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SUPPLEMENTARY NOTES
A review of ChIP-chip and ChlP-seq data analysis

ChIP-chip and ChIP-seq are powerful technologies to study transcriptional regulation in complex
genomes, however, mining information from the huge datasets generated by these high-
throughput technologies remains to be a non-trivial task. To analyze a ChIP-chip experiment,
one usually starts with data exploration and then goes through normalization, binding region
detection, adding gene annotations and finding enriched sequence motifs. This is a multiple step
procedure, and the data involved are heterogeneous. In the past few years, a number of tools
targeting each individual steps of the ChIP-chip analysis have been developed. For example,
microarray blob remover (MBR)** has been developed to detect and remove blob-like defects
from array images. Quantile normalization® which was originally developed for normalizing
probe intensities across multiple expression arrays, is also used widely in the tiling array analysis.
MAT model'' was proposed to remove sequence-dependent probe effects in the Affymetrix
tiling arrays, and MA2C**, a model-based normalization approach based on the GC content of
probes, was developed for two-color tiling arrays. For detecting binding regions from normalized
array data, methods based on moving windows (MAT“, TileMaplz, TASU), hidden Markov
models (HMMTiling®', TileMap'?, Du et al.'’), hierarchical mixture models (TileHGMM',
BAC52), as well as regression and kernel deconvolution (MPeakM, JBD', MeDiChIB) have been
proposed. Tilescope®' provides a web-based data processing pipeline for analyzing tiling arrays,
and Ringo™ is a R/Bioconductor package for ChIP-chip analysis which allows users to take the
advantage of various functions in R. Other methods often used include TAMALZO, ACMElg,
TiMAT (http://sourceforge.net/projects/timat2), Splitter (http://zlab.bu.edu/splitter), and ADM-1
(http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2007/PHD/PHD-2007-05.pdf). For
motif discovery, various methods have been developed, among which the most popular ones are
MEME®, Gibbs Motif Sampler’’, and variants of them®*°. Methods that try to identify cis-
regulatory modules (CisModule®®, Gibbs Module Sampler’’, EMCMODULE™) and that
incorporates cross-species information into the de novo motif discovery (Wasserman et al.”,
PhyloCon®, PhyME®', CompareProspector®, PhyloGibbs®, Ortholog sampler®, MultiModule®,
etc.) have also been developed. In addition to these general motif discovery methods, methods
specifically targeting at motif analysis on ChIP-chip data are also available, examples including
MDSCAN® and MotifBooster’®. To retrieve gene annotations, tools such as Galaxy® and
CEAS® have been made available.
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Despite the development of various tools, mining information from the huge tiling array datasets
remains to be a non-trivial task. This is due to multiple reasons. First, many tools for the
upstream data processing (normalization and peak detection) are designed for a single array
platform (e.g., TAS and MAT for Affymetrix, MPeak for NimbleGen), making it awkward to
compare data collected from multiple array platforms. A few tools such as Tilescope can support
multiple array platforms, but they are incapable of doing ChIP-seq analysis. Therefore it is still
difficult to integrate information from the ChIP-chip with information from ChIP-seq which
becomes increasingly useful. Second, different upstream and downstream analysis functions are
distributed in a dozen of tools, often incompatible with each other. Significant amount of work
are required to reformat output of one piece of software before feeding it to the other. The web-
service CEAS®® makes efforts to integrate multiple downstream analysis functions including
sequence retrieval, adding gene annotations and motif discovery. However, it performs the
analysis and returns the results in a pre-defined manner, and there is limited flexibility for users
to customize the analysis procedures to meet their diversified needs. Galaxy allows users to do
analyses on genomic intervals in a flexible way, but it does not support various kinds of
upstream analyses (e.g. peak detection) and downstream analyses (e.g. motif discovery) that are
particularly useful for ChIP data analyses. Third, the ability to visualize the data easily and
interactively is a critical requirement for effective analysis. Although tools like IGB
(http://www.affymetrix.com/support/developer/tools/download igb.affx) and SignalMap

(http://www.nimblegen.com/products/software/signalmap.html) have been developed for
visualizing array signals along chromosomes, the former is mainly designed for Affymetrix tiling
arrays, and the latter is a proprietary software provided for NimbleGen users. General-purpose
genome browsers such as UCSC® and Ensembl’* are useful tools to visualize ChIP data.
However, when thousands of predictions and tens of millions of data points need to be visually
examined in a large-scale interactive analysis, these browsers become highly inefficient due to
the need of transferring data over the internet. Moreover, many visualization functions

particularly useful in the ChIP data analyses are not provided by these tools. For example, to
visualize motif information, one needs to go to other websites such as WebLogo™. Therefore, in
order for a bench biologist to efficiently perform all the upstream and downstream analyses, an
integrated tool that can support flexible and seamless analyses of ChIP-chip data is urgently
needed.

Analysis of a ChIP-seq experiment begins with aligning reads to the genome and finding read
enriched regions. The predicted regions can then be used for downstream analyses including
motif discovery and annotation retrieval. Although the downstream analyses can be performed in
a similar fashion as the ChIP-chip analysis, development of methods for the upstream analyses of
ChIP-seq data is still at its infancy. ELAND (Cox A., unpublished) provides a fast algorithm to
align millions of reads to the genome, allowing up to two mismatches and no gaps in the
alignment. More recently, new tools such as SOAP®, RMAP®, ZOOM® and SeqMap*’ have
also been developed to align reads generated by massively parallel sequencing to reference
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genomes. Given the aligned reads, early ChIP-seq studies*” used in-house analysis pipelines to
detect binding regions which are often difficult for general bench biologists to use. Recently, a
few tools targeting general users have been developed, including GeneTrack”, QuEST* and
SISSRs!. GeneTrack uses a Gaussian smoothing procedure to produce a continuous curve
representing signals across the genome, it then looks for peaks by finding maxima in the curve. It
does not provide statistical error rate measurements. QUEST combines a Gaussian kernel with
the read directionality information to infer binding sites. It provides a false discovery rate (FDR)
estimate which is obtained using information from the negative control sample. In order to
compute the FDR, the negative control sample is required to have twice as many reads as the
ChIP sample, so that it can be divided into two parts to mimic a random two sample comparison.
When no negative control sample is available, QUEST is not able to provide error rate estimates.
SISSRs combines the read enrichment with the read directionality to identify binding regions. It
uses a Poisson model to estimate FDR when only the ChIP’d sample is available. When the
negative control sample is available, the control sample is used to control specificity and
sensitivity of the predictions. The control of sensitivity is based on the empirical read distribution
in the negative control sample, and the control of specificity is based on empirical p-values
computed for fold changes between the ChIP’d and control sample. No FDR is provided in this
context. Despite the recent development, our understanding on the basic characteristics of ChIP-
seq data is still limited. In particular, there are two types of ChIP-seq experiments: experiments
involving negative control samples (two-sample analyses) and experiments that contain only
ChIP’d samples (one-sample analyses). Knowledge about their relative merits and limitations is
limited due to lack of a direct comparison between the two types of analyses. Moreover, in the
one-sample analyses, since no negative control information is available to estimate the noise
level, evaluation of statistical significance is challenging. Currently, the published methods either
use a Poisson model™'®*! or use Monte Carol simulations® to construct the null distribution in the
one-sample context. Both approaches implicitly assume that the background read occurrence rate
is a constant, which is an assumption that has not been carefully examined before. Not only do
we know so little about the data, our ability to handle the data is also limited due to the same
reasons that caused the bottleneck in the ChIP-chip analyses. These include lack of tools to
efficiently visualize tens of millions of reads in the ChIP-seq data (without the need to transfer
over the internet), tools to integrate ChIP-seq with ChIP-chip data, tools that seamlessly connect
the upstream analyses to downstream analyses, and tools that allow users to flexibly design
analysis pipelines to meet the needs of individual studies.



SUPPLEMENTARY METHODS
TileMapv2 — CisGenome’s internal ChIP-chip peak caller

CisGenome incorporated a new version of TileMap'” as the internal ChIP-chip peak caller.
Compared to the old version, the new TileMapv2 has incorporated several new features.

First, the old version supports only the two-sample and multiple-sample tests. In the new version,
support for one-sample test has been added. The one-sample test is needed for analyzing
NimbleGen and Agilent ChIP-chip data. Unlike the Affymetrix technology where the ChIP and
control samples are hybridized to separate arrays, the NimbleGen and Agilent technology
typically hybridize a ChIP sample and a control sample simultaneously to a single array. Each
array will produce a log ratio between the two samples. From statistical point of view, we only
have one group of data (i.e. log ratios) instead of two groups of data (i.e. IP vs. control, such as
the data in Affymetrix arrays). The one-sample test tries to detect binding regions by evaluating
whether the log ratios are significantly bigger than zero.

Second, TileMapv2 has incorporated a new option for computing FDR under the moving average
(MA) mode. The original FDR computation was based on an unbalanced mixture subtraction
method (UMS), which tends to generate very conservative FDR estimates. The new option
makes the assumption that when the distribution of the MA statistics of all probes is plotted in a
histogram, the left tail of the distribution represents the noise. To estimate FDR, one first
specifies a MA cutoff ¢ to detect peaks. All probes with a MA statistic > ¢ are selected to form
peaks. The program will then detect negative control peaks by selecting probes with a MA
statistic < -C. Let y; denote the total number of peaks, and let y, denote the total number of
negative control peaks. The FDR at the MA cutoff c is then estimated as Yy,/y;. Indeed the
program does not only compute the FDR for the user-specified cutoff ¢, but also compute the
FDR for all peaks, by applying the same approach to the MA statistic associated with each
individual peak. Under this new option, choosing a cutoff around FDR<5-10% usually optimizes
the cutoff under the E-O distance criteria defined in ref. 41. This new FDR computation is now
set as the default for the TileMap-MA and was used throughout the paper.

Third, a new option has been added to TileMapv?2 to allow users to exclude from the analysis the
outlier probes listed in the outlier section of the Affymetrix CEL files. With this option, users can
now process files generated by Microarray Blob Remover (MBR)** which is a software tool to
remove certain array artifacts.

Transcription factor binding site mapping

Both consensus sequences and position specific weight matrices can be mapped to genomes, lists
of genomic regions, or FASTA sequence files. To map consensus sequences, one can use
degenerate patterns and choose allowed number of mismatches. To map a matrix, the matrix is
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used to scan the genome. At each position, the likelihood ratio (LR) between the motif model
and a third order background Markov model is computed. Sites with LR greater than a user-
chosen cutoff are reported. Users can choose to compute the background model from the input
sequences or use pre-computed background models. In the latter case, the background models
are computed using the whole genome sequences and are allowed to vary across the genome.

De novo motif discovery

Gibbs motif sampler’ is provided for de novo motif discovery. CisModule® is provided for
novel cis-regulatory module discovery. Performance of these algorithms was discussed in their
original publications as well as in ref. 69-71. New motif discovery algorithms will be added in
future if they can improve the performance substantially.

Motif enrichment analysis based on matched genomic control regions

When applied to analyzing ChIP data, current de novo motif finders often return multiple motifs.
It is not always clear as to which motif corresponds to the key pattern directly recognized by the
transcription factor in question, since the reported motif scores (e.g., the MDSCAN?® score)
often rank the real target motif lower than the more abundant but less relevant GC-rich or highly
repeated motifs. We have previously shown that this problem can be solved by re-ranking motifs
according to their relative enrichment levels’’. The relative enrichment level of a motif is
computed as its occurrence rate in the binding regions divided by its occurrence rate in negative
genomic control regions. When the negative control regions are carefully chosen to match the
physical distribution of the binding regions, the key motif will usually stand out as the one with
the highest relative enrichment level. The use of the matched genomic controls is critical, since
the method will not work if the negative control regions are randomly chosen from the genome.
Given a genome and a list of binding regions, CisGenome provides a function to generate
matched genomic control regions using the method described in ref. 37.

Support for different species

Many CisGenome functions are species-independent (e.g., ChIP-chip/ChIP-seq peak detection
and de novo motif discovery). The others require information of a particular species (e.g., gene-
peak association and sequence retrieval). We build genome databases to support species-
dependent analyses. The databases are coded into binary formats to facilitate efficient data access
and visualization. Precompiled databases for four commonly used species including human,
mouse, Drosophila and Arabidopsis can be downloaded from the CisGenome website and are
ready to use. We routinely update these databases to support analyses on new genome assemblies.
Databases for other species will be gradually added in future. Meanwhile, users can build their
own databases for other species by applying the database construction functions provided by
CisGenome to raw data downloaded from the UCSC genome browser.



Developing language and operating systems

CisGenome is developed in ANSI C/C++. The core data analysis functions can be compiled and
run on multiple platforms including MS Windows, Linux and MacOS. The current version of
GUI and browser can only be used with MS windows.

ChlIP-seq read mapping by SeqMap

SeqMap®’ is a fast sequence mapping software. Unlike BLAT, SeqMap indexes the short
sequences rather than the genome. Given the maximal numbers of mutations, insertions and
deletions allowed, SeqMap splits the short sequences into several parts. By keeping some parts
rather than all of them to be fixed, the non-candidates can be eliminated in the very first step. All
the candidates that are left will then be collected and a local alignment algorithm will be run on
them to finally determine the matched targets. Similar algorithm has been used several times in
some paper'~ and software (ELAND by Illumina/Solexa). However, to the best of our knowledge,
SeqMap is the first to extend this algorithm for insertion/deletion detection. .

Model fitting and FDR computation in the one-sample ChlP-seq analysis

To fit the Poisson model, for each n =0, 1, 2, ..., we count how many windows have n sequence
reads and denote the counts by u,. We assume that windows with a small number of reads are
mainly background. Since Pr(n=1)/Pr(n=0) = Ao, the ratio Uj/U, provides an estimate for Ao.
Similarly, u,/u; provides an estimate for A¢/2, etc. One can take averages of Ui/Uo, 2Uo/Ug, ... tO
estimate Ao.

To fit the negative binomial model, since r1=Pr(n=1)/Pr(n=0) = o/(B+1), and r,=Pr(n=2)/Pr(n=1)
= (a+1)/[2(B+1)], we have a = r1/(2ro-r1), and B = 1/(2r,-r1)-1. We first use U1/Uo, to estimate Iy
and use Uy/U; to estimate I, then we plug in ry and r; to the formulas above to estimate o and .

With Ao, a and B estimated, we also estimate what percentage of windows are background. This
is estimated by taking the ratio between the theoretical Pr(n=0) and the observed frequency of
n=0 (One may also use (n=0)+(n=1) instead of (n=0) only).

With the fitted null model available, CisGenome then counts the number of windows that contain
n reads for each n =0, 1, 2, .... The observed number is compared with the number expected by
the null model, and the ratio between the two is reported, from which a false discovery rate can
be computed for each n. One can then choose an appropriate cutoff accordingly.

FDR computation in the two-sample ChlIP-seq analysis

Genome is divided into non-overlapping windows with length w. For each window, the number
of reads in the ChIP sample kj;, the number of reads in the negative control sample Ky and the
total read number ni= kji+ky; are counted. Using windows that contain a small number of reads
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(i.e., small n;), the expected sampling ratio between the ChIP and the negative control sample in
non-binding regions is estimated as ro=X Kii / X Kyi. It should be pointed out that this rate usually
is different from the ratio between the total number of reads in the ChIP sample and the total
number of reads in the control sample, because in the ChIP sample, a large proportion of reads
are sampled from binding regions, whereas in the control sample this is not the case.

Next, we group windows according to n;. For each group (n = 0, 1, 2, ...), the observed
distribution of kj; is compared with what is expected by Binomial(n, pe=ro/(1+ro)), and a false
discovery rate is computed accordingly.

With this information, all windows with ni>C and Kii-k»i large enough to pass the selected FDR
cutoff will be selected to form binding regions. Here, the cutoff ¢ for n; serves as an auxiliary
criterion and can be chosen based on the negative binomial model described above.

Post-processing in the ChlP-seq analysis

In most sequencing technologies (e.g., [llumina/Solexa), reads are generated from both ends of
ChIP fragments through 5’ -> 3” DNA synthesis. Therefore, when one considers reads that are
aligned to the forward strand of the genome separately from the reads that are aligned to the
reverse complement strand, one would observe two peaks separated by certain offset at each
binding location®. The forward strand peak is located on the left, and protein-DNA interaction is
sitting in between them (Supplementary Fig. 1, Fig. 2d).

In the post-processing step, we take advantage of the separation between the forward strand and
reverse strand reads to refine binding region boundaries. We first use a w bp sliding window to
scan each binding region and count forward strand and reverse strand reads separately. This will
produce two smooth curves of read counts. We then identify the modes of the two curves and use
their locations to define binding region boundaries (Fig. 2d). This boundary refinement step can
greatly improve the resolution of binding region detection. As an optional single strand filtering
step, one can further filter binding regions by repeating the exploration and peak detection step
separately for forward strand reads and reverse strand reads, and reporting a binding region only
if it contains a significant forward strand peak and a significant reverse strand peak
simultaneously. Regions that are retained after the boundary refinement and single strand
filtering are defined as high quality binding regions.
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SUPPLEMENTARY DATA
1. Evaluation of the FDR estimation method in the one-sample ChlP-seq analysis
Analysis of real data

We applied both the negative binomial and Poisson model to three real ChIP samples (NRSF*,
Oct4 (ref. 10) and Nanog') (Supplementary Table 1). The estimated FDR based on these two
models were then compared to a model-independent reference FDR. In order to obtain the
reference FDR for a particular ChIP sample, we applied the one-sample analysis to the
corresponding negative control sample with the same number of reads. The reference FDR was
computed as the (No. of predictions in the control sample / No. of predictions in the ChIP
sample). The reference FDR was independent of any parametric model assumptions. For all three
transcription factors, the Poisson model consistently underestimated the reference FDR. In
contrast, the negative binomial model provided conservative (in the case of NRSF and Oct4) or
reasonable (in the case of Nanog) FDR estimates when the FDR is in the range from 0.1 to 0.5
(Fig. 2c). When the reference FDR was small (FDR < 0.1), the negative binomial model was too
optimistic. In real applications, a comprehensive prediction list is typically obtained by using
FDR cutoffs in the range 0.1 to 0.5. A smaller FDR may serve as a stringent cutoff to pick up
high confidence predictions for experimental follow-up. However, for the purpose of selecting
candidates for experimental follow-up, the limiting factor is usually the number of candidates we
can afford to test rather than the number of statistically significant candidates. In this context,
peak ranking is the primary aim and FDR estimation becomes less relevant.

Analysis of simulated spike-in data

As indicated by Figure 2b, the empirical distribution of the window read count in negative
control samples tends to have a heavier tail than the negative binomial model fitting. As a result,
the negative binomial model tends to underestimate the FDR when the window read count is
high (Fig. 2c). This suggests that not all variations in the background can be explained by the
negative binomial model. To understand how much bias this lack-of-fit could introduce to the
FDR estimation, we performed a systematic simulation study. 18 simulated spike-in data sets
were generated by introducing varying number of peaks with varying enrichment levels into two
real negative control samples. The two real negative control samples were collected from the
NRSF study” and the embryonic stem cell study'® respectively (Supplementary Table 1,2).

To generate a simulated spike-in dataset from a real negative control sample, we first computed

np = (No. of reads in the real negative control sample / No. of non-overlapping 100bp windows

in the genome). We then randomly picked up p locations in the genome to serve as simulated

peak centers. For each peak i, we generated ni=ri*ny, reads where r; was a random number drawn

from a exponential distribution with mean r. The exponential distribution was chosen because it

roughly matched the observed distribution of IP enrichment in real ChIP samples. r was used to
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control the overall binding strength (or the IP enrichment). In the real NRSF, Oct4 and Nanog
ChIP’d samples, this average enrichment was estimated to be 692, 70 and 66 respectively
(estimated by averaging the ratios [No. of reads in the 100bp window at the peak center / No. of
reads expected in a random 100bp window] across all the peaks). After reads are generated, they
are randomly distributed around each peak center, with the distances to the peak center sampled
from a normal distribution N(u=0, 6°=225). Finally, the computer generated reads were
combined with the reads from the real negative control sample to create the spike-in data. By
setting peak number p=2000, 10000, 50000, and enrichment ratio r=20, 100, 500, nine data sets
were generated for each of the two negative control samples (Supplementary Table 2).

For each simulated dataset, we applied the one-sample analysis to find peaks and estimate the
FDR. The estimated FDR was compared with the real FDR. The results (Supplementary Fig.
3,4) show that the bias of FDR estimation is correlated with the peak number and the binding
strength. When the number of peaks was relatively small (p=2000) and the binding signal was
weak (r=20), the negative binomial model significantly underestimated the real FDR. The bias
diminished when the number of real peaks p increased or the binding signal r became stronger.
When p and r were in the range of what we observed in real data, the estimated FDR was
reasonably close to the real FDR.

Also consistent with the simulation results, when we applied the one-sample analysis to the two
real negative control samples, a small number of peaks were detected at the 10% FDR level,
even though no peaks should be expected from negative controls (Supplementary Table 3). The
false predictions are caused by the biased estimates of FDR.

Nature of the bias

To understand the nature of unexplained background variations that caused the bias in FDR
estimation, we have taken a closer look at the “peaks” detected from the negative control
samples. The peaks from the NRSF control sample covered 0.5% of the reads in the sample.
Among the reads covered by the peaks, 96.4% were aligned to repeat elements. The peaks from
the ES control sample covered 1% of the reads, among which 65.4% were aligned to repeats
(Supplementary Table 3). As a comparison, peaks detected from the real ChIP samples covered
12-18% of the reads, and among them only 13-28% were aligned to repeats. This suggests that
repeat regions contributed a significant portion of background variation that was not explained
by the negative binomial model. Artifacts in repeat regions can happen in many possible ways,
including but not limited to sequencing errors, polymorphisms, and misalignment caused by
errors in reference genome assemblies. How to incorporate these artifacts into the background
model is an interesting topic for future research.



Besides the peaks associated with repeats, there are also some peaks detected in non-repeat
elements. No firm explanations were established for the enrichment of reads in these regions
although open versus closed chromatin structure has been proposed as a potential cause.

The peaks detected from the negative control samples represent artifacts that the current one-
sample analyses are not able to control. To remove such biases, two-sample analyses are needed.
When we checked the length of the “peaks™ detected from the negative control samples, it was
found that reads covered by these peaks were clustered within 150bp in 92% of the peaks
detected from the NRSF control sample and in 80% of the peaks from the ES control sample (see
Supplementary Fig. 5a-d for some examples). The remaining peaks (which mainly came from
repeat regions) can often be decomposed into small clusters of reads, with each cluster
occupying ~100bp (Supplementary Fig. 5e). Thus, the span of these artifacts matched well with
the window size (W=100-200bp) typically used in the two-sample analyses.

Diagnosis of problematic FDR estimation

Due to the potential bias of the FDR estimation, two-sample experiments are always the
preferred design. When one-sample experiments are performed for cost consideration or other
reasons, it would be useful to have some guidelines to tell whether the data quality is good
enough so that the FDR estimates based on the negative binomial model are not problematic.
There are multiple types of information that may indicate low data quality (in terms of FDR
estimation).

First, the overall signals can be indicated by the number of reads contributing to the peaks. If the
percentage of reads that are covered by the peaks is low, it may indicate that the FDR estimation
is problematic. In the simulation study, datasets where the FDR estimation performed well all
contained more than 5% of the reads within the peak regions. In contrast, in all datasets where
peaks covered only ~1% of the reads, the FDR estimates were problematic (Supplementary
Table 2, Supplementary Fig. 3,4). When the real ChIP-seq data were analyzed, in the two
negative control samples, only <1% of the reads were covered by “peaks” detected at the 10%
FDR level. In contrast, at the same FDR level, peaks identified from the three ChIP samples
covered >10% of the ChIP reads (Supplementary Table 3). Even at the very stringent FDR
level (e.g. FDR=10"°), the detected peaks still covered >5% of the reads in the ChIP samples
(Supplementary Fig. 6).

Second, if the detected peaks are repeat-rich, it may indicate low data quality (Supplementary
Table 3).

Third, if the binding motif of the transcription factor is known, it can be used as an independent
source of information to evaluate data quality. In peaks detected from the real ChIP samples, we
often observe significant enrichment of the key motif, and the enrichment level is expected to
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clearly decrease with the peak rank (Supplementary Fig. 7). When no such pattern is observed
and motif enrichment level is low, there is indication of problematic data quality.

Based on our current knowledge, it is recommended to always use multiple criteria to evaluate
data quality when one-sample experiments are performed. When the predicted peaks cover <10%
of the reads, or >50% reads in the peaks are aligned to repeats, or no expected motif enrichment
is observed, adding a negative control sample to the experiment is recommended. CisGenome
provides a useful tool for analyzing such experiments, as the wide range of functionalities
offered by the software makes these multiple types of composite analyses accessible to the bench
biologists.

2. Examination of array-specific peaks using non-canonical NRSF motifs

The motif used in the NRSF analysis (Table 1) was the canonical NRSF motif which contained
two half sites separated by 11bp (Supplementary Fig. 9). In a previous study, Johnson et al.*
showed that many binding regions that do not contain the canonical NRSF motif may contain
non-canonical NRSF motifs. In the non-canonical motifs, the two half sites are separated by
16~20bp.

In the NRSF analysis, we have shown that only 1.23% of the array-specific peaks contained the
canonical NRSF motif. A natural question is whether the array-specific peaks are more likely to
contain non-canonical NRSF motifs and therefore do not represent false discoveries. To address
this issue, we mapped the non-canonical NRSF motifs to the binding regions (using LR>500 as
the cutoff) and summarized the results in Supplementary Table 7. Based on the results, only
0.53% (29/5,517) of the array-specific peaks that do not contain the canonical NRSF motif
contained the non-canonical NRSF motifs. As a comparison, 2.47% (176/7,114) of all array
peaks, 9.24% (128/1,385) of ChlIP-seq specific peaks, and 9.14% (145/1,587) of peaks common
to all three analyses contained the non-canonical motifs.

We further mapped the two half sites of the NRSF motif to the genome and asked whether the
half sites were enriched in array-specific binding regions (Supplementary Table 8). None of the
half sites was enriched in array-specific binding regions, but both were enriched in peaks
common to the ChIP-chip and ChIP-seq analyses, and enriched in peaks that were detected by
ChIP-seq only.

Together, these suggest that the non-canonical NRSF motifs are not enriched in array-specific
peaks. It further confirms that the array-specific peaks may represent technical noise.

3. Analysis of Oct4 and Nanog ChlP-seq data

We collected the Oct4 and Nanog ChIP-seq data from ref. 10 (Supplementary Table 1). The
experiment contains a negative control sample that was used in both the Oct4 and Nanog
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analyses. We applied both the one-sample and two-sample analyses to these two transcription
factors, and the peak detection results are shown in Supplementary Fig. 10. For Oct4, the
concordance between one-sample and two-sample analysis was 74% before post-processing.
After post-processing, the concordance increased to 96%. For Nanog, the concordance between
one-sample and two-sample analysis before post-processing was 59%. After post-processing, the
concordance increased to 83%. Saturation analysis (Supplementary Fig. 11) showed that the
Nanog data was close to saturation. Both the Oct4 and NRSF did not show saturation before the
post-processing, but the curve corresponding to peaks after post-processing started to level off.

4. Searching TRANSFAC database for matches to the novel motif

We searched TRANSFAC database (Professional 10.5) to find potential matches to the novel
motif using three different approaches.

First, we used the PATCH function provided by the TRANSFAC to search for all known binding
sites >10 bp long that match any part of the GGACTACAATTCCCAGCAA consensus with
>70% identity. The returned results contained binding sites that are recognized by transcription
factors c-Rel, NF-kappaB, p50, RelA-p65, Ncx, STAT3, PEA3, PU.1, STATS5 and STATS6.
When the sequence logos of the corresponding binding motifs were examined, no pattern was
found to match the novel motif.

Next, we collected all 525 human and mouse motif matrices from the TRANSFAC. We
generated forward and reverse complement sequence logos for all of them using CisGenome
browser and visually examined them one by one. No match to the novel motif was found.

Finally, in order to make sure that the visual examination did not miss any potential matches, we
computed Euclidian distances between the TRANSFAC motifs and the novel motif. Let LI
denote the length of the novel motif. For each TRANSFAC motif with length L2, we slid the
TRANSFAC motif along the novel motif and examined all the L1+L2-1 possible alignment
windows (e.g., if L2=20, then the alignment between position 1->1 of motif 1 and position
20->20 of motif 2, between position 1->2 of motif 1 and position 1920 of motif 2, between
position 1->3 of motif 1 and position 1820 of motif 2, etc. were examined). For each
alignment window, a Euclidian distance is computed as the square root of ZiZj(plij-pZij)2, where
Pkij is the occurrence frequency of nucleotide j at the window position i for motif k, je{A,C,G,T},
and i € [1, window length]. We repeated the same procedure on the reverse complement strand of
the TRANSFAC motif. Among all the possible alignment windows, the maximal window length
is min(L1,L2), and the minimal window length is 1. For each window length, the smallest
Euclidian distance is recorded for the TRANSFAC motif. After this computation, each
TRANSFAC motif will have several distances recorded, one for each window length. In total,
the number of distances recorded for each TRANSFAC motif is min(L1,L2). After all
TRANSFAC motifs have been processed, for each possible window length from 6 to 18, we
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identified the top 5 TRANSFAC motifs that had the smallest distances to the novel motif. We
carefully examined the corresponding sequence logos. No matches to the novel motif were found
in this analysis. We also tried to replace the Euclidian distance by Kullback-Leibler distance, i.e.,
replacing ZiZj(pyj-p2j)° by min{ZiZ; p1j *loga(Pui/Paij), Ti%j Paij *loga(P2ij/Paij)}, and again no
matches were found.

5. Functional context of the novel motif

The novel motif was discovered by analyzing human Sox2 and Nanog ChIP-chip data set on
promoter arrays. It can either represent a motif that functions specifically in the embryonic stem
cell context, or it can represent a general promoter element not directly related to the stem cell
function. To see whether it is related to general stem cell functions, we further analyzed the
whole genome ChIP-PET data for Oct4 and Nanog in mouse’. De novo motif discovery on the
mouse Oct4 and Nanog ChIP-PET binding regions did not find this motif. Further examination
showed that although the motif was enriched in human Sox2 and Nanog ChIP-chip binding
regions identified by promoter arrays, it was not enriched in mouse Oct4 and Nanog binding
regions identified by the genome-wide ChIP-PET (Supplementary Table 10), suggesting that
this motif may not have a direct role in embryonic stem cells but is more likely to be a general
promoter element. The strong evidence for the motif being functional though indicates that future
investigation of the motif in a more general context is worthwhile.

6. Comparison of ChlP-chip analysis algorithms

CisGenome uses an upgraded version of TileMap, TileMapv2, as the internal ChIP-chip peak
detection algorithm (see Supplementary Methods). We compared TileMapv2 with a number of
other ChIP-chip analysis algorithms using the recently published spike-in data*'. The benchmark
datasets contained spike-in ChIP-chip data generated by different labs and from three different
array platforms (Affymetrix, Agilent, NimbleGen).

To analyze the Affymetrix arrays, raw data were quantile normalized, and TileMapv2 was run
under the Moving Average (MA) mode. To analyze the NimbleGen and Agilent arrays, raw CyS5
and Cy3 data from all arrays within an experiment were quantile normalized. Log2(Cy5/Cy3)
ratio was computed, and TileMapv2 (MA) was then applied to the log ratios.

TileMap-MA method requires users to set a window size W. In the original TileMap paper, W=5
was recommended for analyzing Affymetrix arrays with a 35bp probe spacing. Under this setting,
information from 2*5+1=11 probes will be pooled to compute the MA statistics for the center
probe. To analyze the spike-in data on Affymetrix arrays, we adjusted the W based on the
platform-specific probe spacing. For Affymetrix Encode 2.0R arrays with a 7bp probe spacing,
W=25 (=5*35/7) was used. For Affymetrix Encode 1.0R arrays with a 22bp probe spacing, W=8
(=5*35/22) was used. The NimbleGen Encode arrays had a 38bp probe spacing, and W=5
(=5*%35/38) was used. Agilent arrays had a 100bp probe spacing, representing a much lower
13



density. If we were to use the same principle, W should be set to 2 (=5*35/100). However,
according to our previous experience on analyzing Agilent custom arrays with a 125bp spacing’*,
W=2 would not be sufficient to eliminate random noise, and setting W=3-5 would generate more
robust results. Therefore, for analyzing the Agilent arrays, W was set to 3.

In TileMapv2, probes with a MA statistic bigger than certain MA cutoff will be picked up to
form potential binding regions. For each potential binding region, a FDR will then be computed.
Users have the freedom to choose a FDR cutoff after getting the peak predictions. In the analyses
here, FDR<10% was used to define the final peak list in all spike-in data sets, consistent with the
analysis of the NRSF ChIP-chip data. The default MA cutoff is MA>3. In some analyses, these
produced fewer than 100 peaks. When this was the case, we relaxed the cutoff to MA>2.5 in
order to obtain approximately 100 peaks, so that the number of true positives (#TP), false
negatives (#FN) and false positives (#FP) among the top 100 peaks can be compared with the
other algorithms. Other than the principles described above, we did not try to optimize the
TileMap parameters.

Following the previously described procedure in Johnson et al.*!, we derived the ROC-like curve
for TileMap (Supplementary Fig. 13) and computed the area under the ROC curve (AUC)
(Supplementary Fig. 14), the E-O distance (i.e., the distance between the TileMap 10% FDR
cutoff and the optimal cutoff), as well as the number of true positives, false negatives and false
positives among the top 100 peaks (Supplementary Table 11). Compared with the other
algorithms, TileMap performed as the best or among the best in almost all cases, as indicated by
the bigger AUC (Supplementary Fig. 13,14), higher numbers of true positives and lower
numbers of false positives in the top 100 predictions (Supplementary Table 11). For example,
when analyzing the Affymetrix data, TileMap outperformed MAT in four out of the five
analyses. In the only case where MAT outperformed TileMap, all algorithms performed poorly,
which is an indication of extremely low signal-to-noise ratio. In this case, the sequence based
background correction provided by MAT may help improve the analysis by removing part of the
systematic variation in the data. Examination of the E-O distance (Supplementary Table 11)
suggests that the cutoff based on FDR<10% performed reasonably well to balance the sensitivity
and specificity when reporting the final peak lists.

7. Comparison of ChlP-seq analysis algorithms

We compared CisGenome’s internal ChIP-seq peak caller with QuEST>® and two other existing
ChIP-seq peak detection algorithms ChIP-seq Peak Finder (CPF)* and GeneTrack®’. Unlike
CisGenome, CPF and GeneTrack do not provide statistical estimates of FDR, making it difficult
to choose a cutoff. For example, when applied to the NRSF data, GeneTrack produced a list of
1,450,624 predictions. It is unlikely that all of them were true. The QuEST algorithm can provide
an estimate of FDR. However, QUEST only produces FDR for two-sample analyses, and it does
not support the one-sample analysis in which only the ChIP sample is available. Moreover, to
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estimate the FDR in the two-sample analysis, QUEST requires an extra negative control sample
that has the same number of reads as the original ChIP sample. This extra negative control
sample is required in addition to the original negative control sample. In other words, if the
original experiment involves one million ChIP reads and one million control reads, then one
needs to generate an additional one million control reads in order to be able to compute FDR. In
the FDR analysis, the second control sample will serve as a mock-ChIP, and the original control
sample will serve as the control. Since the NRSF data had about the same number of ChIP reads
and control reads, we were not able to apply the QUEST FDR estimation procedure to the NRSF
analysis. Compared to these methods, CisGenome is the only tool that can produce FDR
estimates for both one-sample analyses and two-sample analyses. In the two-sample analyses,
CisGenome does not pose any special requirement on control read numbers, since the ratio po=
ro/(1+rp) will be used as the baseline to normalize the data and evaluate signal enrichment, and
the ratio can be estimated from the data. When we were revising the paper, a new tool SISSRs’’
has become available. This tool uses a Poisson model to estimate FDR in the one-sample
analysis. In the two-sample analysis, the control sample is used to control specificity and
sensitivity of the predictions. The control of sensitivity is based on the empirical read distribution
in the negative control sample, and the control of specificity is based on empirical p-values
computed for fold changes between the ChIP’d and control sample. No FDR is provided in this
context by SISSRs.

When the top 1,500 peaks of CisGenome, QuEST, GeneTrack and CPF were compared,
predictions made by GeneTrack had a lower probability to cover the NRSF motif but a longer
peak length compared to CisGenome predictions (Supplementary Fig. 15a,b). Peaks predicted
by the CPF had a little higher probability to cover the NRSF motif, but this was because their
average peak length was >10 times longer than CisGenome predictions. QUEST and CisGenome
had about the same performance in terms of NRSF motif coverage, and they produced the
highest NRSF motif occurrence rate (i.e., no. of motif sites per kb) in the predicted peaks
(Supplementary Fig. 15c). We also compared the ChIP-seq analysis results with the ChIP-chip
analysis results obtained using MAT and TileMap. All ChIP-seq analyses produced better results
than ChIP-chip analyses.

8. More on CisGenome’s FDR estimation for ChlP-seq analysis

In this study, we investigated the basic characteristics of the ChIP-seq data and found that the
read sampling rate in the background non-binding regions is not a constant. Similar results were
obtained when analyzing multiple transcription factors, suggesting that the observation is likely
to be a general phenomenon. This basic data property has important implications in estimating
the FDR. Previous studies™™'*!
describe what is expected under no binding. In the Monte Carlo simulations, reads are randomly

either use a Poisson model or use Monte Carlo simulations to

re-distributed to the genome to characterize the expected noise level. Both approaches implicitly
assume that the background read sampling rate is a constant, which is not true as suggested by
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the current study. FDR estimates based on constant rate assumptions therefore are very likely to
underestimate the false positive rate. In order to better characterize the underlying variability of
the data, we propose to use the negative binomial model to estimate the FDR in the one-sample
analysis. Figure 2b suggests that even with the negative binomial model, one may still
underestimate the tail probabilities in the negative control sample. However, compared to the
Poisson model and the other constant rate based methods, FDR based on the negative binomial
model represents a more reasonable error rate estimation for excluding background noise. It
should be pointed out that our negative binomial method was designed for the one-sample
analysis in which the negative control sample is not available. When the negative control sample
is not available, it is difficult to perfectly characterize the underlying variability of the noise. To
the best of our knowledge, the negative binomial model here represents the best solution that we
currently have for handling this situation. On the other hand, as shown in Supplementary Data
1, the negative binomial method may seriously underestimate FDR when signals are not strong.
Therefore, users still need to take cautious when using the model. When the negative control
sample is available, FDR can be estimated without the negative binomial assumption. In this case,
CisGenome uses a conditional binomial model to estimate the FDR.

Using negative binomial as the null model may produce substantially different error rate
estimates from those based on constant rate assumptions. For example, using a Poisson
assumption, Robertson et al.” estimated that there were 41,582 STATI binding regions in IFN-—
stimulated HelLa S3 cells cells at a 0.1% FDR level. At the same FDR level, CisGenome’s one-
sample analysis only found 18,896 regions. Only at a 10% FDR level, CisGenome identified
48,523 regions.

9. Factors that may cause the observed differences between the NRSF ChlIP-chip and
ChlP-seq results

Our analysis showed that, compared to the NRSF ChIP-chip results, binding regions detected
from the NRSF ChIP-seq data had a higher resolution (i.e. shorter peak length), higher signal-to-
noise ratio (i.e. higher probability to cover the NRSF motif), and a more comprehensive genome
coverage (i.e. array-specific regions are likely to represent noise, but a significant fraction of the
ChlIP-seq specific regions still contain NRSF motifs and are likely to be real signals).

There are two potential reasons for the higher resolution observed in the ChIP-seq data. First, the
DNA fragment length in the ChIP-chip experiments are around 1kb. The long fragments are
required to hybridize to multiple probes in order to generate reliable ChIP-chip signals. On the
contrary, in the preparation of the Solexa library, a size selection step was introduced to select
DNA fragments ~150-300bp long for sequencing®. The smaller pieces of DNA are expected to
improve the resolution of binding site identification, besides increasing the colony size
uniformity and the effective read number one can obtain. If one were to put the same ChIP
sample with ~150-300bp long DNA fragments on tiling arrays, most of the signals would be
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buried among the noise, due to the small number of probes that can be covered by the ChIP
fragments (data not shown). Second, in the ChIP-seq analysis, the offset between the 5’ and 3’
reads produced a natural source of information to determine a “confidence interval” of binding
sites (i.e., the boundary refinement). Such information is not available in the ChIP-chip
experiments.

To understand what contributed to the higher signal-to-noise ratio and a relatively more
comprehensive coverage of the ChIP-seq analysis, we first analyzed the effects of read numbers.
Our current analysis of NRSF involved ~2.2 million ChIP reads and ~2.8 million control reads.
We did a simulation study in which 25%, 50% and 75% of the reads were randomly excluded
from the analysis. With decreasing read number, the number of binding regions that can be
detected by ChIP-seq also decreased (Supplementary Fig. 11). Using 25% of the original reads,
the one-sample analysis only detected 1,973 binding regions at the 10% FDR level (compared to
the 3,312 peaks detected using all reads). Among the 1,339 lost binding regions, 303 can be
found by the TileMap ChIP-chip analysis, and 25.08% of them (76/303) contained >1 NRSF
motif. This suggests that with fewer reads, ChIP-seq will start to lose sensitivity and miss true
binding regions. Therefore, the relatively comprehensive coverage of the NRSF motif observed
in the current study was at least partly due to the increased read number.

On the other hand, when only a fixed number of top peaks were compared, decreasing the read
number did not decrease the percentage of ChIP-seq peaks that cover the NRSF motif, neither
did it change the peak length and the motif occurrence rate (Supplementary Fig. 16). In other
words, the effect of reducing the read number is to miss weak peaks, but it will not introduce
additional noise to the peak predictions. As a result, the specificity of the predictions (i.e., # of
false positives / [# of false positives + # of true positives]) will not decrease when we fix the
number of total predicted peaks. This is likely due to the fact that when reads are generated, the
stronger binding regions always have a higher probability to be sampled first. Thus the effect of
increasing read number is to find weaker peaks and to increase the comprehensiveness of the
prediction, and it will not affect the intrinsic signal-to-noise ratio that the technology can achieve.
Importantly, even with the reduced number of reads, the ChIP-seq predictions were still more
likely to cover the NRSF motif than the ChIP-chip binding regions. The ChIP-seq predictions
made using reduced read number were still shorter than ChIP-chip binding regions and still had a
higher NRSF occurrence rate (i.e. # of NRSF motif per kb). The performance of the ChIP-chip
results is unlikely due to the specific algorithms used here, since in addition to TileMap, we also
applied MAT to make predictions. At the 10% FDR level, MAT generated 7,054 NRSF binding
regions (median length = 1161bp). Supplementary Fig. 16 shows that MAT and TileMap
performed similarly in the NRSF analysis, and both produced results worse than the ChIP-seq
analyses.

We next asked whether the cross-hybridization in the arrays could potentially cause the lower
specificity of the array predictions. In the array probe design, repeats were masked from the
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genome by the RepeatMasker. For this reason, we use large segmental duplications in the
genome to study the potential effect of cross-hybridization. Among the 5,517 array-specific
peaks, 547 (10.4%) had >50bp overlap with segmental duplications. As a comparison, only 2.9%
(46/1,587) of peaks common to the ChIP-chip and ChIP-seq analyses (i.e., the intersection of
ChIP-chip, one-sample and two-sample ChIP-seq analyses), and 2.2% (31/1,385) of the ChIP-
seq specific peaks (i.e., the intersection of the one-sample and two-sample ChIP-seq analyses)
contained >50bp overlap with segmental duplications. Therefore, the array-specific peaks were
more likely to cover sequences that occur more than once in the genome. This suggests that part
of the noise in the array was likely due to cross-hybridization issues.

We then explored whether the array design may affect the comprehensiveness of peak detection
results. Among the 1,385 ChIP-seq specific peaks, 153 (11.1%) were not tiled in the arrays. 143
(93.5%) out of the 153 contained repeat elements that occupied more than 50% of the peak
length. These regions were likely excluded from the array design due to repeat masking. On the
other hand, 88.9% of the ChIP-seq specific peaks were covered by the array design. We did not
find a clear reason why they were not detected as peaks by ChIP-chip.

Finally, another major factor that may affect the performance of the two technologies is the
sample preparation. Although preparation of the ChIP sample in the two experiments followed
the same protocol, a size selection step was introduced in preparing the Solexa library before
sequencing. This step is unique to ChIP-seq and was not applied to ChIP-chip. We speculate that
it may also affect the signal-to-noise ratio of the final sample to be sequenced. In order to test
this, a systematic experimental study that compares each individual sample preparation steps is
needed in future. Such a study is already beyond the scope of our current paper which mainly
aimed at addressing computational challenges of data analysis.

To summarize, the observed differences between the NRSF ChIP-chip and ChIP-seq results are
likely to be contributed by multiple factors, including but not limited to increased depth of
sequencing, cross-hybridization in the arrays, array design as well as sample preparation
procedures.

10. Potential reasons for the differences between the one-sample and two-sample ChIP-seq
analysis results

In order to see what contributed to the observed differences in the one-sample and two-sample
NRSF ChIP-seq analysis results, we focused on the high quality binding regions identified by
these analyses. Among the high-quality binding regions detected by these two analyses, 69 were
specific to the one-sample analysis, and there was no region specific to the two-sample analysis
(Fig. 3b). Among the 69 one-sample analysis specific regions, 61 (88.4%) contained repeat
elements that that occupied more than 50% of the peak length. As a comparison, only 21.3%
(88/414) of the high quality regions common to the two analyses contained the same level of
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repeats. This suggests that the one-sample analysis is more likely to pick up repeat-rich regions.
Although we only used uniquely mapped sequence reads in the analysis, there could be a chance
to misalign reads from the repeat regions to a wrong location due to SNPs, sequencing errors, or
errors in the reference genome assembly. We speculate that this may correlate with the
observation here although a further examination is needed in future to fully address this issue. In
the two-sample analysis, these repeat-rich regions were eliminated perhaps due to the same bias
exists in the negative control sample.

11. Are the observations in this study a general phenomenon?

In the NRSF analyses, ChIP-seq results are more sensitive and more specific than ChIP-chip
results. In general, whether this conclusion will continue to hold true for other transcription
factors is an important question whose definitive answer must await the availability of similar
data for a larger number of different transcription factors.

However, certain aspects of the results in this study might be general. In particular, the fact that
the background read sampling rate across the genome is not uniform may hold true for other
ChIP-seq studies. In fact, in addition to the NRSF analysis, the initial analysis of a number of
other transcription factors showed similar results.

Secondly, the fact that the ChIP-seq can provide a higher resolution (i.e., shorter peak length)
than ChIP-chip in the determination of transcription factor binding sites is unlikely to be specific
to this study. The high resolution is partly due to the size selection in the ChIP-seq protocol, and
partly due to the additional information provided by the read directionalities. Both are applicable
to future ChIP-seq studies. On the other hand, the size selection may not be applicable to ChIP-
chip where long DNA fragments are needed in order to hybridize to multiple probes to generate
reliable signals. Thus the resolution that the current ChIP-chip can achieve is limited intrinsically.

Finally, many discussions in Supplementary Data 9 may hold true for future studies of other
transcription factors, such as the potential effect of increasing read numbers and the potential
effect of cross-hybridization issues.

12. How do the observations in the current study relate to previous observations?

Our analysis suggests that the NRSF ChIP-seq analysis performed better than NRSF ChIP-chip.
In a previous study, Euskirchen et al.*® compared the ChIP-chip and ChIP-PET, and they found
that the array and sequencing based studies had comparable performance and are complementary
to each other. The inconsistency in these two studies is likely due to the differences between the
objects that are compared (e.g., ChIP-seq and ChIP-PET are two different technologies with
different sample preparation protocols). With the availability of the recently developed massively
parallel sequencing platform, our current ChIP-seq study involved 2.2 million uniquely mapped
ChIP reads, representing a increased depth of sequencing compared to the ChIP-PET data in ref.
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46 which contained ~726k paired end tags representing ~328k distinct ChIP DNA fragments.
The ChIP DNA fragments in the ChIP-PET data ranged from 0.1-6k, whereas the DNA fragment
length of the ChIP-seq data in our current study is ~150-300bp due to the size selection.
Furthermore, in our current analysis, we tried to use the read directionalities to refine peak
boundaries, and this information was not explicitly used in ref. 46. The ChIP-chip data in our
current study were produced using Affymetrix tiling arrays with 25 bp short oligonucleotides as
probes, and the ChIP-chip data in ref. 46 were produced with NimbleGen 50 bp oligonucleotide
arrays. This is another potential factor that may cause differences of the results of the two studies.

In another study by Robertson et al.’, STAT1 ChIP-chip and ChIP-seq were compared. The
authors observed that there were much more ChIP-seq peaks at the 0.1% FDR level than ChIP-
chip peaks at the 1% FDR level on the same chromosomes. However, this conclusion was based
on peaks determined using a Poisson background model, therefore the observation may be partly
due to an underestimated ChIP-seq FDR. The study did not compare the one-sample analyses
with two-sample analyses, and it did not compare the gain of using read directionalities. Both
issues are handled by our current study.

13. Discussion on different types of negative controls

The negative control sample used in the current ChIP-seq study is a nolP control (i.e., crosslink
was reversed but the immnunoprecipitation was bypassed). We do not use mock IP in the ChIP-
seq experiments, since there is so little DNA when we do a mock IP that the sequence reads are
extremely biased to only a few fragments. Sometimes, ChIP-seq experiments can be performed
using different cell types, and the cell type that lack the ChIP target may serve as the negative
control. For example, in ref. 5, the authors studied IFN-y-stimulated and unstimulated HeLa S3
cells. The unstimutated cells served as a control for detecting STAT] targets responsive to the
stimulation. However, when this type of control is used, it is typically used to detect differences
of the protein-DNA binding between cell types. It is likely that the cell type “lacking” the ChIP
targets still contain some base line level binding (e.g., STAT1 binds to a number of targets even
in the unstimulated cells). If this is the case and if the purpose of the study is to find all binding
regions as well as differential binding, then one can perform the one-sample analyses to identify
all binding regions (when the nolP control is not available), and perform the two-sample
analyses to identify differential protein-DNA binding.
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Supplementary Figure 1 ChIP-chip and ChIP-seq. Both technologies start by preparing a ChIP sample
enriched in protein bound DNAs. The ChIP sample will either be hybridized to microarrays that contain
probes interrogating the whole genome (ChIP-chip), or be sequenced from both ends to generate millions
of short reads using ultra high throughput sequencing (ChIP-seq). To eliminate unknown bias that may
arise during sample preparation, hybridization or sequencing procedures, people often also include one or
more control samples (e.g., Input or mock IP) in the experiments.
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Supplementary Figure 2 ChIP-chip analysis using CisGenome.
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Supplementary Figure 2 ChIP-chip analysis using CisGenome (cont.).
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Supplementary Figure 2 ChIP-chip analysis using CisGenome (cont.).
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Supplementary Figure 2 ChIP-chip analysis using CisGenome (cont.).
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Supplementary Figure 3 Evaluation of the one-sample FDR estimates in the simulated spike-in

experiments using NRSF negative control as background. ‘p’: peak number; ‘r’: average IP/control read
enrichment ratio.
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Supplementary Figure 4 Evaluation of the one-sample FDR estimates in the simulated spike-in

experiments using ES negative control as background. ‘p’: peak number; ‘r’: average IP/control read
enrichment ratio.

29

Nature Biotechnology: doi:10.1038/nbt.1505



94896950 94887050 100577250 100577300 100577350
1 1 1 1 L 1 1
5] = 2 2
FIChIP_Forward ! LG e Di L h
od T Fo
7 L e [F1ChIP_Reverse Zj Il' : £2
[ ChIP_Reverse | ° °
od ankll Eo
[ Control_Forward 2 ]M 2
E = o ' 0
[F Control_Forward Ll h
0 . ' Fo 2 2
[C] Confrol_Reverse
L - W &
[ Control_Reverse 3 | £
= o4 Wil Eo >VPS13B
[l Gene >VPS13B
|:| Gene >VPS13B
T T T T
94896950 84897050 1005]"?250 1UU§?I?3UU 1005?‘?350
c d
32424500 32424600 32424700 191095760 121096800
1 L
10 1o 10 Fto
[CIChIP_Forward o 'J Ll Lo [CIChiP_Forward o (¥ | Lo
109 10 10 - 10
[FICHP_Reverse N 1. . L, [IChIP_Reverse ol [T Lo
104 10 10 F10
<l . — i LlEm e [Fei I o Uelac b Lo
10 |0 10 Lo
[Tl Control_Reverse o ]. FEETYRR i [C] Control_Reverse o . h‘II_LHIh .
[F1Gene [F1Gene
T T T T T T
32424500 32424600 32424700 121096760 121096800
e
98467200 98467400 98467600 98467300 958468000 958468200
| | | | | |
[[] Control_Forward 100 y “ 100
- o4 . P — - —— — "L —_ [ . o
200 200
[C1Control_Reverse e i J &l “ -
- o4 ke e = - — | —_ . Lo
504 50
FOct4_Forward 03 k.. o= L i he Bl — " . F o
[[1Oct4_Reverse 2007 | J n [200
04 —— a = - —_ —et —_ . Co
Nanog_Forward 100 “ 100
o 9- o4 TP I Ll b | —_— Ll L Lo
Nano J
ONanog Reverse | _ | 4 _ . —— d L,
[[1Gene
T T T T T T T T T T T
98467200 98467400 98457600 98467800 98458000 98468200

Supplementary Figure 5 Examples of sequencing artifacts detected by the one-sample ChIP-seq analysis.
Raw read alignments are shown in the figure. Most artifacts detected in the negative control samples

occur within 100-150 bp windows, and they are correlated with artifacts in the corresponding ChIP
samples.
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Supplementary Figure 6 Percentage of reads covered by peaks at different FDR cutoffs in the one-
sample analysis.
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Supplementary Figure 7 Motif enrichment in binding regions predicted by the one-sample analysis. The
method to compute enrichment is described in Supplementary Methods.
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Supplementary Figure 8 De novo motif discovery results for NRSF ChIP-seq data.
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Supplementary Figure 9 Canonical and non-canonical NRSF motifs.
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a b

Qct4 Octd (B+S)
Sequencing (ChIP only)  Sequencing (ChIP+Control) Sequencing (ChIP only)  Sequencing (ChlP+Control)
c d

Nanog Nanog (B+S)

Sequencing (ChIP only)  Sequencing (ChIP+Control) Sequencing (ChIP only)  Sequencing (ChIP+Control)

11846

Supplementary Figure 10 Peak detection results for Oct4 and Nanog ChIP-seq data. Left: before post-
processing. Right: after post-processing.
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Supplementary Figure 11 Number of peaks detected at different sequencing depths. Numbers of peaks
before and after post-processing are shown for both the one-sample and two-sample analyses.
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Supplementary Figure 12 Analysis of the novel motif using CisGenome (cont.).
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Supplementary Figure 13 ROC-like curve for TileMap. ROC-like curve for unamplified spike-in data (a)

Called false positives/total number of true positives

and amplified spike-in data (b). The plots in the left column correspond to the TileMap results, and the

plots in the right column are the original Fig 2c,d from ref. 41
performance of all other algorithms. The analysis codes (e.g.,
Supplementary Figure 14. The dashed vertical line represents
positive predictions is equal to 5% of the total number of true
error bars represent the two-sided 95% confidence interval of
ratio (X-axis).
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UN 2 TileMap 4 13.0
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o 2 Permu 4 13.0
P 2 Splitter 4 13.0
Q 2 TAMALs 4 13.0
R 2 MA2C 4 13.0
S 2 TileScope 4 13.0
T 2 ACME 4 13.0
UX 5 TileMap 3 10.0
X 3 Splitter 3 10.0
Y 5 Wavelet 3 10.0
Z 3 TileScope 3 10.0

Supplementary Figure 14 Areas under the ROC curve (AUC) of different ChIP-chip peak detection
algorithms. The bigger the AUC, the better an algorithm performs. References for the tools are TileMap'?,
MAT“, TAS" , TIMAT (http://sourceforge.net/projects/timat2), Splitter (http://zlab.bu.edu/splitter), WA
(see ref. 41 for a description), MA2C*, ADM-1 (http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
get.cgi/2007/PHD/PHD-2007-05.pdf), TAMAL®, Permu”, TileScope*', ACME'", Wavelet (A. Karpikov
and M. Gerstein, unpubl.). TileMap analysis results are indexed by two letter codes UA, UB, UC, UF,
UG, UJ, UN, UX, da, dc, de and dh. Analysis results of the other algorithms are indexed by one letter
codes consistent with the original codes in ref. 41.
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Supplementary Figure 15 Performance of ChIP-seq peak detection algorithms. CisGenome was run
under four modes (i.e., ChIP only with boundary refinement, ChIP only with boundary refinement and
single strand filtering, ChIP+control with boundary refinement, and ChIP+control with boundary
refinement and single strand filtering). (a) Percentage of peaks that contain >1 NRSF motif site. The top
1,500 predictions of each algorithm were grouped into ten tiers. The percentage was computed for each
tier. (b) Log2(Peak Length) of the predictions made by different algorithms. (¢) NRSF motif occurrence
rates in the predicted peaks. QUEST only reports a single coordinate for each peak and does not provide
boundary estimates. Thus the peak length for QUEST predictions cannot be computed and was not
compared here. For determining NRSF motif coverage and motif occurrence rate, the single QUEST
coordinate for each peak has been extended 40bp towards both ends. 40bp represents a slightly longer
half fragment length than the half peak length of the CisGenome peaks.
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Supplementary Figure 16 Effects of read number on motif coverage and peak length. (a) CisGenome
one-sample and two-sample ChIP-seq analyses on 25% of the original reads were compared with TileMap
and MAT ChIP-chip analyses. From the left to right, the three plots show the percentage of peaks that
contain the NRSF motif, the motif occurrence rate and the log2(peak length). Peaks were ranked and
grouped into tiers of size 100. Each tier was analyzed separately. (b) Comparison of ChIP-chip peak
detection with CisGenome one-sample ChIP-seq analysis (with boundary refinement but without single
strand filtering) when 25%, 50%, 75% and 100% of the original reads were analyzed. The original ChIP
read number is 2.24M. (c) Comparison of ChIP-chip peak detection with CisGenome two-sample ChIP-
seq analysis (with boundary refinement but without single strand filtering) when 25%, 50%, 75% and
100% of the original reads were analyzed. The original ChIP (control) read number is 2.24M (2.78M).
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Supplementary Figure 17 Correlation of read sampling rates between the ChIP and control samples.
Genome has been divided into 1Mb (a), 100kb (b) and 100bp (c,d) non-overlapping windows. For each
window, the number of reads in the NRSF ChIP sample and the number of reads in the control sample
were counted and plotted against each other. Each dot represents a window. (d) is a zoom-in version of (c).
The dotted line represents the expected ChIP/control read ratio ry in the background regions. ryis
dependent on the total number of ChIP reads and the total number of control reads. It was derived
according to Supplementary Methods. In each plot, there are two types of windows, i.e. windows that
contain real binding regions (ChIP reads in these windows are significantly enriched) and windows that

do not contain real binding regions (i.e., background windows). For background windows, there was a

clear correlation between the ChIP read number and the control read number. In fact, in (c¢) and (d), when
windows with >10 ChIP reads and at the same time <5 control reads were excluded (these are windows in
the upper left part of (¢) and (d) which mainly represent real binding signals), the correlation coefficient
between the ChIP and control reads for the remaining windows (which mainly represent background) was
0.10 (99% confidence interval = [0.098,0.102] based on Fisher’s z transformation), which is significantly
greater than 0.
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Supplementary Table 1. Real datasets used in the analyses

Name Type Species Read number  Source
(million)

NRSF-Tiling ChIP-chip Human NA GEO: GSE8489
NRSF-ChIP ChIP-seq Human 2.24 Johnson et al.*
NRSF-control ~ ChIP-seq Human 2.78 Johnson et al.*
Oct4-ChIP ChIP-seq Mouse 4.71 Marson et al. '
Nanog-ChIP ChIP-seq Mouse 8.72 Marson et al. '
ES-control ChIP-seq Mouse 6.96 Marson et al. '

Note: Reads were aligned to hgl7 and mm8 respectively. Only uniquely mapped reads were counted.

Supplementary Table 2. Summary of simulated datasets for evaluating ChlP-seq FDR estimation

Enrichment ratio r

Peak numberp | 20 100 500
(NRSF-control)
2000 0.21% (2.78) 1.26% (2.81) 5.97% (2.95)

10000
50000
(ES-control)
2000

10000
50000

1.10% (2.81)
5.30% (2.93)

0.28% (6.98)
1.42% (7.07)
6.72% (1.47)

5.89% (2.95)
23.94% (3.65)

1.45% (7.07)
6.98% (7.49)
27.24% (9.57)

24.03% (3.66)
61.35% (7.19)

7.00% (7.49)
27.63% (9.62)
65.37% (20.11)

Note: 18 datasets were generated. For each dataset, the percentage of reads covered by the peaks detected at the 10%
FDR level is shown. The total number of reads (i.e., negative control reads + simulated reads, in the unit of million)
in the datasets are shown in the brackets.

Supplementary Table 3. Summary of one-sample ChlP-seq peak detection results in different

datasets

Data No. of predicted No. of non- Percentage of % of reads % of covered
peaks repeat peaks' peaks that are covered by reads that are
(FDR<O0.1, after repeats’ peaks repeats
post-processing)

NRSF-ChIP 1861 1604 13.8% 12% 13.2%

Oct4-ChIP 11780 8487 27.9% 18% 26.5%

Nanog-ChIP 12840 9594 25.3% 13% 27.4%

NRSF-control 149 16 89.3% 0.5% 96.4%

ES-control 244 110 54.9% 1% 65.4%

Note:

1. Non-repeat peaks are peaks in which <50% of base pairs overlap with repeats.
2. Repeat peaks are peaks in which >50% of base pairs overlap with repeats
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Supplementary Table 4. Relative enrichment levels for motifs discovered in NRSF ChlP-seq data

LR>500 LR>500, CS>top10%

Motif 1'113/112}3 Illc/nzc I Il3B/Il43 Il3c/Il4C I'z/r3

1 1041/827813 3644/3408619 1.18 183/195985 731/763198 0.97/1.03

2 1612/822967 129/3401641  51.65 870/196462 40/765944  84.80/89.90
NRSF

3 7250/825389 27818/3405132 1.08 3815/196197  13650/764539 1.09/1.15

4 291/825389 1482/3405132 0.81 48/196197 249/764539 0.75/0.80

5 696/822967 4358/3401641 0.66 96/196462 682/765944 0.55/0.58

6 2242/825389 8426/3405132 1.10 819/196197 2930/764539 1.09/1.15

7 1655/822967 5607/3401641 1.22 741/196462 2383/765944 1.21/1.29

8 370/825389 1695/3405132 0.90 95/196197 382/764539 0.97/1.03

9 428/820540 3555/3398152 0.50 66/196612 585/767392 0.44/0.47

10 604/830238 2715/3412109 0.91 126/195756 549/761891 0.89/0.94

Note: Motif ID in column 1 corresponds to the motif ID displayed in Supplementary Figure 8. LR=likelihood ratio
between the motif model and a 3™ order background Markov model. n;g = # of motif sites in binding regions; nyp =
total length of non-repeat base pairs in binding regions; n;c = # of motif sites in matched genomic control regions;
n,c = total length of non-repeat base pairs in matched genomic control regions. r; = (n;p/nyp)/(n;c/nyc) is the relative
enrichment level of the motif. n3, (k = B or C) is the number of phylogenetically conserved motif sites in binding or
control regions. ny is the total length of phylogenetically conserved non-repeat base pairs in binding or control
regions. 1, = (n3p/Nyp)/(N3c/Nyc). 13=(n3p/nyp)/(n3c/nyc). “Phylogenetically conserved” means that the corresponding
phastCons score is within top 10% of the genome. Rationale for using 1y, r, and r; to characterize relative enrichment
levels is discussed in ref. 37.

Supplementary Table 5. A CisGenome summary of locations of NRSF binding regions

Data Total Inter- Intra- Exon Intron CDS UTR 5’UTR 3°UTR TSS TES
(%) genic genic uplk  downlk
Seq S1 100 62.32 37.68 7.31 3068 3.11 423 3.56 0.66 9.15 1.48
Seq S2 100 59.78 40.22 8.62 3196 359 510 431 0.78 10.85 1.66
Seq_S1(B+S) 100 61.36 38.64 5.80 33.10 2.69 3.12 231 0.81 5.05 1.45
Seq S2(B+S) 100 60.09 39.91 5.85 3428 284 301 217 0.84 5.30 1.51
Array 100 61.45 38.55 334 3549 190 145 043 1.02 2.12 1.16
Random 100 66.03 33.98 178 3229 1.03 0.78 0.13 0.65 0.68 0.64

Supplementary Table 6. NRSF motif coverage in the human genome by different datasets

# of motif sites # of motif sites

(LR>500) covered by peak

Tiling array 10333 1083 (10.48%)

Seq Sl 10333 1351 (13.07%)

Seq S2 10333 1354 (13.10%)

Seq_S1 (B+S) 10333 1095 (10.60%)

Seq S2 (B+S) 10333 1085 (10.50%)
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Supplementary Table 7. Coverage of non-canonical NRSF motifs by different datasets

Dataset No. of  Peak with the Peak with Percentage of peaks
peaks canonical non- w/o the canonical
NRSF motif' canonical motif that contain
NRSF non-canonical motifs®
motifs’
Affymetrix 7114 1001 (14.1%) 176 (2.47%) 2.9% (176/6113)
S1w100 3312 1277 (38.6%) 293 (8.85%) 14.4% (293/2035)
S1w100 (B) 3312 1223 (36.9%) 282 (8.51%) 13.5% (282/2089)
S1w100 (B+S) 1861 1051 (56.5%) 208 (11.2%) 25.7% (208/810)
S2w100 3317 1280 (38.6%) 294 (8.86%) 14.4% (294/2037)
S2w100 (B) 3317 1211 (35.5%) 281 (8.47%) 13.3% (281/2106)
S2w100 (B+S) 1794 1041 (58.0%) 208 (11.6%) 27.6% (208/753)
All three” 1587 933 (58.8%) 145 (9.14%) 22.2% (145/654)
Affy only’ 5517 68 (1.23%) 29 (0.53%) 0.53% (29/5449)
S1&S2 only® 1385 290 (20.9%) 128 (9.24%) 11.7% (128/1095)

Note:

1. No. of peaks with the canonical NRSF motif (percentage of peaks that contain the canonical motif);

2. No. of peaks without the canonical NRSF motif but containing the non-canonical NRSF motifs (percentage of
peaks that do not contain the canonical NRSF motif but contain the non-canonical motifs);

3. Percentage = (No. of peaks without the canonical NRSF motif but containing the non-canonical NRSF motifs /
No. of peaks without the canonical NRSF motif).
4. Peaks detected by all three analyses (i.e., the intersection among the ChIP-chip, one-sample and two-sample
ChIP-seq analyses). Here, ChIP-seq peaks before applying the boundary refinement and single strand filtering were

used.

5. Peaks detected only in ChIP-chip.
6. Peaks detected in both the one-sample and two-sample ChIP-seq analyses but not in ChIP-chip.

Nature Biotechnology: doi:10.1038/nbt.1505
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Supplementary Table 8. Enrichment of NRSF half motifs in different datasets

Motif LR>500 LR>500, CS>top10% of the genome
n;p/Myp 0y c/Myc I N3p/Mup N30/Myc /13

Affy only
NRSF1! 545/3178732 574/3737215 1.12 120/564563 137/751258 1.17/1.03
NRSF2®  330/3173766 401/3733385 0.97 99/564295 132/751923 1.00/0.88

All three

NRSF1  1317/2839694 574/3737215 3.02  642/583150 137/751258 6.04/6.17

NRSF2  1059/2838216 401/3733385 347  505/584054 132/751923 4.93/5.03
S1&S2 only

NRSF1 361/227312 574/3737215 10.34 180/60818 137/751258  16.23/21.60

NRSF2 472/226235 401/3733385 19.42 197/60790 132/751923  18.46/24.63
Note:
1. NRSF1 = The first half of the NRSF motif (Supplementary Fig. 9);
2. NRSF2 = The second half of the NRSF motif (Supplementary Fig. 9).
LR=likelihood ratio between the motif model and a 3 order background Markov model. n;g = # of motif sites in
binding regions; n,g = total length of non-repeat base pairs in binding regions; n;c = # of motif sites in matched
genomic control regions; nyc = total length of non-repeat base pairs in matched genomic control regions. 1, =
(n;p/myp)/(nc/Myc) is the relative enrichment level of the motif. n3 (k = B or C) is the number of phylogenetically
conserved motif sites in binding or control regions. ny is the total length of phylogenetically conserved non-repeat
base pairs in binding or control regions. r, = (n3p/nyp)/(n3c/N4c). 13=(n3p/Myp)/(N3¢/Nyc). “Phylogenetically conserved”
means that the corresponding phastCons score is within top 10% of the genome. Rationale for using 1y, 1, and r; to
characterize relative enrichment levels is discussed in ref. 37.
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Supplementary Table 9. Basic summary statistics of the novel motif

Summary Human (hgl7) Mouse (mm7)

Conserved non-repeat bp 239652139/1466729425=16.3% 184300142/1457016361=12.7%
in genome / total non-

repeat bp in genome

Conserved sites / total sites 4543/17740 =25.6% 3235/17940 =18.0%
Clustered sites that are 934/ 1674 =55.8% 647/ 1265 =51.2%
conserved / clustered sites

Note: “Conserved” means that the corresponding phastCons score is within top 10% of the genome. Two motif sites
are defined to be “clustered” if they are separated by < 500 bp. In CisGenome one can change the cutoff to define
conservation and clustering.

Supplementary Table 10. Enrichment of the novel motif in different datasets

LR>500 LR>500, CS>top10% of the genome
Dataset 1’11]3/1’12]3 nlc/nzc I 1’13B/1'14B l’l3c/l'l4c I'2/I'3
Sox2-human- 152/307344  1738/6089803  1.73 73/102869  653/1557900 1.69/2.22

promoter array

Nanog-human- 174/484667  1296/6456504  1.79 80/157096  515/1640948 1.62/2.07
promoter array

Oct4- mouse- 141/1073118 759/6477817  1.12  42/220674  180/1118222 1.18/1.41
genome-wide
ChIP-PET

Nanog-mouse- 90/737726 625/5774175 1.13  27/143248 157/967126 1.16/1.35
genome-wide
ChIP-PET

Note: see Supplementary Table 4 for meanings of each column.
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Supplementary Table 11. Performance of ChlP-chip peak detection algorithms

Sample'  Analysis” AUC’ E-O #Top sites #TP>  #FN° #FP°
distance’
UnAmp  Affymetrix_Struhl 6 TileMap 0.63 0 92 71 29 21
UnAmp  Affymetrix_Struhl 6 MAT 0.59 0 100 66 34 34
UnAmp  Affymetrix_Struhl 6 TAS 044  -15 93 64 36 29
UnAmp  Affymetrix Struhl Gingeras 3 TileMap 0.55 7 100 62 38 38
UnAmp  Affymetrix_Struhl Gingeras 3 MAT 0.54 -7 100 62 38 38
UnAmp  Affymetrix_Struhl Gingeras 3 TiMAT 0.51 -15 98 60 40 38
UnAmp  Affymetrix_Struhl DFCI 3 TileMap 0.62 -9 100 67 33 33
UnAmp  Affymetrix_Struhl DFCI 3 MAT 054 -3 100 62 38 38
UnAmp  Agilent Myers WI 5 TileMap 0.68 26 100 81 19 19
UnAmp  Agilent Myers WI 5 WA 0.45 -15 100 52 48 48
UnAmp  Agilent Myers 3 TileMap 059 24 100 68 32 32
UnAmp  Agilent Myers 3 Splitter 040 42 98 52 48 46
UnAmp  Agilent Myers 3 WA 0.36 -10 100 40 60 60
UnAmp  Agilent Myers 3 MA2C 0.33 44 92 43 57 49
UnAmp  Agilent WI 2 TileMap 0.80 4 99 86 14 13
UnAmp  Agilent WI 2 Splitter 0.64 23 100 77 23 23
UnAmp  Agilent WI 2 WA 0.64 6 100 79 21 21
UnAmp  Agilent WI 2 MA2C 059 27 100 75 25 25
UnAmp  Agilent WI 2 ADM-1 049  -57 86 73 27 13
UnAmp  NimbleGen Green 4 TileMap 0.79 8 100 90 10 10
UnAmp  NimbleGen Green 4 TAMALPAISgenerous 0.71 13 100 83 17 17
UnAmp  NimbleGen Green 4 Permutation 0.66 3 88 77 23 11
UnAmp  NimbleGen Green 4 Splitter 0.64 4 97 86 14 11
UnAmp  NimbleGen Green 4 TAMALPAISstrict 0.56 1 61 57 43 4
UnAmp  NimbleGen Green 4 MA2C 054 21 100 83 17 17
UnAmp  NimbleGen Green 4 TileScope 0.53 10 100 86 14 14
UnAmp  NimbleGen Green 4 ACME 036 53 100 78 22 22
UnAmp  NimbleGen Snyder 3 TileMap 0.76 0 100 79 21 21
UnAmp  NimbleGen Snyder 3 Splitter 0.69 19 100 80 20 20
UnAmp  NimbleGen Snyder 3 Wavelet 0.55 0 66 62 38 4
UnAmp  NimbleGen Snyder 3 TileScope 0.52 -8 89 77 23 12
Amp Affymetrix Brown LM 3 TileMap 0.45 3 62 51 47 11
Amp Affymetrix Brown LM 3 MAT 042  -10 61 46 52 15
Amp Affymetrix Brown LM 3 Splitter 0.27 0 44 35 63 9
Amp Affymetrix_Struhl RP 3 MAT 0.16 0 98 29 69 69
Amp Affymetrix_Struhl RP 3 TileMap 0.13 20 98 26 72 72
Amp Affymetrix_Struhl RP 3 TiMAT 0.12 37 98 20 78 78
Amp Agilent WI LM 2 ADM-1 056  -59 66 59 39 7
Amp Agilent WI LM 2 TileMap 0.52 -18 98 65 33 33
Amp Agilent WI LM 2 WA 0.44 11 98 61 37 37
Amp Agilent WI LM 2 MA2C 035 34 98 50 48 48
Amp NimbleGen Farnham WGA 3 0.62 -1 98 76 22 22
_TAMALPAISgenerous
Amp NimbleGen Farnham WGA 3 TileMap 0.62 18 98 85 13 13
Amp NimbleGen Farnham WGA 3 MA2C 057 9 98 81 17 17
Amp NimbleGen Farnham WGA 3 TileScope 0.57 -5 95 82 16 13
Amp NimbleGen_Farnham WGA_3_Splitter 0.52 8 98 87 11 11
Amp NimbleGen Farnham WGA 3 Permu 0.45 1 73 65 33 8
Amp NimbleGen Farnham WGA 3 0.4 0 44 41 57 3
_TAMALPAISstrict
Amp NimbleGen Farnham WGA 3 ACME 0.33 63 98 74 24 24
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Note:

TileMap results were obtained by applying CisGenome to the spike-in data. Results for other algorithms were
provided by ref. 41.

1. Sample: “UmAmp” means undiluted spike-in sample; “Amp” means diluted spike-in sample.

2. Analysis: undiluted data sets are labeled by [Array platform] [Lab generating the data] [Number of

replicates |_[Algorithm] ; diluted data sets are labeled by [Array platform] [Lab generating the data] [Amplification
protocol] [Number of replicates ] [Algorithm].

3. AUC = Area under the ROC-like curve. A bigger AUC represents a better overall performance of the algorithm.
4. E-O distance = Distance between the chosen cutoff and the optimal cutoff. A negative distance represents a
conservative cutoff, and a positive distance represents a loose cutoff.

5. #TP, #FN, #FP = Number of true positives, false negatives and false positives for the top sites.
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Supplementary Table 12. A comparison of representative software tools for ChlP data analyses

ChIP
-chip

Evaluation
of

seq

statistical peak

significanc

e for ChIP-  ion
chip peaks

ChIP-  Evaluation  Evaluation

of FDR for  of FDR for
one-sample  two-sample

detect  ChIP-seq ChIP-seq

Peak-
gene

associati

on

Statistical
summary of
location/
conservation

Large-
scale

De novo
motif

genomic discover
sequence y
manipulati

on

CisGenome
TAS"
MAT!
Tilescope®
CPF*
GeneTrack  +
29

QuEST*
SISSRs®!
MEME®
MDScan®
CEAS™
Galaxy™®
SignalMap* +
IGB**
ucsc®
Ensemb
WebLogo*

134

+

+ o+ o+

+

+

+

Mapping

motif to

user-

specified
genomic

regions

Motif
enrich-
ment
analysis
based on
matched
controls

Genomic Motif
region and visualization
signal

visualization

GUI

Stand-
alone &
run
locally

Web-
based

Allow
customization
for addressing
different
questions

CisGenome +
TAS

MAT
Tilescope
CPF
GeneTrack
QuEST
SISSRs
MEME
MDScan
CEAS
Galaxy
SignalMap
IGB
UCSC
Ensembl
WebLogo

+

+ o+ o+

e e e

+ +

o+t

+

++ + +

+

Notes:

* developed by NimbleGen; ** developed by Affymetrix.
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According to the original publication, GeneTrack can be used to handle ChIP-chip data. However, similar to its
ChIP-seq analysis function, the software does not provide error rate estimates for the ChIP-chip analysis. Moreover,
in the original publication, no example was provided to illustrate this ability, and no rigorous tests and systematic
evaluation have been presented for the ChIP-chip analysis function. Therefore it remains unclear how its ChIP-chip
analysis function performs compared to the other existing ChIP-chip analysis algorithms.

“Stand-alone and run locally” means that the major analysis and visualization functions provided by the tool are
self-contained and can be used without the need to transfer data over the internet during the analysis procedure. For
example, Galaxy can be installed and run locally, but it uses the UCSC genome browser to display the genomic data
which requires transferring the data over the internet, therefore it is not a fully stand-alone software tool in the
context of ChIP-chip/ChIP-seq data analysis/visualization.

The comparisons show that CisGenome covers a broad spectrum of functionalities. Only representative software
tools were listed here. For example, there are many other ChIP-chip peak detection methods that are compared in
Supplementary Data 6 but not listed here. Similar to TAS, MAT and Tilescope, they typically only handle ChIP-
chip data and do not support ChIP-seq analysis as well as downstream sequence/annotation/motif analyses. Also, for
de novo motif analyses, there are dozens of other tools reviewed and compared in ref. 69-71. In general, they have
the same limitations as MEME and MDSCAN that are listed here.
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Supplementary Table 13. Correlation of NRSF ChlIP and control read number in 100bp windows

ChIP read Percentage of
windows with >1
=0 >1 ChIP read
Control read =0 2770 M 0.14M 4.8%
>1 022 M 0.02M 10.1%
Percentage of windows with >1 7.4% 14.9%
control read

Note: number of windows in each category is shown in the unit of million. Chi-square test for correlation yields p-
value<le-10. For windows with 0 control read, 4.8% contain >1 ChIP read. For windows with >1 control read,
10.1% contain >1 ChIP read. Thus, windows that are more likely to contain control reads are also more likely to
contain reads in the ChIP sample. This is an analysis complementary to Supplementary Fig. 17¢,d. When window
size is small, the estimate of read occurrence rate in a window is unstable, and most genomic windows contain no
read. Therefore, instead of comparing the read occurrence rate directly (as in Supplementary Fig. 17¢,d), the table
here compares whether a window that contains control reads are more likely to contain ChIP reads. Together with
Supplementary Fig. 17¢,d and Supplementary Fig. 5, the results suggest that the background sampling rate of the
control sample and the background sampling rate of the ChIP sample at the same loci are correlated at the resolution
(w=100-200bp) usually used in the two-sample analyses.
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Supplementary Table 14. Length distribution of NRSF ChlP-seq binding regions detected using
different window size W

Analysis criteria No. of NRSF Percentiles of region length (bp)
motif/1kb 10 25 50 75 90
S1w25 3.1606 30 40 56 137 232
S1w50 1.9598 60 86 149 286 448
S1w100 1.2615 122 173 269 444 598
S1w200 0.6217 231 298 403 595 793
S1w25 (B) 6.8840 29 29 31 50 80
S1w50 (B) 6.6882 29 30 42 71 96
S1w100 (B) 5.5388 29 30 60 82 113
S1W200 (B) 2.4235 29 36 96 146 183
S1w25 (B+S) 10.9443 30 40 60 82 103
S1w50 (B+S) 8.6670 30 48 66 87 112
S1w100 (B+S) 6.9799 41 59 73 90 122
S1w200 (B+S) 3.8031 80 111 138 161 184
S2w25 3.3049 29 40 63 144 236
S2w50 2.0469 59 85 152 294 450
S2w100 1.2770 116 161 261 445 604
S2w200 0.7065 227 293 423 605 794
S2w25 (B) 7.4139 29 29 33 51 81
S2w50 (B) 7.2134 29 30 43 70 95
S2w100 (B) 5.5268 29 30 59 85 119
S2w200 (B) 2.4832 29 36 101 156 215
S2w25 (B+S) 11.3630 30 41 60 81 101
S2w50 (B+S) 9.3410 31 48 65 86 109
S2w100 (B+S) 7.3109 40 57 73 94 125
S2w200 (B+S) 3.8733 59 100 137 166 199

Note: S1 = one-sample analysis; S2 = two-sample analysis; B = boundary refinement; S = single strand filtering;
w100 means window size w = 100 bp.

57

Nature Biotechnology: doi:10.1038/nbt.1505



Supplementary Table 15. Motif coverage of NRSF ChlP-seq binding regions detected using

different window size W

Sample W Cutoff' Initial regions’ Refine boundary (B) Boudary+Strand (B+S)
S1 25 7 3581 (1105, 30.9%) 3581 (1067, 29.8%) 1177 (804, 68.3%)
S1 50 7 3240 (1212, 37.4%) 3240 (1163, 35.9%) 1564 (956, 61.1%)
S1 100 8 3312 (1277, 38.6%) 3312 (1223, 36.9%) 1861 (1051, 56.5%)
S1 200 8 4961 (1385, 27.9%) 4961 (1294, 26.1%) 2003 (1092, 54.5%)
S2 25 7 3310 (1105, 33.4%) 3310 (1071, 32.4%) 1157 (804, 69.5%)
S2 50 7 3046 (1212, 39.8%) 3046 (1162, 38.2%) 1507 (954, 63.3%)
S2 100 8 3317 (1280, 38.6%) 3317 (1211, 35.5%) 1794 (1041, 58.0%)
S2 200 9 4264 (1351, 31.7%) 4264 (1202, 28.2%) 1940 (1028, 53.0%)

Note: 1. Cutoff n is the minimal number of reads required to declare a window to be significant. It was chosen to
control FDR<10%. 2. For each analysis the number of binding regions x;, the number of regions that contain > 1
NRSF motif x,, and the percentage y=x,/X; are reported in the format x; (X, y).
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