enrichment in binding regions predicted by the one-sample analysis. The 
method to compute enrichment is described in Supplementary Methods. 
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Supplementary Figure 8 De novo motif discovery results for NRSF ChIP-seq data. 
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Supplementary Figure 9 Canonical and non-canonical NRSF motifs.  
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              Before post-processing                                   After post-processing                       
a                                                                      b            

       
c                                                                d  

    

Supplementary Figure 10 Peak detection results for Oct4 and Nanog ChIP-seq data. Left: before post-
processing. Right: after post-processing. 
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Supplementary Figure 11 Number of peaks detected at different sequencing depths. Numbers of peaks 
before and after post-processing are shown for both the one-sample and two-sample analyses.  
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a                                                     Map the motif to the genome 

 

 

Supplementary Figure 12 Analysis of the novel motif using CisGenome. 
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b                            Retrieve clustered motif sites that are separated by ≤ 500 bp 

 

 

Supplementary Figure 12 Analysis of the novel motif using CisGenome (cont.). 
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c                                                  Choose a browser for visual inspection 

 

 

Supplementary Figure 12 Analysis of the novel motif using CisGenome (cont.). 

 

 

 

 

Nature Biotechnology: doi:10.1038/nbt.1505



40 

 

d                             Get conservation scores for flanking positions of the motif 

 

 

 

Supplementary Figure 12 Analysis of the novel motif using CisGenome (cont.). 
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e                       Summarize distribution of motif sites in relative to gene structures 

 

 

Supplementary Figure 12 Analysis of the novel motif using CisGenome (cont.). 
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a 

 

b 

 

Supplementary Figure 13 ROC-like curve for TileMap. ROC-like curve for unamplified spike-in data (a) 
and amplified spike-in data (b). The plots in the left column correspond to the TileMap results, and the 
plots in the right column are the original Fig 2c,d from ref. 41 which correspond to the average 
performance of all other algorithms. The analysis codes (e.g., UA, UB, da, dc) are defined in 
Supplementary Figure 14. The dashed vertical line represents the point at which the number of false-
positive predictions is equal to 5% of the total number of true-positive spike-ins. For the plots on the right, 
error bars represent the two-sided 95% confidence interval of the average sensitivity at each false-positive 
ratio (X-axis).  
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Supplementary Figure 14 Areas under the ROC curve (AUC) of different ChIP-chip peak detection 
algorithms. The bigger the AUC, the better an algorithm performs. References for the tools are TileMap12, 
MAT11, TAS13, TiMAT (http://sourceforge.net/projects/timat2), Splitter (http://zlab.bu.edu/splitter), WA 
(see ref. 41 for a description), MA2C22, ADM-1 (http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
get.cgi/2007/PHD/PHD-2007-05.pdf), TAMAL20, Permu75, TileScope21, ACME19, Wavelet (A. Karpikov 
and M. Gerstein, unpubl.).  TileMap analysis results are indexed by two letter codes UA, UB, UC, UF, 
UG, UJ, UN, UX, da, dc, de and dh. Analysis results of the other algorithms are indexed by one letter 
codes consistent with the original codes in ref. 41. 
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Supplementary Figure 15 Performance of ChIP-seq peak detection algorithms. CisGenome was run 
under four modes (i.e., ChIP only with boundary refinement, ChIP only with boundary refinement and 
single strand filtering, ChIP+control with boundary refinement, and ChIP+control with boundary 
refinement and single strand filtering). (a) Percentage of peaks that contain ≥1 NRSF motif site. The top 
1,500 predictions of each algorithm were grouped into ten tiers. The percentage was computed for each 
tier. (b) Log2(Peak Length) of the predictions made by different algorithms. (c) NRSF motif occurrence 
rates in the predicted peaks. QuEST only reports a single coordinate for each peak and does not provide 
boundary estimates. Thus the peak length for QuEST predictions cannot be computed and was not 
compared here. For determining NRSF motif coverage and motif occurrence rate, the single QuEST 
coordinate for each peak has been extended 40bp towards both ends. 40bp represents a slightly longer 
half fragment length than the half peak length of the CisGenome peaks.  

Nature Biotechnology: doi:10.1038/nbt.1505



45 

 

a 

 
b 

 
c 

 

Supplementary Figure 16 Effects of read number on motif coverage and peak length. (a) CisGenome 
one-sample and two-sample ChIP-seq analyses on 25% of the original reads were compared with TileMap 
and MAT ChIP-chip analyses.  From the left to right, the three plots show the percentage of peaks that 
contain the NRSF motif, the motif occurrence rate and the log2(peak length). Peaks were ranked and 
grouped into tiers of size 100. Each tier was analyzed separately. (b) Comparison of ChIP-chip peak 
detection with CisGenome one-sample ChIP-seq analysis (with boundary refinement but without single 
strand filtering) when 25%, 50%, 75% and 100% of the original reads were analyzed.  The original ChIP 
read number is 2.24M. (c) Comparison of ChIP-chip peak detection with CisGenome two-sample ChIP-
seq analysis (with boundary refinement but without single strand filtering) when 25%, 50%, 75% and 
100% of the original reads were analyzed. The original ChIP (control) read number is 2.24M (2.78M). 
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a                                                              b  

 
c                                                              d 

  

Supplementary Figure 17  Correlation of read sampling rates between the ChIP and control samples. 
Genome has been divided into 1Mb (a), 100kb (b) and 100bp (c,d) non-overlapping windows. For each 
window, the number of reads in the NRSF ChIP sample and the number of reads in the control sample 
were counted and plotted against each other. Each dot represents a window. (d) is a zoom-in version of (c).  
The dotted line represents the expected ChIP/control read ratio r0 in the background regions.  r0 is 
dependent on the total number of ChIP reads and the total number of control reads. It was derived 
according to Supplementary Methods. In each plot, there are two types of windows, i.e. windows that 
contain real binding regions (ChIP reads in these windows are significantly enriched) and windows that 
do not contain real binding regions (i.e., background windows). For background windows, there was a 
clear correlation between the ChIP read number and the control read number. In fact, in (c) and (d), when 
windows with ≥10 ChIP reads and at the same time ≤5 control reads were excluded (these are windows in 
the upper left part of (c) and (d) which mainly represent real binding signals), the correlation coefficient 
between the ChIP and control reads for the remaining windows (which mainly represent background) was 
0.10 (99% confidence interval = [0.098,0.102] based on Fisher’s z transformation), which is significantly 
greater than 0.  
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Supplementary Table 1. Real datasets used in the analyses 

Name Type Species Read number 
(million) 

Source 

NRSF-Tiling ChIP-chip Human NA GEO: GSE8489 
NRSF-ChIP ChIP-seq Human 2.24 Johnson et al.4 
NRSF-control ChIP-seq Human 2.78 Johnson et al. 4 
Oct4-ChIP ChIP-seq Mouse 4.71 Marson et al. 10 
Nanog-ChIP ChIP-seq Mouse 8.72 Marson et al. 10 
ES-control ChIP-seq Mouse 6.96  Marson et al. 10 
Note: Reads were aligned to hg17 and mm8 respectively. Only uniquely mapped reads were counted.  

 

Supplementary Table 2. Summary of simulated datasets for evaluating ChIP-seq FDR estimation  

 Enrichment ratio r 
Peak number p 20 100 500 
(NRSF-control)    
2000 0.21% (2.78) 1.26% (2.81) 5.97% (2.95) 
10000 1.10% (2.81) 5.89% (2.95) 24.03% (3.66) 
50000 5.30% (2.93) 23.94% (3.65) 61.35% (7.19) 
(ES-control)    
2000 0.28% (6.98) 1.45% (7.07) 7.00% (7.49) 
10000 1.42% (7.07) 6.98% (7.49) 27.63% (9.62) 
50000 6.72% (7.47) 27.24% (9.57) 65.37% (20.11) 

Note: 18 datasets were generated. For each dataset, the percentage of reads covered by the peaks detected at the 10% 
FDR level is shown. The total number of reads (i.e., negative control reads + simulated reads, in the unit of million) 
in the datasets are shown in the brackets. 

 

Supplementary Table 3. Summary of one-sample ChIP-seq peak detection results in different 
datasets  

Data  No. of predicted 
peaks  
(FDR≤0.1, after 
post-processing)  

No. of non-
repeat peaks1 

Percentage of 
peaks that are 
repeats2 

% of reads 
covered by 
peaks 

% of covered 
reads that are 
repeats 

NRSF-ChIP 1861 1604 13.8%  12% 13.2% 
Oct4-ChIP 11780 8487 27.9%  18% 26.5% 
Nanog-ChIP 12840 9594 25.3%  13% 27.4% 
NRSF-control 149 16 89.3% 0.5% 96.4% 
ES-control 244 110 54.9%   1% 65.4% 
Note:  
1. Non-repeat peaks are peaks in which <50% of base pairs overlap with repeats.   
2. Repeat peaks are peaks in which ≥50% of base pairs overlap with repeats 
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Supplementary Table 4. Relative enrichment levels for motifs discovered in NRSF ChIP-seq data 

 LR≥500 LR≥500, CS≥top10% 
Motif n1B/n2B n1C/n2C r1 n3B/n4B n3C/n4C r2/r3 

1 1041/827813 3644/3408619 1.18 183/195985 731/763198 0.97/1.03 
2 

NRSF 
1612/822967 129/3401641 51.65 870/196462 40/765944 84.80/89.90 

3 7250/825389 27818/3405132 1.08 3815/196197 13650/764539 1.09/1.15 
4 291/825389 1482/3405132 0.81 48/196197 249/764539 0.75/0.80 
5 696/822967 4358/3401641 0.66 96/196462 682/765944 0.55/0.58 
6 2242/825389 8426/3405132 1.10 819/196197 2930/764539 1.09/1.15 
7 1655/822967 5607/3401641 1.22 741/196462 2383/765944 1.21/1.29 
8 370/825389 1695/3405132 0.90 95/196197 382/764539 0.97/1.03 
9 428/820540 3555/3398152 0.50 66/196612 585/767392 0.44/0.47 

10 604/830238 2715/3412109 0.91 126/195756 549/761891 0.89/0.94 
Note: Motif ID in column 1 corresponds to the motif ID displayed in Supplementary Figure 8. LR=likelihood ratio 
between the motif model and a 3rd order background Markov model. n1B = # of motif sites in binding regions; n2B = 
total length of non-repeat base pairs in binding regions; n1C = # of motif sites in matched genomic control regions; 
n2C = total length of non-repeat base pairs in matched genomic control regions. r1 = (n1B/n2B)/(n1C/n2C) is the relative 
enrichment level of the motif. n3k (k = B or C) is the number of phylogenetically conserved motif sites in binding or 
control regions.  n4k is the total length of phylogenetically conserved non-repeat base pairs in binding or control 
regions. r2 = (n3B/n4B)/(n3C/n4C). r3=(n3B/n2B)/(n3C/n2C). “Phylogenetically conserved” means that the corresponding 
phastCons score is within top 10% of the genome. Rationale for using r1, r2 and r3 to characterize relative enrichment 
levels is discussed in ref. 37. 

 
 
 
Supplementary Table 5. A CisGenome summary of locations of NRSF binding regions 

Data Total 
(%) 

Inter-
genic 

Intra-
genic 

Exon Intron CDS UTR 5’UTR 3’UTR TSS 
up1k 

TES 
down1k 

Seq_S1 100 62.32 37.68 7.31 30.68 3.11 4.23 3.56 0.66 9.15 1.48 
Seq_S2 100 59.78 40.22 8.62 31.96 3.59 5.10 4.31 0.78 10.85 1.66 
Seq_S1(B+S) 100 61.36 38.64 5.80 33.10 2.69 3.12 2.31 0.81 5.05 1.45 
Seq_S2(B+S) 100 60.09 39.91 5.85 34.28 2.84 3.01 2.17 0.84 5.30 1.51 
Array 100 61.45 38.55 3.34 35.49 1.90 1.45 0.43 1.02 2.12 1.16 
Random 100 66.03 33.98 1.78 32.29 1.03 0.78 0.13 0.65 0.68 0.64 
 

 

Supplementary Table 6. NRSF motif coverage in the human genome by different datasets 

 
 

# of motif sites 
(LR≥500)

# of motif sites 
covered by peak 

Tiling array 10333 1083 (10.48%) 
Seq_S1 10333 1351 (13.07%) 
Seq_S2 10333 1354 (13.10%) 
Seq_S1 (B+S) 10333 1095 (10.60%) 
Seq_S2 (B+S) 10333 1085 (10.50%) 
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Supplementary Table 7. Coverage of non-canonical NRSF motifs by different datasets 

Dataset No. of 
peaks 

Peak with the 
canonical 

NRSF motif1 

Peak with 
non-

canonical 
NRSF 
motifs2 

Percentage of peaks 
w/o the canonical 
motif that contain 

non-canonical motifs3 

Affymetrix 7114 1001 (14.1%) 176 (2.47%) 2.9% (176/6113) 
S1w100 3312 1277 (38.6%) 293 (8.85%) 14.4% (293/2035) 
S1w100 (B) 3312 1223 (36.9%) 282 (8.51%) 13.5% (282/2089) 
S1w100 (B+S) 1861 1051 (56.5%) 208 (11.2%) 25.7% (208/810) 
S2w100 3317 1280 (38.6%) 294 (8.86%) 14.4% (294/2037) 
S2w100 (B) 3317 1211 (35.5%) 281 (8.47%) 13.3% (281/2106) 
S2w100 (B+S) 1794 1041 (58.0%) 208 (11.6%) 27.6% (208/753) 
All three4 1587 933 (58.8%) 145 (9.14%) 22.2% (145/654) 
Affy only5 5517 68 (1.23%) 29 (0.53%) 0.53% (29/5449) 
S1&S2 only6 1385 290 (20.9%) 128 (9.24%) 11.7% (128/1095) 

Note:  
1. No. of peaks with the canonical NRSF motif (percentage of peaks that contain the canonical motif); 
2.  No. of peaks without the canonical NRSF motif but containing the non-canonical NRSF motifs (percentage of 
peaks that do not contain the canonical NRSF motif but contain the non-canonical motifs); 
3. Percentage = (No. of peaks without the canonical NRSF motif but containing the non-canonical NRSF motifs / 
No. of peaks without the canonical NRSF motif). 
4. Peaks detected by all three analyses (i.e., the intersection among the ChIP-chip, one-sample and two-sample 
ChIP-seq analyses). Here, ChIP-seq peaks before applying the boundary refinement and single strand filtering were 
used. 
5. Peaks detected only in ChIP-chip. 
6. Peaks detected in both the one-sample and two-sample ChIP-seq analyses but not in ChIP-chip. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nature Biotechnology: doi:10.1038/nbt.1505



50 

 

Supplementary Table 8. Enrichment of NRSF half motifs in different datasets 

Motif LR≥500 LR≥500, CS≥top10% of the genome 
n1B/n2B n1C/n2C r1 n3B/n4B n3C/n4C r2/r3 

Affy only 
NRSF11 545/3178732 574/3737215 1.12 120/564563 137/751258 1.17/1.03 
NRSF22 330/3173766 401/3733385 0.97 99/564295 132/751923 1.00/0.88 

All three 
NRSF1 1317/2839694 574/3737215 3.02 642/583150 137/751258 6.04/6.17 
NRSF2 1059/2838216 401/3733385 3.47 505/584054 132/751923 4.93/5.03 

S1&S2 only  
NRSF1 361/227312 574/3737215 10.34 180/60818 137/751258 16.23/21.60 
NRSF2 472/226235 401/3733385 19.42 197/60790 132/751923 18.46/24.63 

Note:  
1. NRSF1 = The first half of the NRSF motif (Supplementary Fig. 9); 
2. NRSF2 = The second half of the NRSF motif (Supplementary Fig. 9). 
LR=likelihood ratio between the motif model and a 3rd order background Markov model. n1B = # of motif sites in 
binding regions; n2B = total length of non-repeat base pairs in binding regions; n1C = # of motif sites in matched 
genomic control regions; n2C = total length of non-repeat base pairs in matched genomic control regions. r1 = 
(n1B/n2B)/(n1C/n2C) is the relative enrichment level of the motif. n3k (k = B or C) is the number of phylogenetically 
conserved motif sites in binding or control regions.  n4k is the total length of phylogenetically conserved non-repeat 
base pairs in binding or control regions. r2 = (n3B/n4B)/(n3C/n4C). r3=(n3B/n2B)/(n3C/n2C). “Phylogenetically conserved” 
means that the corresponding phastCons score is within top 10% of the genome. Rationale for using r1, r2 and r3 to 
characterize relative enrichment levels is discussed in ref. 37. 
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Supplementary Table 9. Basic summary statistics of the novel motif 

Summary Human (hg17) Mouse (mm7) 
Conserved non-repeat bp       
in genome / total non-
repeat bp in genome 

239652139/1466729425=16.3% 184300142/1457016361=12.7% 

Conserved sites / total sites           4543/17740     = 25.6%     3235/17940     = 18.0% 
Clustered sites that are 
conserved / clustered sites 

            934/  1674     = 55.8%       647/  1265     = 51.2% 

Note: “Conserved” means that the corresponding phastCons score is within top 10% of the genome. Two motif sites 
are defined to be “clustered” if they are separated by ≤ 500 bp. In CisGenome one can change the cutoff to define 
conservation and clustering. 

 

 

 

 

Supplementary Table 10. Enrichment of the novel motif in different datasets 

  LR≥500 LR≥500, CS≥top10% of the genome 
Dataset n1B/n2B n1C/n2C r1 n3B/n4B n3C/n4C r2/r3 
Sox2-human-
promoter array 

152/307344 1738/6089803 1.73 73/102869 653/1557900 1.69/2.22 

Nanog-human-
promoter array 

174/484667 1296/6456504 1.79 80/157096 515/1640948 1.62/2.07 

Oct4- mouse- 
genome-wide 
ChIP-PET 

141/1073118 759/6477817 1.12 42/220674 180/1118222 1.18/1.41 

Nanog-mouse-
genome-wide 
ChIP-PET 

90/737726 625/5774175 1.13 27/143248 157/967126 1.16/1.35 

Note: see Supplementary Table 4 for meanings of each column. 
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Supplementary Table 11. Performance of ChIP-chip peak detection algorithms 
Sample1 Analysis2 AUC3 E-O 

distance4 
#Top sites #TP5 #FN5 #FP5 

UnAmp Affymetrix_Struhl_6_TileMap 0.63 0 92 71 29 21 
UnAmp Affymetrix_Struhl_6_MAT 0.59 0 100 66 34 34 
UnAmp Affymetrix_Struhl_6_TAS 0.44 -15 93 64 36 29 
UnAmp Affymetrix_Struhl_Gingeras_3_TileMap 0.55 7 100 62 38 38 
UnAmp Affymetrix_Struhl_Gingeras_3_MAT 0.54 -7 100 62 38 38 
UnAmp Affymetrix_Struhl_Gingeras_3_TiMAT 0.51 -15 98 60 40 38 
UnAmp Affymetrix_Struhl_DFCI_3_TileMap 0.62 -9 100 67 33 33 
UnAmp Affymetrix_Struhl_DFCI_3_MAT 0.54 -3 100 62 38 38 
UnAmp Agilent_Myers_WI_5_TileMap 0.68 26 100 81 19 19 
UnAmp Agilent_Myers_WI_5_WA 0.45 -15 100 52 48 48 
UnAmp Agilent_Myers_3_TileMap 0.59 24 100 68 32 32 
UnAmp Agilent_Myers_3_Splitter 0.40 42 98 52 48 46 
UnAmp Agilent_Myers_3_WA 0.36 -10 100 40 60 60 
UnAmp Agilent_Myers_3_MA2C 0.33 44 92 43 57 49 
UnAmp Agilent_WI_2_TileMap 0.80 4 99 86 14 13 
UnAmp Agilent_WI_2_Splitter 0.64 23 100 77 23 23 
UnAmp Agilent_WI_2_WA 0.64 6 100 79 21 21 
UnAmp Agilent_WI_2_MA2C 0.59 27 100 75 25 25 
UnAmp Agilent_WI_2_ADM-1 0.49 -57 86 73 27 13 
UnAmp NimbleGen_Green_4_TileMap 0.79 8 100 90 10 10 
UnAmp NimbleGen_Green_4_TAMALPAISgenerous 0.71 13 100 83 17 17 
UnAmp NimbleGen_Green_4_Permutation 0.66 3 88 77 23 11 
UnAmp NimbleGen_Green_4_Splitter 0.64 4 97 86 14 11 
UnAmp NimbleGen_Green_4_TAMALPAISstrict 0.56 1 61 57 43 4 
UnAmp NimbleGen_Green_4_MA2C 0.54 21 100 83 17 17 
UnAmp NimbleGen_Green_4_TileScope 0.53 10 100 86 14 14 
UnAmp NimbleGen_Green_4_ACME 0.36 53 100 78 22 22 
UnAmp NimbleGen_Snyder_3_TileMap 0.76 0 100 79 21 21 
UnAmp NimbleGen_Snyder_3_Splitter 0.69 19 100 80 20 20 
UnAmp NimbleGen_Snyder_3_Wavelet 0.55 0 66 62 38 4 
UnAmp NimbleGen_Snyder_3_TileScope 0.52 -8 89 77 23 12 
Amp Affymetrix_Brown_LM_3_TileMap 0.45 3 62 51 47 11 
Amp Affymetrix_Brown_LM_3_MAT 0.42 -10 61 46 52 15 
Amp Affymetrix_Brown_LM_3_Splitter 0.27 0 44 35 63 9 
Amp Affymetrix_Struhl_RP_3_MAT 0.16 0 98 29 69 69 
Amp Affymetrix_Struhl_RP_3_TileMap 0.13 20 98 26 72 72
Amp Affymetrix_Struhl_RP_3_TiMAT 0.12 37 98 20 78 78 
Amp Agilent_WI_LM_2_ADM-1 0.56 -59 66 59 39 7 
Amp Agilent_WI_LM_2_TileMap 0.52 -18 98 65 33 33 
Amp Agilent_WI_LM_2_WA 0.44 11 98 61 37 37 
Amp Agilent_WI_LM_2_MA2C 0.35 34 98 50 48 48 
Amp NimbleGen_Farnham_WGA_3 

_TAMALPAISgenerous 
0.62 -1 98 76 22 22 

Amp NimbleGen_Farnham_WGA_3_TileMap 0.62 18 98 85 13 13 
Amp NimbleGen_Farnham_WGA_3_MA2C 0.57 9 98 81 17 17 
Amp NimbleGen_Farnham_WGA_3_TileScope 0.57 -5 95 82 16 13 
Amp NimbleGen_Farnham_WGA_3_Splitter 0.52 8 98 87 11 11 
Amp NimbleGen_Farnham_WGA_3_Permu 0.45 1 73 65 33 8 
Amp NimbleGen_Farnham_WGA_3 

_TAMALPAISstrict 
0.4 0 44 41 57 3 

Amp NimbleGen_Farnham_WGA_3_ACME 0.33 63 98 74 24 24 
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Note: 
TileMap results were obtained by applying CisGenome to the spike-in data. Results for other algorithms were 
provided by ref. 41. 
1. Sample: “UmAmp” means undiluted spike-in sample; “Amp” means diluted spike-in sample. 
2. Analysis: undiluted data sets are labeled by [Array platform]_[Lab generating the data]_[Number of 
replicates ]_[Algorithm] ; diluted data sets are labeled by [Array platform]_[Lab generating the data]_[Amplification 
protocol]_[Number of replicates ]_[Algorithm]. 
3. AUC = Area under the ROC-like curve. A bigger AUC represents a better overall performance of the algorithm. 
4. E-O distance = Distance between the chosen cutoff and the optimal cutoff. A negative distance represents a 
conservative cutoff, and a positive distance represents a loose cutoff. 
5. #TP, #FN, #FP = Number of true positives, false negatives and false positives for the top sites. 
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Supplementary Table 12. A comparison of representative software tools for ChIP data analyses 

 ChIP
-chip 
peak 
detec
tion 

Evaluation 
of 
statistical 
significanc
e for ChIP-
chip peaks 

ChIP-
seq 
peak 
detect
ion 

Evaluation 
of FDR for 
one-sample 
ChIP-seq 

Evaluation 
of FDR for 
two-sample 
ChIP-seq 

Peak-
gene 
associati
on 

Statistical 
summary  of 
location/ 
conservation 

Large-
scale 
genomic 
sequence 
manipulati
on 

De novo 
motif 
discover
y 

CisGenome + + + + + + + + + 
TAS13 + +        
MAT11 + +        
Tilescope21 + +    +    
CPF4   +       
GeneTrack 
29 

+  +       

QuEST30   +  +     
SISSRs31   + +      
MEME42         + 
MDScan25         + 
CEAS28      + + + + 
Galaxy43      + + +  
SignalMap* +         
IGB**          
UCSC33     + 
Ensembl34        +  
WebLogo44          
 
 
 Mapping 

motif to 
user-
specified 
genomic 
regions 

Motif 
enrich-
ment 
analysis 
based on 
matched 
controls 

Genomic 
region and 
signal 
visualization 

Motif 
visualization 

GUI Stand-
alone & 
run 
locally 

Web-
based 

Allow 
customization 
for addressing 
different 
questions 

CisGenome + + + + + +  + 
TAS     + +   
MAT      +   
Tilescope     +  +  
CPF      +   
GeneTrack   +   +   
QuEST      +   
SISSRs      +   
MEME     + + +  
MDScan     + + +  
CEAS   + + +  
Galaxy   +  +  + + 
SignalMap   +  + +   
IGB   +  + +   
UCSC    +  +  + + 
Ensembl   +  +  + + 
WebLogo    + +  +  
 
Notes:  

* developed by NimbleGen; ** developed by Affymetrix. 
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According to the original publication, GeneTrack can be used to handle ChIP-chip data. However, similar to its 
ChIP-seq analysis function, the software does not provide error rate estimates for the ChIP-chip analysis. Moreover, 
in the original publication, no example was provided to illustrate this ability, and no rigorous tests and systematic 
evaluation have been presented for the ChIP-chip analysis function. Therefore it remains unclear how its ChIP-chip 
analysis function performs compared to the other existing ChIP-chip analysis algorithms. 

“Stand-alone and run locally” means that the major analysis and visualization functions provided by the tool are 
self-contained and can be used without the need to transfer data over the internet during the analysis procedure. For 
example, Galaxy can be installed and run locally, but it uses the UCSC genome browser to display the genomic data 
which requires transferring the data over the internet, therefore it is not a fully stand-alone software tool in the 
context of ChIP-chip/ChIP-seq data analysis/visualization.  

The comparisons show that CisGenome covers a broad spectrum of functionalities. Only representative software 
tools were listed here. For example, there are many other ChIP-chip peak detection methods that are compared in 
Supplementary Data 6 but not listed here. Similar to TAS, MAT and Tilescope, they typically only handle ChIP-
chip data and do not support ChIP-seq analysis as well as downstream sequence/annotation/motif analyses. Also, for 
de novo motif analyses, there are dozens of other tools reviewed and compared in ref. 69-71. In general, they have 
the same limitations as MEME and MDSCAN that are listed here. 
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Supplementary Table 13. Correlation of NRSF ChIP and control read number in 100bp windows 

  ChIP read  Percentage of 
windows with ≥1 
ChIP read 

   
=0 

 
≥1 

Control read =0 2.70 M 0.14 M   4.8% 
 ≥1 0.22 M 0.02 M 10.1% 
Percentage of windows with ≥1 
control read 

7.4% 14.9%  

Note: number of windows in each category is shown in the unit of million. Chi-square test for correlation yields p-
value<1e-10. For windows with 0 control read, 4.8% contain ≥1 ChIP read. For windows with ≥1 control read, 
10.1% contain ≥1 ChIP read. Thus, windows that are more likely to contain control reads are also more likely to 
contain reads in the ChIP sample. This is an analysis complementary to Supplementary Fig. 17c,d. When window 
size is small, the estimate of read occurrence rate in a window is unstable, and most genomic windows contain no 
read. Therefore, instead of comparing the read occurrence rate directly (as in Supplementary Fig. 17c,d), the table 
here compares whether a window that contains control reads are more likely to contain ChIP reads. Together with 
Supplementary Fig. 17c,d and Supplementary Fig. 5, the results suggest that the background sampling rate of the 
control sample and the background sampling rate of the ChIP sample at the same loci are correlated at the resolution 
(w=100-200bp) usually used in the two-sample analyses. 
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Supplementary Table 14. Length distribution of NRSF ChIP-seq binding regions detected using 
different window size W 

Analysis criteria No. of NRSF 
motif/1kb

Percentiles of region length (bp) 
10 25 50 75 90 

S1w25 3.1606 30 40 56 137 232 
S1w50 1.9598 60 86 149 286 448 
S1w100 1.2615 122 173 269 444 598 
S1w200 0.6217 231 298 403 595 793 
S1w25 (B) 6.8840 29 29 31 50 80 
S1w50 (B) 6.6882 29 30 42 71 96 
S1w100 (B) 5.5388 29 30 60 82 113 
S1W200 (B) 2.4235 29 36 96 146 183 
S1w25 (B+S) 10.9443 30 40 60 82 103 
S1w50 (B+S) 8.6670 30 48 66 87 112 
S1w100 (B+S) 6.9799 41 59 73 90 122 
S1w200 (B+S) 3.8031 80 111 138 161 184 
S2w25 3.3049 29 40 63 144 236 
S2w50 2.0469 59 85 152 294 450 
S2w100 1.2770 116 161 261 445 604 
S2w200 0.7065 227 293 423 605 794 
S2w25 (B) 7.4139 29 29 33 51 81 
S2w50 (B) 7.2134 29 30 43 70 95 
S2w100 (B) 5.5268 29 30 59 85 119 
S2w200 (B) 2.4832 29 36 101 156 215 
S2w25 (B+S) 11.3630 30 41 60 81 101 
S2w50 (B+S) 9.3410 31 48 65 86 109 
S2w100 (B+S) 7.3109 40 57 73 94 125 
S2w200 (B+S) 3.8733 59 100 137 166 199 
Note: S1 = one-sample analysis; S2 = two-sample analysis; B = boundary refinement; S = single strand filtering; 
w100 means window size w = 100 bp. 
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Supplementary Table 15. Motif coverage of NRSF ChIP-seq binding regions detected using 
different window size W 

Sample W Cutoff1 Initial regions2 Refine boundary (B) Boudary+Strand (B+S) 
S1 25 7 3581 (1105, 30.9%) 3581 (1067, 29.8%) 1177 (804, 68.3%)
S1 50 7 3240 (1212, 37.4%) 3240 (1163, 35.9%) 1564 (956, 61.1%)
S1 100 8 3312 (1277, 38.6%) 3312 (1223, 36.9%) 1861 (1051, 56.5%)
S1 200 8 4961 (1385, 27.9%) 4961 (1294, 26.1%) 2003 (1092, 54.5%)
S2 25 7 3310 (1105, 33.4%) 3310 (1071, 32.4%) 1157 (804, 69.5%)
S2  50 7 3046 (1212, 39.8%) 3046 (1162, 38.2%) 1507 (954, 63.3%)
S2 100 8 3317 (1280, 38.6%) 3317 (1211, 35.5%) 1794 (1041, 58.0%)
S2 200 9 4264 (1351, 31.7%) 4264 (1202, 28.2%) 1940 (1028, 53.0%)

Note: 1. Cutoff n is the minimal number of reads required to declare a window to be significant. It was chosen to 
control FDR≤10%. 2. For each analysis the number of binding regions x1, the number of regions that contain ≥ 1 
NRSF motif x2, and the percentage y=x2/x1 are reported in the format x1 (x2, y). 
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