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Abstract

Rapid advances in sequencing technologies set the stage for the large-scale medical sequencing efforts to be performed in
the near future, with the goal of assessing the importance of rare variants in complex diseases. The discovery of new disease
susceptibility genes requires powerful statistical methods for rare variant analysis. The low frequency and the expected large
number of such variants pose great difficulties for the analysis of these data. We propose here a robust and powerful testing
strategy to study the role rare variants may play in affecting susceptibility to complex traits. The strategy is based on
assessing whether rare variants in a genetic region collectively occur at significantly higher frequencies in cases compared
with controls (or vice versa). A main feature of the proposed methodology is that, although it is an overall test assessing a
possibly large number of rare variants simultaneously, the disease variants can be both protective and risk variants, with
moderate decreases in statistical power when both types of variants are present. Using simulations, we show that this
approach can be powerful under complex and general disease models, as well as in larger genetic regions where the
proportion of disease susceptibility variants may be small. Comparisons with previously published tests on simulated data
show that the proposed approach can have better power than the existing methods. An application to a recently published
study on Type-1 Diabetes finds rare variants in gene IFIH1 to be protective against Type-1 Diabetes.
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Introduction

Common diseases such as diabetes, heart disease, schizophre-

nia, etc., are likely caused by a complex interplay among many

genes and environmental factors. At any single disease locus allelic

heterogeneity is expected, i.e., there may be multiple, different

susceptibility mutations at the locus conferring risk in different

individuals [1].

Common and rare variants could both be important contrib-

utors to disease risk. Thus far, in a first attempt to find disease

susceptibility loci, most research has focused on the discovery of

common susceptibility variants. This effort has been helped by the

widespread availability of genome-wide arrays providing almost

complete genomic coverage for common variants. The genome-

wide association studies performed so far have led to the discovery

of many common variants reproducibly associated with various

complex traits, showing that common variants can indeed affect

risk to common diseases [2,3]. However, the estimated effect sizes

for these variants are small (most odds ratios are below 1:5), with

only a small fraction of trait heritability explained by these variants

[4]. For example, at least 40 loci have been identified for height,

but these loci together explain only 5% of the 80% estimated

heritability for this trait [5]. One possible explanation for this

missing heritability is that, in addition to common variants, rare

variants are also important.

Evidence to support a potential role for rare variants in complex

traits comes from both empirical and theoretical studies. There is

an increasing number of recent studies on obesity, autism,

schizophrenia, epilepsy, hypertension, HDL cholesterol, some

cancers, Type-1 diabetes etc. [6–15] that implicate rare variants

(both single position variants and structural variants) in these traits.

From a theoretical point of view, population genetics theory

predicts that most disease loci do not have susceptibility alleles at

intermediate frequencies [16,17].

With rapid advances in next-generation sequencing technolo-

gies it is becoming increasingly feasible to efficiently sequence large

number of individuals genome-wide, allowing for the first time a

systematic assessment of the role rare variants may play in

influencing risk to complex diseases [18–21]. The analysis of the

resulting rare genetic variation poses many statistical challenges.

Due to the low frequencies of rare disease variants (as low as 0:001,

and maybe lower) and the large number of rare variants in the

genome, studies with realistic sample sizes will have low power to

detect such loci one at a time, the way we have done in order to

find common susceptibility variants [5,22]. It is then necessary to

perform an overall test for all rare variants in a gene or, more

generally a candidate region, under the expectation that cases with

disease are different with respect to rare variants compared with

control individuals. Several methods along these lines have already

been proposed. One of the first statistical methods proposed for
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the analysis of rare variants [23] is based on testing whether the

proportion of carriers of rare variants is significantly different

between cases and controls. A subsequent paper by Madsen and

Browning [24] introduced the concept of weighting variants

according to their estimated frequencies in controls, so that less

frequent variants are given higher weight compared with more

common variants. Price et al. [25] extended the weighted-sum

approach in [24] to weight variants according to externally-

defined weights, such as the probability of a variant to be

functional. One potential drawback for these methods is that they

are very sensitive to the presence of protective and risk variants.

We introduce here a new testing strategy, which we call

replication-based strategy, and which is based on a weighted-sum

statistic, but that has the advantage of being less sensitive to the

presence of both risk and protective variants in a genetic region of

interest. We illustrate the proposed approach on simulated data,

and a real sequence dataset on Type-1 diabetes.

Methods

We assume for ease of exposition, and without loss of generality,

that an equal number of cases and controls have been sequenced

in a genetic region of interest. In what follows, for the sake of

fixation, we will be concerned with the situation where rare

variants in the region increase susceptibility to disease. We discuss

first a one-sided testing strategy to test for the presence of variants

conferring risk to disease.

We partition the variants observed in cases and controls into

distinct groups, according to the observed frequencies of the minor

allele in cases and controls. More precisely, group (k,k’) contains

all variants that have exactly k copies of the minor allele in

controls, and exactly k’ copies of the minor allele in cases. Let nk’
k

be the size of group (k,k’). Note that the set of nk’
k represents a

summary of the original data, that in some sense contains all the

information the data can tell us about the presence of disease

variants in the region under investigation. For the purpose of

testing for the presence of risk variants, we choose to focus only on

variants that are likely to be risk variants, i.e., those variants with

k’wk. A summary of the data is shown in Table 1.

We define the following weighted-sum statistic, where each

variant in group (k,k’) is assigned a weight wk’
k , and hence:

S~
XNr

k~0

X

k’wk

nk’
k wk’

k ð1Þ

where Nr is an upper threshold on the number of occurrences of a

variant in controls.

The choice of a good weighting scheme is very important for the

performance of the approach. There are several possible ways to

define the weights, including several already in the literature.

Madsen and Browning [24] use data-dependent weights, with

wk’
k ~

k’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pU (1{pU )

p ,

where pU~
kz1

2(nUz1)
is the estimated frequency based on controls

only, and nU is the number of controls. Price et al. [25] discuss the

possibility of incorporating external weights, based on predictions

about variants being functional.

For our approach we define a set of data-dependent weights, as

follows. For a variant that occurs k times in controls and k’ times

in cases with k’wk, a natural weight is the negative log of the

probability of a variant occurring at most k times in controls and

at least k’ times in cases, under the null hypothesis of the variant

not being associated with the disease:

wk’
k ~{ log½p(k,k’)� for k’wk:

The statistic S above can then be written as:

S~
XNr

k~0

X

k’wk

{nk’
k log½p(k,k’)�:

Since the number of mutations at a rare variant position follows

approximately a Poisson distribution, the probability p(k,k’) of

observing at a variant position at most k mutations in controls, and

at least k’ mutations in cases is calculated as

p(k,k’)~ppois(k, f̂f ):(1{ppois(k’{1, f̂f )),

where f̂f ~(kzk’)=2 is the estimated variant frequency based on

the observed number of occurrences in both cases and controls,

and ppois is the Poisson distribution function. Note that the higher

the observed frequency in cases compared with controls (i.e., the

higher k’{k), the higher the weight will be, and hence S tends

to be larger when more variants are seen at higher frequencies

in cases versus controls. We employ a standard permutation

Table 1. Data summary.

k/k9 1 2 3 4 5 . . .

0 n1
0 n2

0 n3
0 n4

0 n5
0

. . .

1 n2
1 n3

1 n4
1 n5

1
. . .

2 n3
2 n4

2 n5
2

. . .

3 n4
3 n5

3
. . .

4 n5
4

. . .

. . .

Variants are classified according to the number of times they appear in controls
(k) and cases (k’). Only variants with higher observed count in cases compared
with controls (i.e., more likely to be risk variants) are considered.
doi:10.1371/journal.pgen.1001289.t001

Author Summary

Risk to common diseases, such as diabetes, heart disease,
etc., is influenced by a complex interaction among genetic
and environmental factors. Most of the disease-association
studies conducted so far have focused on common
variants, widely available on genotyping platforms. How-
ever, recent advances in sequencing technologies pave the
way for large-scale medical sequencing studies with the
goal of elucidating the role rare variants may play in
affecting susceptibility to complex traits. The large number
of rare variants and their low frequencies pose great
challenges for the analysis of these data. We present here a
novel testing strategy, based on a weighted-sum statistic,
that is less sensitive than existing methods to the presence
of both risk and protective variants in the genetic region
under investigation. We show applications to simulated
data and to a real dataset on Type-1 Diabetes.

Testing for Association with Rare Variants
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procedure to evaluate the significance of S by randomly

permuting the case/control label, and repeating the procedure

described above for each permuted dataset, thus quantifying the

extent to which the observed value of S is significantly higher

compared to the null expectation.

The strategy described above is inherently one-sided, because

we focus on variants that have higher observed frequency in cases

compared with controls, i.e., more likely to be risk variants. This

test can be used symmetrically to test for the presence of protective

variants. Without any prior knowledge on the direction of the

association, two one-sided statistics need to be computed. If Sz

and S{ are the two one-sided statistics as defined in eq. (1), then a

max-statistic can be used that calculates the maximum of the two,

i.e., max (Sz,S{), and the statistical significance can be assessed

by permutation.

Incorporation of External Biological Information
If external information is available on the plausibility of a rare

variant to be related to disease, it is of interest to be able to

incorporate such information into our testing strategy. Such

information has proved essential in the mapping of the disease

genes for two monogenic disorders [26], and may well prove

important for mapping disease genes in more complex diseases. It

is straightforward to extend the proposed approach to take into

account such information. If we denote by Q(v) the probability

that a variant v is functional, then we can rewrite the statistic S
above as:

S~
XNr

k~0

X

k’wk

X

v[(k,k’)

{Q(v) log½p(k,k’)�,

where v [ (k,k’) signifies that variant v occurs k times in controls,

and k’ times in cases. In particular, if Q(v)~1 for all variants v
then we recover the statistic S above, where functional information

was not used. If on the other hand a variant is not functional, then

Q(v)~0, and this variant is ignored.

Results

Simulated Data
Simulation model. We evaluated both the Type-1 error and

the power for the proposed approach using data simulated under

various genetic and disease models, and compared the results to

those obtained using several existing approaches. Li and Leal [23]

proposed one of the very first statistical methods for association

testing with rare variants, based on collapsing rare variants in a

genetic region together. In this approach, each individual is called

a carrier if the individual contains at least one rare variant in the

region. Then the strategy is to assess whether the proportion of

carriers in affected individuals is significantly different from the

proportion of carriers in unaffected individuals. A subsequent

approach proposed by Madsen and Browning [24] is based on a

weighted-sum statistic. A feature of this approach, especially

relevant in large samples, is that variants are weighted according

to their estimated frequencies from unaffected individuals, such

that less frequent variants are assigned higher weights compared to

more frequent variants.

The first set of simulations is based on a neutral Wright-Fisher

model. Using the software package Genome [27] we generated

10,000 haplotypes according to a coalescent model, resulting in a

total of 183 single nucleotide variants (SNVs) in the region (see

Text S1 for more details). For the second set of simulations,

we assume that the rare variants in the region are under weak

purifying selection (as discussed in [16]), and use Wright’s

distribution [28] to sample the frequency at each variant:

f (p)~cpbs{1(1{p)bn{1es(1{p),

where bs and bn are scaled mutation rates, and s is the selection

rate; c is a normalizing constant. As in [16] and [24], we take

bs~0:001, bn~bs=3, and s~12. The main difference between

the two simulation models is that the variant frequency spectra are

different, with proportionally more rare variants under the second

model compared with the first model (e.g., 141 out of the total of

183 variants have frequency below 0:01 under the second model,

while only 83 have this low frequency under the first model).

With respect to the disease model, we assume varying number

of disease susceptibility variants (DSVs) between 10 and 30, chosen

at random from the generated polymorphisms that had low

frequency (less than 0:01). We assume two possible values for the

total population attributable risk (PAR): 0:03 and 0:05. The total

PAR is distributed among all the disease variants. In one scenario,

all disease variants have the same PAR, equal to the total PAR

divided by the number of disease susceptibility variants. Perhaps a

more realistic scenario is to assume unequal PAR for the different

DSVs, and to this end we assume that individual variants’ PARs

are uniformly sampled from ½0,1�, and then renormalized to make

them sum to the same total PAR of 0:03 or 0:05. In addition to

the uniform distribution, we have also used an exponential model

for the distribution of the individual PARs. In Supplemental

Figure S-1 in Text S5 we show an example of the possible

relationship between the odds ratio and the frequency at a disease

variant, assuming 20 disease variants with frequencies between

0:0001 and 0:01, and a total PAR of 0:03 or 0:05.

Type-1 error. We evaluated the Type-1 error for both the

proposed and the existing approaches using the two simulation

models discussed above (neutral and weakly-purifying selection).

We assume two possible sample sizes, 1000 and 2000, with equal

number of cases and controls. As shown in Table 2, the Type-1

Table 2. Type-1 Error for the three approaches: collapsing (C),
weighted-sum (WSt), and replication-based (R).

Sim.
Model

Sample
Size a C WSt R

1 1000 0:050 0:044 0:053 0:051

0:025 0:022 0:027 0:025

0:010 0:007 0:010 0:011

1 2000 0:050 0:055 0:043 0:052

0:025 0:027 0:022 0:025

0:010 0:012 0:010 0:008

2 1000 0:050 0:044 0:049 0:048

0:025 0:023 0:027 0:022

0:010 0:010 0:011 0:012

2 2000 0:050 0:047 0:051 0:050

0:025 0:019 0:029 0:027

0:010 0:008 0:011 0:012

Results for two genetic simulation models are shown: variants under a neutral
evolution model (1), and variants under a weakly-purifying selection model (2).
The sample size is the total number of individuals sequenced, with equal
numbers of cases and controls. Nominal a levels: 0:05, 0:025, and 0:01.
doi:10.1371/journal.pgen.1001289.t002

Testing for Association with Rare Variants

PLoS Genetics | www.plosgenetics.org 3 February 2011 | Volume 7 | Issue 2 | e1001289



error is well controlled at the nominal levels a~0:05, 0:025 and

0:01 for all three methods.

Power. We evaluated the power for all three methods

assuming two models for generating the genetic data, and several

complex disease models. For the genetic data, as explained above,

two scenarios are illustrated: a first one where the variant fre-

quencies are generated using a neutral coalescent model, and a

second one where the variants are under weakly-purifying selection.

For the underlying disease models, a varied number of disease

susceptibility variants are assumed, that contribute equally, or

unequally to the total PAR. For the latter scenario, the individual

variant PAR are sampled from a uniform distribution (results for an

exponential sampling distribution are shown in Supplemental Table

S-1 in Text S3). To make the comparison fair among the different

methods considered the same threshold of 0:01 was used on the

frequency of the variants included in the three testing methods.

Power estimates for a series of simulation experiments are

shown in Table 3. Note that the results are based on two-sided

testing for all three methods and a~0:05. For the same total PAR,

the power decreases with increasing number of disease variants,

due to the correspondingly smaller contribution of each disease

variant. Also, the power increases for all methods when the

weakly-purifying selection simulation model is used as opposed to

the neutral model, due to the lower number of rare variants that

are actually observed under the former model compared with

the latter model. However, given the same sampling distribution

for the frequency of the variants, the power did not vary much

between the different ways the individual PARs were sampled.

The key factor is the total PAR for the region. Overall the

proposed approach is consistently and substantially more powerful

than both the collapsing and the weighted-sum approaches across

the multiple scenarios that we have considered, and under both

models to generate the variant frequencies.

Sensitivity to presence of both risk and protective

variants. So far we have assumed scenarios where only variants

that increase risk are present in a genetic region. However,

sometimes it may be the case that both risk and protective variants

are present in a genetic region of interest, for example when multiple

genes in a set or pathway are tested together. This can also be true

when individuals from the two extremes of a phenotype distribution

are chosen to be studied. In such situations, the two existing methods

discussed can suffer substantial loss of power, depending on the

relative contributions of the two classes of variants. We show here

that the proposed approach is less sensitive to such mixture, the

principal reason being the inclusion of only those variants that may

confer risk, and exclusion of the variants that are unlikely to be risk

variants when we test for the presence of risk variants, and similarly

when we test for the presence of protective variants.

Table 3. Power Estimates (a~0:05) for the three approaches: collapsing (C) versus weighted-sum (WSt) versus replication-based (R).

PAR = 0.03 PAR = 0.05

Sim. Model Sample Size Disease Model #DSVs C WSt R C WSt R

1 1000 Eq PAR 10 0:223 0:248 0:344 0:522 0:673 0:753

20 0:210 0:242 0:331 0:474 0:514 0:690

30 0:174 0:201 0:301 0:438 0:480 0:668

1 2000 Eq PAR 10 0:427 0:610 0:743 0:828 0:966 0:985

20 0:384 0:521 0:701 0:783 0:917 0:975

30 0:334 0:447 0:661 0:706 0:876 0:966

1 1000 Uneq PAR 10 0:214 0:276 0:367 0:514 0:670 0:768

20 0:203 0:224 0:324 0:487 0:548 0:707

30 0:163 0:210 0:298 0:442 0:469 0:652

1 2000 Uneq PAR 10 0:414 0:646 0:753 0:834 0:957 0:982

20 0:394 0:551 0:712 0:769 0:920 0:972

30 0:344 0:485 0:658 0:744 0:880 0:959

2 1000 Eq PAR 10 0:278 0:417 0:537 0:569 0:828 0:901

20 0:262 0:310 0:481 0:538 0:724 0:870

30 0:230 0:259 0:431 0:513 0:650 0:845

2 2000 Eq PAR 10 0:478 0:843 0:921 0:868 0:999 1:000

20 0:455 0:762 0:911 0:859 0:996 1:000

30 0:387 0:671 0:885 0:817 0:984 0:999

2 1000 Uneq PAR 10 0:265 0:385 0:494 0:586 0:854 0:893

20 0:240 0:349 0:478 0:569 0:757 0:890

30 0:235 0:276 0:455 0:494 0:680 0:846

2 2000 Uneq PAR 10 0:480 0:859 0:924 0:882 0:996 1:000

20 0:431 0:761 0:899 0:860 0:993 0:999

30 0:414 0:708 0:880 0:814 0:988 0:999

Two genetic simulation models are assumed: neutral variants (1), and mildly deleterious variants (2). Varying number of DSVs are assumed, that can contribute equally
or unequally to the total PAR. The sample size is the total number of individuals sequenced, with equal numbers of cases and controls. All tests are two-sided, i.e.,
testing for the presence of risk or protective variants in the region of interest.
doi:10.1371/journal.pgen.1001289.t003
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In Table 4 we show power estimates when we test for the

presence of risk or protective variants, given the existence of both

risk and protective variants in the region. We assume that there

are 20 risk variants in the region, and the number of protective

variants is between 0 and 20. As in the previous simulations, the

total PAR for the 20 risk variants can take two values, 0:03 and

0:05, while each protective variant has the same per-variant PAR,

equal to the total PAR divided by 20. Therefore, when the number

of protective variants is 20 the overall contribution to disease is the

same for risk and protective variants. This is of course the worst

case scenario, and the Collapsing and Weighted-Sum approaches

suffer from substantial loss of power in such cases. Even the

proposed approach is not insensitive to such scenarios; however

the loss in power is considerably less than that for the other two

methods.

Type-1 Diabetes Dataset
We also applied our approach to a dataset on Type 1 Diabetes

(T1D), published by Nejentsev et al. [15]. In their paper, the

authors resequenced exons and splice sites of ten candidate genes

in 480 cases and 480 controls (more details on the dataset are in

Text S2). In their study, rare variants were tested individually, and

two SNVs in gene IFIH1 and two other SNVs in gene CLEC16A

were found to be protective against T1D.

Here we reanalyze the dataset using the proposed approach,

and two of the existing approaches. For each gene and each

method, we perform two-sided tests, testing for the presence of risk

or protective variants. Results are in Table 5. As in [15] we found

one gene, IFIH1, to be significant with all three methods (P-

valuev0:001 for all three methods). For this gene, controls were

enriched for rare mutations compared with cases. Some evidence

of enrichment in protective variants was also observed in another

gene, CLEC16A, although the P-values do not remain significant

after multiple testing correction.

Discussion

We have proposed here a new testing strategy to examine

associations between rare variants and complex traits. The

approach is based on a weighted-sum statistic that makes efficient

use of the information the data provides on the presence of disease

variants in the region being investigated. The proposed test is

based on computing two one-sided statistics, designed to quantify

enrichment in risk variants, and protective variants, respectively.

This aspect allows the proposed approach to have substantially

better power than existing approaches in the presence of both risk

and protective variants in a region. Even when only one kind of

variants is present, we have shown via simulations that the

proposed approach has consistently better power than existing

approaches. An application to a previously published dataset on

Type-1 Diabetes [15] confirmed the original finding, namely that

rare variants in IFIH1 confer protection towards disease.

The weights underlying our weighted-sum statistic depend only on

the data at hand. However, external information on the likelihood of

a variant to be functional could prove very useful, and could be

combined with the information present in the data to improve power

to identify disease susceptibility variants. Such information has been

successfully used to identify the genes for several monogenic dis-

orders [26]. Price et al. [25] discuss a weighted-sum approach with

externally-derived weights, and show that such information can be

very useful using several empirical datasets. We have also described a

natural way to take into account such external functional predictions

within the proposed framework.

Since empirical data are only now becoming available, it is not

known how often both risk and protective variants are present in a

particular disease gene. When both types of variants are present, it

seems appealing to be able to combine the two types of signals. It is

possible to extend the proposed approach to take advantage of

both kinds of disease variants, and we discuss such an extension in

Text S4. We noticed in our simulation experiments that such a

hybrid approach can have much improved power when both types

of variants are present, but this comes at the price of reduced

power when only one type of variants is present. Therefore,

depending on the underlying disease model, both approaches

could provide useful information.

Table 4. Power Estimates (a~0:05) for two-sided tests, testing for the presence of risk or protective variants, when there is a
mixture of risk and protective variants in the region of interest.

PAR = 0.03 PAR = 0.05

Sim. Model #Risk #Protective C WSt R C WSt R

1 20 0 0:210 0:242 0:331 0:474 0:514 0:690

5 0:132 0:164 0:263 0:281 0:389 0:567

10 0:081 0:126 0:202 0:145 0:300 0:476

20 0:056 0:102 0:183 0:044 0:209 0:478

2 20 0 0:262 0:310 0:481 0:538 0:724 0:870

5 0:155 0:212 0:383 0:336 0:559 0:788

10 0:095 0:185 0:314 0:160 0:438 0:697

20 0:054 0:133 0:286 0:056 0:320 0:711

In addition to 20 risk variants in the region, there are between 0{20 protective variants as well. Simulation model corresponds to one of the two scenarios: neutral
variants (1), and mildly deleterious variants (2). The total sample size is 1000 cases and controls. Collapsing (C) vs. weighted-Sum (WSt) vs. replication-based (R).
doi:10.1371/journal.pgen.1001289.t004

Table 5. Type-1 diabetes results.

Gene #SNVs C WSt R

IFIH1 29 0:0005 0:0002 0:0001

CLEC16A 45 0:030 0:022 0:014

Two-sided P-values for the top two genes. An upper frequency threshold of
0:01 was used for the variants considered for testing.
doi:10.1371/journal.pgen.1001289.t005
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The proposed approach is applicable to a case-control design

and therefore is susceptible to spurious findings due to population

stratification. Population stratification has been shown to be an

important issue in the context of common variants. For rare

variants, differences in rare variant frequencies between popula-

tions are likely to be even more pronounced. Development of new

methods, and extension of existing methods are necessary to

adequately address the issue. Alternatively, family-based designs

offer the advantage of being robust to false positive findings due to

population stratification.

Replication of association signals in independent datasets is an

essential aspect of any disease association study, and has become

standard practice for common variants. Rare variants, due to their

low frequencies and potential modest effects, are normally tested

together with other rare variants in the same unit, e.g., gene.

Therefore a reasonable first replication strategy is at the level of

the gene. Follow-up of individual variants in the gene can be

performed to investigate whether any of the rare variants in the

gene can be found to be significantly associated with disease.

Finding rare disease susceptibility variants is a challenging

problem, especially due to their low frequencies and the probable

moderate effects on disease. So far the methods proposed in the

literature have focused on case-control designs. However, for rare

variants, family-based designs may prove very useful. Not only are

they robust against population stratification, but they may also

offer increased power due to the increased likelihood of affected

relatives to share the same rare disease variants. Continued

development of novel statistical methods for identifying rare

disease susceptibility variants is needed for population-based

designs, and especially for family-based designs.

Software implementing these methods is available at: http://

www.mailman.columbia.edu/our-faculty/profile?uni=ii2135.
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