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Gene set enrichment analysis made simple
Rafael A Irizarry Department of Biostatistics, Johns Hopkins School of Public Health, 615 N.
Wolfe St. E3620, Baltimore, MD 21205, USA, Chi Wang Statistics Department, University of
California, Riverside, 900 University Avenue, 2626 Statistics Computer Bldg. Riverside, CA
92521-0122, USA, Yun Zhou Gilead Sciences, Inc. 333 Lakeside Dr., Foster City, CA 94404,
USA and Terence P Speed Department of Statistics, 367 Evans Hall, #3860, University of
California, Berkeley, CA 94720-3860, USA

Among the many applications of microarray technology, one of the most popular is the identification of genes
that are differentially expressed in two conditions. A common statistical approach is to quantify the interest
of each gene with a p-value, adjust these p-values for multiple comparisons, choose an appropriate cut-off,
and create a list of candidate genes. This approach has been criticised for ignoring biological knowledge
regarding how genes work together. Recently a series of methods, that do incorporate biological knowledge,
have been proposed. However, the most popular method, gene set enrichment analysis (GSEA), seems overly
complicated. Furthermore, GSEA is based on a statistical test known for its lack of sensitivity. In this article
we compare the performance of a simple alternative to GSEA. We find that this simple solution clearly
outperforms GSEA. We demonstrate this with eight different microarray datasets.

1 Introduction

The problem of identifying genes that are differentially expressed in two conditions has
received much attention from the statistical community and data analysts in general.
Most of the work has focused on designing appropriate test statistics1,2 and developing
procedures to account for multiple comparisons.3,4 Most approaches follow a similar
recipe: decide on a null hypothesis, test this hypothesis for each gene, produce a p-value,
and attach a significance level that accounts for multiplicity. At the end, each gene
receives a score, which we use to decide if it is in our final list of significant genes.
Those on this final list are typically called candidate genes because further validation
tests are commonly performed. In this article, we refer to this as the marginal approach.
A limitation of this approach is that genes that are known to be biologically associated
are scored independently. Although many important discoveries have been made with
this approach, the resulting gene lists do not always provide useful biological insights.

Recently, various approaches have been proposed to incorporate biological knowl-
edge into the analysis. The vast majority of these have relied on the results from the
marginal approach instead of starting from the original expression data. Because many
of these marginal procedures have been useful and given the complicated nature of
microarray data, we view this as a correct first approach. In this article we do not
discuss nor propose methods that start from scratch.
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There are currently two major types of procedure for incorporating biological knowl-
edge into differential expression analysis. We will refer to these as the over-representation
and the aggregate score approaches. In both, gene categories or gene sets are formed
prior to the statistical analysis. The sets are formed by, for example, grouping genes
that are part of the same cellular components, are essential for a biological process,
or have the same molecular function. In many cases the gene sets target the condition
that is being studied. However, it is more common to use category definitions from the
Gene Ontology project.5 The Gene Ontology project provides a controlled vocabulary
to describe gene and gene product attributes in any organism.6

Over-representation analysis can be summarised as follows: first, form a list of candi-
date genes using the marginal approach. Then, for each gene set, we create a two-by-two
table comparing the number of candidate genes that are members of the category to
those that are not members. The significance of over-representation can be assessed, for
example, using the hypergeometric distribution or its binomial approximation. More
elaborate approaches exist and a large number of over-representation methods have been
published. Many of these have been implemented as web-tools. A comprehensive list can
be found at http://www.geneontology.org/GO.tools.microarray.shtml

A limitation of the over-representation approach is that it ignores all the genes that
did not make the list of candidate genes. Therefore, the results will be highly dependent
on the cutoff used in constructing this list. In fact, examples can be found where very
few, or even none, of the genes in functional groups known to behave differently in the
two conditions survive the typical filters, and therefore the groups are not detected as
interesting. Mootha et al.7 describe a particularly interesting example. The aggregate
score approach, does not have this limitation. The basic idea is to assign scores to each
gene set based on all the gene-specific scores for that gene set. There are various ways
to calculate these aggregate scores7–14. In this article we focus on the aggregate score
method rather than the over-representation approach.

Of these methods gene set enrichment analysis (GSEA)7,13 is by far the most popular.
Surprisingly, GSEA is based on the Kolmogorov–Smirnov (K–S) test, which is well
known for its lack of sensitivity and limited practical use. Subramanian et al.13 seem
to have realised this and developed an ad hoc modification of the K–S test. A further
limitation of the K–S test and its modified versions, is that the null distribution of
the score is hard to compute. Tian et al.14 propose the use of the standard statistical
approach for detecting shifts in centre: a one sample z-test. Tian et al. propose the
use of permutation tests for assessing the significance of the z-test. However, they do
not explore the performance of the standard parametric approach. We find that using
the one sample t-test along with a standard multiple comparison adjustment15 of the
normal distribution p-value works well in practice. This procedure is extremely simple
in comparison to GSEA and requires practically no computation time.

A possible advantage of GSEA, i.e. the K–S test, over the one sample z-test is that the
latter is specifically designed to identify gene sets with mean shifts and the K–S test is
designed to find general difference in the cumulative distribution. In principle, we want
to be able to detect gene sets for which some members are up-regulated and others are
down-regulated. The z-test is not sensitive to this change as there is no shift in mean.
We therefore, propose the use of another standard statistical test useful for detecting
changes in scale: the χ2-test.
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In this article, we compare GSEA to the one sample z-test and χ2-test using all
the datasets described in Mootha et al.7 and Subramanian et al.13. In Section 2 we
briefly describe the methods in question. In Section 3 we present the results from
the comparison. Finally, in Section 4 we discuss these results, describe some current work
that we expect to improve upon our proposed method, and give concluding remarks.

2 Methods

Most aggregate score approaches start with the results from a marginal analysis. For
example, we may start with a t-statistic ti for each gene i = 1, . . . , N. We then identify
gene set g with a subset Ag ⊂ {1, . . . , N}. We want our score, say Eg (E for enrich-
ment), to quantify how different the ti, i ∈ Ag are from the ti, i �∈ Ag. A second task
is to assign a level of significance to each Eg. Most methods take the approach of
defining a null hypothesis, calculating the null distribution, and assigning a level of
significance. Because the scores for dozens of gene sets are considered, the significance
levels are adjusted for multiple comparisons. The competing methods differ in the way
that different is quantified and the null hypothesis defined and calculated. Notice, that
the tis need not be a t-statistic. In fact the GSEA article uses another statistics that
summarised the signal-to-noise ratio (SNR) for each gene. Because the resulting values
are very similar to a t-statistic we refer to the ti as signal-to-noise value and t-statistic
interchangeably.

Mootha et al.7 use a version of the K–S statistic to test for differences in the distribu-
tions of the t-statistics related to members of a gene set compared to t-statistics from the
rest of the genes. Because they were interested in comparing these scores across gene sets
of different sizes, and then null distribution of the K–S statistic depends heavily on this
size, Mootha et al. defined a normalised K–S statistics as their score EGSEA. To assess the
significance of these scores a permutation test was performed. Specially, they permuted
the sample labels and re-computed EGSEA

g 1000 times. In each permutation the maxi-
mum enrichment score was recorded. These 1000 values defined the null distribution
and used to assign p-values.

Subramanian et al.13 seem to have noticed the lack of power of the K–S test, a well-
known fact, and proposed an ad hoc modification to improve this. Furthermore, in the
original version of GSEA, an adjusted p-value was calculated only for the enrichment
score of the top ranking set. In Subramanian et al., after normalising the test statistic
for each gene set, the FDR q-value for each gene set is calculated and used to select
candidate gene sets. The end result is a rather complicated method that takes minutes
to run on a typical laptop computer.

Determining if two sets of numbers have different distributions is certainly not a new
problem. Many solutions exist. The K–S test is one that has not been used in many (or
any) other applications, so why use it here? Let us start with the most basic statistical
approach: test for a shift in centre/mean as proposed by Tian et al.14 If, under the
null hypothesis, the ti are normally distributed with mean 0 and standard deviation 1,
inference can be done with a one sample z-test. For a robust version we could use a
Wilcoxon test. When enough replicates are available in each condition we expect the
t-statistics to follow a standard normal distribution under the null-hypothesis of no
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Figure 1 Quantile–quantile plots. (a) For the diabetes data presented in Mootha et al.7 we plot the quantiles
of the observed t-statistics vs the theoretical quantiles of the standard normal distribution. The identity line is
shown. (b) For the same data we show the enrichment score based on the z-test for the gene sets presented
by Mootha et al. The score for the OXPHOS gene set is highlighted.

difference between the conditions. The data presented by Mootha et al.7 seem to satisfy
this assumption. Figure 1(a) shows a quantile–quantile plot comparing the t-tests used in
Mootha et al. to a standard normal distribution. Figure 2 shows this quantile–quantile
plot for all datasets in Subramanian et al.13 Barring a few outliers, which are likely
associated to differentially expressed genes, the assumption appears appropriate in all
datasets. If we assume that these tests are independent (under the null) then for any
given gene set the z-score:

Ez
g = √

Ng t̄, with t̄ = 1
Ng

∑

i∈Ag

ti, (1)

with Ng the number of genes in Ag, also follows a standard normal distribution.
This implies that we can easily obtain a p-value.

With appropriate p-values calculated we have numerous multiple comparison adjust-
ment methods to choose from and do not need to perform permutation tests. Tian
et al.14 argue that the normality assumption is not appropriate because we expect the ti
to be correlated even under the null hypothesis. However, they do not appear to have
tested this empirically. We find that assuming the Ez

g are normally distributed under the
null hypothesis is in fact a useful approximation for all the examples we examined. For
example, Figure 1(b) shows the z-score for the dataset presented in Mootha et al. for
the same gene sets they considered. Notice that the obvious outlier in Figure 1(b), is the
OXPHOS gene set discovered to be important by Mootha et al. Thus, the discovery that
merited their publication would have been made with a statistical method that could
be explained in one paragraph instead of several pages.

A possible limitation of the one sample z-test is that it will not detect changes in scale.
A gene set where half the gene sets are up-regulated and the other half are down-regulated
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may have no mean shift but is certainly interesting from a biological standpoint. The
standard test for scale change, i.e. the χ2-test, is useful for this. We define a standardised
χ2-test that permits us to compare gene sets of different sizes and different mean shifts:

Eχ2
g =

∑
i∈Ag (ti − t̄)2 − (Ng − 1)

2(Ng − 1)
. (2)

For gene sets that are large enough, say > 20, Eχ2
g follows a standard normal distri-

bution as well. Thus, computing p-values and adjusting these is just as straightforward
as for the z-test.

3 Results

We computed the z-score and normalised χ2 for all gene sets and all datasets presented
in Mootha et al. and Subramanian et al. We used the latest version of GSEA. We adjusted
for multiple comparisons using Storey’s q-value.15 We compared these to the q-values
computed using GSEA. Table 1 shows all the gene sets achieving a GSEA q-value of less
than 0.25, as done by Subramanian et al. With the exception of only three cases out of
4139, all gene sets found by GSEA to have q-values < 0.025 were either in the top 10
gene sets or had a q-value less than 0.05 for either the z-test or the χ2-test. The three

Table 1 For each of the eight datasets studies by Mootha et al . and Subramanian et al . we found the gene
sets for which GSEA reports a q-value of 0.25 or less. Note that the Stanford dataset had no gene sets passing
this requirement. For the rest we show the q-values obtained for these same gene sets when using the z-test
and the χ2-test. The ranks of the gene sets obtained with each of these three methods, within the dataset,
are also shown. There are only three examples for which the q-value was larger than 0.05 and the rank was
larger than 10 in both the z-test and the χ2- test. These are shown in bold

Study Gene set Size GSEA z-test χ2-test

q-value Rank q-value Rank q-value Rank

Diabetes MAP00360 Phenylalanine metabolism 23 0.06 2 0.07 9 0.6 46
Diabetes MAP00910 Nitrogen metabolism 30 0.3 3 <0.01 6 0.6 43
Diabetes OXPHOS HG-U133A probes 114 0.04 1 <0.001 1 0.6 66

Gender 1 chrY 40 <0.001 1 <0.001 1.5 <0.001 2.5
Gender 1 chrYp11 18 <0.001 3 <0.001 3 <0.001 2.5
Gender 1 chrYq11 16 <0.001 2 <0.001 1.5 <0.001 2.5

Gender 2 XINACT MERGED 20 <0.001 1 <0.001 6 <0.001 2
Gender 2 GNF FEMALE GENES 85 0.05 3 <0.001 7 <0.001 2
Gender 2 TESTIS GENES 73 0.02 2 <0.001 2.5 <0.001 2

P53 rasPathway 22 0.2 6 <0.01 5 0.9 123
P53 p53hypoxiaPathway 20 <0.001 2 0.03 22 <0.001 1
P53 hsp27Pathway 15 <0.001 2 0.01 14 0.4 40
P53 p53Pathway 16 <0.001 2 <0.01 4 <0.001 2

(continued)
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Table 1 Continued

Study Gene set Size GSEA z-test χ2-test

q-value Rank q-value Rank q-value Rank

P53 P53 UP 40 0.01 4 <0.001 2 <0.001 6
P53 radiation sensitivity 26 0.08 5 0.02 16 <0.001 3

Leukemia chr6q21 31 0.01 1 <0.001 2 0.8 23
Leukemia chr5q31 59 0.05 2 0.03 7 0.1 86
Leukemia chr13q14 31 0.06 3 0.2 16 0.4 7
Leukemia chr14q32 64 0.08 5 <0.01 3 <0.01 2
Leukemia chr17q23 39 0.07 4 <0.01 4 0.7 18

Boston p53hypoxiaPathway 19 0.05 1 <0.001 13 <0.01 18
Boston Aminoacyl tRNA biosynthesis 15 0.1 5 <0.001 12 0.2 63
Boston INSULIN 2F UP 113 0.1 2 <0.001 2.5 <0.01 22
Boston tRNA Synthetases 16 0.2 7 <0.001 9 0.3 91
Boston LEU DOWN 124 0.1 4 <0.001 2.5 <0.01 27
Boston HTERT UP 104 0.1 3 <0.001 5 0.05 38
Boston GLUT DOWN 199 0.2 6 <0.001 2.5 <0.001 8
Boston cell cycle checkpoint 19 0.2 8 <0.001 16 0.3 98

Michigan amiPathway 22 0.01 3.5 <0.001 6.5 1 208.5
Michigan cskPathway 22 0.01 3.5 <0.001 6.5 1 208.5
Michigan badPathway 19 <0.01 2 0.03 29 0.9 151
Michigan Il12Pathway 22 0.05 6 0.01 23 0.9 79
Michigan no2il12Pathway 16 0.08 7 0.02 25 1 246
Michigan GO ROS 18 0.09 8 0.06 54 0.9 156
Michigan tob1Pathway 18 0.2 17 0.06 53 0.9 69
Michigan HEMO TF LIST JP 66 0.2 13 <0.01 18 1 245
Michigan ctla4Pathway 16 0.2 20 <0.01 10 0.9 26
Michigan ST G alpha i Pathway 29 0.2 16 0.05 50 0.9 68
Michigan MAP00010 Glycolysis Gluconeogenesis 45 <0.01 1 <0.001 8 0.9 30
Michigan vegfPathway 21 0.03 5 <0.01 17 1 173
Michigan INSULIN 2F UP 113 0.2 9 <0.001 2 0.9 65
Michigan insulin signalling 77 0.2 10 0.04 39 0.9 8
Michigan HTERT UP 104 0.2 12 <0.001 5 0.3 4
Michigan MAP00251 Glutamate metabolism 18 0.2 14 0.01 21 0.9 19
Michigan ceramidePathway 18 0.2 15 <0.01 19 0.9 111
Michigan p53 signalling 65 0.2 11 <0.01 11 0.9 60
Michigan tRNA Synthetases 16 0.2 18 <0.01 14 0.9 55
Michigan MAP00970 Aminoacyl tRNA 15 0.2 19 <0.01 16 0.9 73

biosynthesis

cases are highlighted with bold letters in Table 1. Notice that all three were found in
the Michigan Lung Cancer dataset.

Figure 3 shows two gene sets: the GO ROS group in the Michigan Lung Cancer
dataset and the GLUT DOWN gene set in one of the Gender datasets. GO ROS would
be considered interesting in the Michigan Lung Cancer study by GSEA but not by the
simpler methods. GLUT DOWN would be considered interesting in the Gender dataset
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Figure 3 Gene sets showing disagreement between GSEA and the z-test. (a) Empirical density estimate of
the the signal to noise values for the GO ROS group (dashed lines) and the rest of the genes (solid line). The
ticks on the x-axis show the actual observations. This particular group had a small GSEA q-value but a z-test
and χ2 > 0.25. (b) For each gene, signal-to-noise values plotted against the average intensity for the same
dataset as in (a). The values for the GO ROS gene set are highlighted. Circles denote the up-regulated genes
in the gene set and squares denote the down-regulated genes. (c) As (a) but for the GLUT DOWN gene set in
the gender dataset. The z-test approach results in a very small q-value (< 0.001) for this gene set but a GSEA
q-value larger than 0.25. (d) As (b) but for the data described in (c).

by the z-test but not by GSEA. The only interesting feature of the GO ROS group is a
gap (no observations of ti) between 0.5 and 1. We do not consider this to be interesting
enough to merit detection. On the other hand, the GLUT DOWN has a clear shift in
mean. Figure 4 shows the other two gene sets found by GSEA and not by the other
methods. They do not appear interesting in any way.

Subramanian et al. point out that there is very little agreement in the results obtained
from the three lung cancer datasets they studied. They demonstrate the advantages
of GSEA over the marginal approach by showing better agreement between aggregate
scores as compared to marginal ones. We created lists of the top gene sets for these three
studies using four different approaches: the top 30 gene sets (lowest q-values) in each
group as found by GSEA and the z-test, all the gene sets with FDR < 0.25 for GSEA,
and all the gene sets with FDR < 0.05 for the z-test. Figure 5 shows Venn diagrams
for the results. It is clear that much better agreement is found with the z-tests than
with GSEA.
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Figure 4 As Figure 3 but for the two other gene sets found by GSEA and not by the z-test or χ2-test.

4 Discussion

We have compared GSEA to two very simple procedures based on standard statistical
approaches: the one-sided z-test and the χ2-test. We found that the simpler methods
outperformed GSEA in assessments based on the eight datasets used in the GSEA papers
and a simulation study. The great majority of gene sets found by GSEA to be interesting
are also found by the z-test. Notice that if we expect gene sets to be interesting due
to mean shifts then it is no surprise that the z-test outperforms GSEA since statistical
theory predicts this test to be much more powerful than the K–S test. In fact, this is one
reason we use the 0.05 cut-off, instead of 0.25, for the z-test q-value. An argument for
GSEA could be that some gene sets are interesting for reasons other than mean shifts,
such as scale changes. For many of these cases the χ2-test was able to identify them as
interesting. The only three gene sets not found by either the z-test or χ2-test are shown
in Table 1, Figures 3 and 4. For all three it is hard to argue that they are interesting in any
way. We notice that all three gene sets are small in size as compared to other gene sets
and have unexpected gaps in the observations of the signal-to-noise values. It is possible
that the ad hoc modification of the K–S test is biased in favour of small gene sets.
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Figure 5 Gene set agreement, shown with Venn diagram, in the Boston, Michigan and Stanford lung cancer
dataset. The numbers in the lower right corners are the number of gene sets that were not in any list. (a)
Agreement among top 30 gene sets ranked by their GSEA q-value. (b) As (a) but for the z-test. (c) Agreement
among gene sets achieving a GSEA q-value smaller than 0.25. (d) As (c) but for gene sets achieving a q-value
smaller than 0.05 with the z-test.

Another advantage of the method presented here is that it can be easily extended
to application other than the comparison of two conditions. There is no need for the
statistics used to compute the enrichment scores described here, Equations (1) and (2),
to be t-statistics. Any statistics that we expect to follow a standard normal distribution
can be used. For example, another common application of microarrays examines cancer
survival data. In these cases the summary statistic is commonly a parameter estimate
from a survival model. The standard normal approximation is a common approximation
of the standardised versions of these estimates. Tian et al.14 argue against the use of
the normal approximation for the averaged t-tests and propose the use of permutation-
based tests. A disadvantage of their proposed permutation tests is that they are not easily
extended to cases other than comparison of two conditions. Tian et al. correctly point
out that if the t-statistics are correlated under the null hypothesis, the assumption that
the z-score is normal with standard deviation 1 is incorrect. We did not find this to be a
problem in practice. Furthermore, we find that the the average correlation in gene sets
is of the order of 0.1 (data not shown), which only corresponds to a 5% inflation of the
score. A correction factor can easily be inserted at the appropriate place.

An entirely parametric approach, as the one described here, has been previously pro-
posed by Kim and Volsky.12 Their approach, referred to as PAGE, ignores the marginal
t-tests, and computes a t-test based on the effect sizes (log fold changes) within each gene
set. A limitation of this approach is that it does not take into account the gene-specific
variances. This is problematic because different genes are known to result in measure-
ments with different variances.16 Furthermore, PAGE is restricted to applications of
comparing two conditions. However, we expect PAGE to outperform GSEA as well.
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We have made an argument against the use of GSEA. Methods that are much simpler,
require hardly any computation time, and can be easily implemented in any data analysis
package, have been demonstrated to outperform GSEA. However, we do not think the
methods we have described here are a final solution. We describe them here because
they are an obvious first step that has been ignored. Efron and Tibshirani17 propose an
approach that includes a statistic that specifically targets gene sets with only a fraction
of the genes differentially expressed and a novel permutation approach. Falcon and
Gentleman18 describe methodology that takes into account the fact that overlap exists
between the different gene sets. These approaches certainly seem promising.
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