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Handling Marker-Marker Linkage Disequilibrium: Pedigree Analysis
with Clustered Markers
Gonçalo R. Abecasis and Janis E. Wigginton
Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor

Single-nucleotide polymorphisms (SNPs) are rapidly replacing microsatellites as the markers of choice for genetic
linkage studies and many other studies of human pedigrees. Here, we describe an efficient approach for modeling
linkage disequilibrium (LD) between markers during multipoint analysis of human pedigrees. Using a gene-counting
algorithm suitable for pedigree data, our approach enables rapid estimation of allele and haplotype frequencies
within clusters of tightly linked markers. In addition, with the use of a hidden Markov model, our approach allows
for multipoint pedigree analysis with large numbers of SNP markers organized into clusters of markers in LD.
Simulation results show that our approach resolves previously described biases in multipoint linkage analysis with
SNPs that are in LD. An updated version of the freely available Merlin software package uses the approach described
here to perform many common pedigree analyses, including haplotyping and haplotype frequency estimation,
parametric and nonparametric multipoint linkage analysis of discrete traits, variance-components and regression-
based analysis of quantitative traits, calculation of identity-by-descent or kinship coefficients, and case selection
for follow-up association studies. To illustrate the possibilities, we examine a data set that provides evidence of
linkage of psoriasis to chromosome 17.

Introduction

Until recently, most genomewide linkage scans and other
studies of human pedigrees relied on highly polymorphic
microsatellite markers to track inheritance of chromo-
somal regions (Weber and Broman 2001). Microsatel-
lites are highly informative, so that linkage scans using
microsatellites require fewer markers (typically, ∼400–
800 are used to cover the genome) than scans using less
polymorphic markers, such as SNPs (Kruglyak 1997).
Nevertheless, the role of microsatellites as the markers
of choice for genomewide studies is changing. Technical
advances have made rapid, accurate, and automated ge-
notyping of very large numbers of SNP markers practical
and inexpensive (Kwok 2001; Kennedy et al. 2003), and
very large collections of SNP markers are now available
(Sachidanandam et al. 2001), including some designed
specifically for linkage studies (Matise et al. 2003; Shaw
et al. 2004). These advances have been so substantial
that it is now faster and more cost-effective to perform
genomewide linkage scans with SNPs rather than with
microsatellite markers (John et al. 2004; Middleton et
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al. 2004; Schaid et al. 2004), even after replacing each
microsatellite with multiple SNPs.

These are welcome developments, since inexpensive
genotyping technologies are necessary for detailed ex-
amination of the large data sets required for the iden-
tification of many complex-disease genes (Hirschhorn
and Daly 2005). Extracting the maximum benefit from
these new SNP data sets is likely to require that current
tools for the analysis of human pedigrees be updated.
For example, many of the proposed SNP linkage panels
will include markers that are in linkage disequilibrium
(LD) (Goddard and Wijsman 2002; Matise et al. 2003),
but current linkage-analysis tools assume linkage equi-
librium between markers. This assumption can lead to
inaccurate results, especially when parental genotypes
are missing (Schaid et al. 2002, 2004; Broman and Fein-
gold 2004; Huang et al. 2004).

LD can be readily incorporated into the Elston-Stew-
art algorithm (Elston and Stewart 1971; Lathrop et al.
1984; Ott 1991; O’Connell 2000), but that algorithm
is limited to the analysis of a relatively small number
of genetic markers. Here, we describe a practical ap-
proach for incorporating marker-marker LD into mul-
tipoint analyses by use of the Lander-Green algorithm
(Lander and Green 1987), which is commonly used for
pedigree analyses with tens to thousands of markers.
Our algorithm clusters tightly linked markers and uses
haplotype frequencies to model LD within each cluster.
A key issue in the use of our approach for the analysis
of real data is the estimation of these haplotype fre-
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Figure 1 Schematic representation of the standard Lander-Green
algorithm.

quencies. To address this issue, we describe a comple-
mentary gene-counting algorithm for efficiently esti-
mating maximum-likelihood allele and haplotype
frequencies in family data. Together, the methods de-
scribed here are computationally efficient and allow
marker-marker LD to be incorporated into many com-
mon pedigree analyses, including haplotyping and hap-
lotype frequency estimation, parametric and nonpara-
metric multipoint linkage analysis, variance-compo-
nents and regression-based analysis of quantitative
traits, calculation of identical-by-descent (IBD) or
kinship coefficients, case selection for follow-up asso-
ciation studies (Fingerlin et al. 2004), and relationship
inference.

Methods

Linkage Analysis with Clustered Markers

We consider the problem of accurately extracting mul-
tipoint inheritance information from an arbitrary pedi-
gree. Following convention (Cannings et al. 1978; Krug-
lyak et al. 1996; Lange 1997), we divide individuals in
a pedigree into a set of f founders, whose parents are
not observed, and their n descendants. Our objective is
to extract inheritance information by use of genotype
data collected at a series of genetic markers for one or
more of the individuals in the pedigree, even when some
of the markers are in LD.

Our method assumes that markers can be organized
into nonoverlapping clusters of consecutive markers, so
that (1) markers in the same cluster may be in LD, (2)
markers in different clusters will exhibit only low levels
of LD, and (3) the recombination rate is extremely low
within each cluster. To construct a computationally trac-
table solution, our model uses haplotype frequencies
within each cluster to describe patterns of LD and makes
two approximations: we ignore LD between markers in
different clusters, and we assume that the recombination
rate within each cluster is zero. Consequences of these
approximations are examined in the “Results” and “Dis-
cussion” sections. In the following sections, we review
the Lander-Green algorithm and provide further details
of our approach.

The Lander-Green Algorithm

The first step of the Lander-Green algorithm is the
enumeration of all possible inheritance vectors in a ped-
igree. Each inheritance vector denotes a possible pattern
of segregation for founder alleles in the pedigree. Since
there are 2n meiosis events in the pedigree, each with
two possible outcomes (transmission of the maternal or
the paternal allele), there will be up to 22n inheritance
vectors (Lander and Green 1987). Typically, many of
these will be indistinguishable and can be grouped to

simplify calculations (Kruglyak et al. 1996; Gudbjarts-
son et al. 2000; Abecasis et al. 2002). Our algorithm
for the analysis of clustered markers leaves this step
unchanged.

The second step involves iterating over inheritance
vectors and markers and calculating the probability of
the observed genotypes for each marker conditional on
a particular inheritance vector (Lander and Green 1987).
Typically, this step of the calculation is performed by
first identifying groups of connected founder alleles, then
enumerating possible states for the founder alleles in
each group, and, finally, calculating the probability of
drawing each group of founder alleles from the popu-
lation. A good description of the procedure is given by
Sobel and Lange (1996), who use the term “genetic de-
scent graph” rather than “inheritance vector.” Our al-
gorithm affects this portion of the calculation: rather
than iterate over markers, we iterate over clusters of
markers in LD. Then, for each inheritance vector, we
calculate the conditional probability of observed geno-
types for all markers within the cluster conditional on
estimated haplotype frequencies, which are used to
model LD. Details are given in the next section.

The final step of the Lander-Green algorithm uses a
Markov process to describe the joint distribution of in-
heritance vectors along a chromosome (Lander and
Green 1987). This step relies on the observation that,
under the assumption of no genetic interference, inher-
itance vectors form a hidden Markov chain. The ma-
trices of transition probabilities between inheritance
vectors at consecutive markers are a function of recom-
bination fractions between markers. The Markov-chain
calculations can be performed efficiently with either a
divide-and-conquer algorithm (Idury and Elston 1997)
or fast Fourier transform (Kruglyak and Lander 1998).
This portion of the calculation is also left unchanged by
our algorithm.

Figures 1 and 2 illustrate the various components of
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Figure 2 Schematic representation of the Lander-Green algo-
rithm, with clustering of neighboring markers.

the likelihood calculation, with use of either the standard
approach (fig. 1) or our proposed approach with clus-
tering of neighboring markers that are in LD (fig. 2). In
figure 2, all clusters include exactly two markers, but
our implementation has no such restriction. Rather
than iterating over inheritance vectors at each marker
( in fig. 1), we iterate over inheritance vectors atv … v1 K

each cluster ( in fig. 2). In both ap-v … vcluster1 clusterN

proaches, the distribution of inheritance vectors along
the chromosome is modeled with a hidden Markov
model, with transition probabilities defined by the dis-
tance between markers in the standard approach and
the distance between clusters in our approach. In either
approach, probabilities of observed genotypes must be
calculated conditional on a particular inheritance vector.

Probability of Observed Genotypes within a Cluster

Since our algorithm leaves unchanged the first step
(enumeration of inheritance vectors) and the last step
(hidden–Markov-chain calculation along a chromo-
some) of the Lander-Green algorithm, here we describe
our strategy for implementing the second step, in which
the probability of observed genotypes for each pedigree,
conditional on estimated haplotype frequencies and an
inheritance vector, is calculated for a cluster of markers
in LD. For a cluster with M markers, let denoteG … G1 M

the observed genotypes for each marker. Further, let h
be the number of distinct haplotypes in the population
and denote their respective frequencies. Final-p … p1 h

ly, for , let Hi denote the state of founderi p 1 … 2f
haplotype i. For each inheritance vector v, we wish to
calculate the probability of observed genotypes at a
particular cluster of markers, ,Pr (G … G Fp … p ,v)1 M 1 f

conditional on population haplotype frequencies.
One straightforward way to calculate this quantity is

to iterate over founder haplotype sets and take the prod-
uct of , the prior probability ofPr (H … H Fp … p )1 2f 1 h

each haplotype set, and , thePr (G … G FH … H ,v)1 M 1 2f

conditional probability of observed genotypes, given
a founder haplotype set and inheritance vector v.

is a simple product of haplotypePr (H … H Fp … p )1 2f 1 h

frequencies. Since the inheritance vector v specifies
the founder haplotypes carried by each individual,

is equal to 1 if the implied hap-Pr (G … G FH … H ,v)1 M 1 2f

lotypes for each individual are compatible with the ob-
served genotypes and is zero otherwise. Thus:

P(G … G Fp … p ,v)1 M 1 h

h h

p … Pr (G … G FH … H ,v)� � 1 M 1 2f
H p1 H p11 2f

# Pr (H … H Fp … p )1 2f 1 h

h h

p … Pr (G … G FH … H ,v)� � 1 M 1 2f
H p1 H p11 2f

2f

# Pr (HFp … p ) . (1)� i 1 h
ip1

Although this implementation is straightforward, it
is also extremely inefficient, since most founder hap-
lotype sets typically will be incompatible with the ob-
served genotype data and, therefore, most terms in
the summation will be zero. A better way is to identify
the set of founder haplotype configura-S(G … G ,v)1 M

tions compatible with inheritance vector v and ob-
served genotype data . By definition,G … G1 M

for all configurations inPr (G … G FH … H ,v) p 11 M 1 2f

this set. Then, equation (1) can be replaced with a
smaller sum of products of haplotype frequencies:

P(G … G Fp … p ,v)1 M 1 h

2f

p Pr (HFp … p ) . (2)� � i 1 h
ip1H�S(G …G , )v1 M

Identifying the Set of Compatible Haplotype
Configurations

For any particular inheritance vector v and set of ob-
served genotypes , the list of compatible foun-G … G1 M

der haplotypes can be quickly calculated as the Cartesian
product of possible founder allele states at each marker.
An effective procedure for listing possible founder allele
states at a marker has been described in detail elsewhere
(Sobel and Lange 1996), and here we provide only a
short review for the sake of completeness. For each
marker, proceed as follows: (1) using the inheritance vec-
tor v, assign two founder alleles to each individual; (2)
identify connected components in the resulting genetic
descent graph, where each founder allele is a vertex and
an edge is drawn between pairs of founder alleles that



Abecasis and Wigginton: Pedigree Analysis with Clustered Markers 757

are transmitted to the same genotyped individual; (3)
generate a list of the zero, one, or two possible allele
states for each of the connected components. When ex-
ecuting the final step, it is important to note that, al-
though connected components can include any number
of founder alleles, there will never be more than two
possible allelic states for a set of connected founder al-
leles. In fact, there will be either (a) no compatible foun-
der allele states if the genotype data are incompatible
with the proposed inheritance vector and, therefore,

; (b) one possible state if theP(G … G Fp … p ,v) p 01 M 1 h

component includes at least one homozygous individual
or two individuals with different heterozygous geno-
types; or (c) two possible states if all individuals con-
nected by this component have the same hetero-
zygous genotype. Alleles in components that do not
include any genotyped individuals can be in any state.
Once possible allele states for each component are de-
termined, it is straightforward to identify compatible
founder haplotype sets. Specifically, picking one of the
possible states for each component will fix all founder
allele states and produce one potential founder haplo-
type set. Furthermore, the Cartesian product of these
sets is , the set of all compatible founderS(G … G ,v)1 M

haplotypes.
An example is given in figure 3. Figure 3A lists the

observed genotypes for a hypothetical pedigree, whereas
figure 3B gives the genetic descent graph corresponding
to one potential inheritance vector. Figure 3C gives the
founder allele graph resulting from the genotypes ob-
served in 3A and the inheritance pattern specified in 3B.
In this case, the pattern of missing data is the same at
both markers, and the founder allele graph has two com-
ponents, one with alleles A, C, E, and F and another
with alleles B and D, whichever marker is considered.
Let Bi denote the state of founder allele B for marker i.
Then, for marker 1, there is only one set of possible
states for the first component, ( , ,A p 1 C p 2 E p1 1 1

, ), and two possible states for the second com-1 F p 21

ponent, ( , ) and ( , ). ForB p 1 D p 2 B p 2 D p 11 1 1 1

the second marker, there is again only one set of possible
states for the first component, ( , ,A p 2 C p 2 E p2 2 2

, ), but two possible states for the second com-2 F p 22

ponent, ( , ) and ( , ). TheB p 1 D p 2 B p 2 D p 12 2 2 2

Cartesian product of these sets {( , ,A p 1 C p 21 1

, )} # {( , ), ( ,E p 1 F p 2 B p 1 D p 2 B p 21 1 1 1 1

)} # {( , , , )} #D p 1 A p 2 C p 2 E p 2 F p 21 2 2 2 2

{( , ), ( , )} gives the list ofB p 1 D p 2 B p 2 D p 12 2 2 2

four possible founder haplotype sets in figure 3D.
Two additional savings are possible. If some haplotype

frequency estimates are zero, then one can trim the list
of founder haplotype sets to exclude configurations
where at least one haplotype has zero frequency. This
trimming can be done either after evaluating the full
Cartesian product or, preferably, by evaluating the prod-

uct gradually and removing partial configurations that
require a haplotype with zero frequency after performing
each multiplication. We have implemented the latter,
more efficient approach. Since only configurations that
include haplotypes with zero frequency are removed, this
computational savings does not affect the result of like-
lihood calculations.

A second savings is possible when iterating over many
distinct inheritance vectors, as in the Lander-Green al-
gorithm. This additional savings reduces the number of
times that the summation in equation (2) must be used
to evaluate . For each inheritanceP(G … G Fp … p ,v)1 M 1 h

vector vj, we check whether the set of compatible foun-
der haplotypes is identical to that identified for one of
the previously evaluated inheritance vectors—that is,
whether there is a k ! j for which S(G … G ,v ) {1 M k

. If a match is found, we reuse the previ-S(G … G ,v )1 M j

ously calculated value instead ofP(G … G Fp … p ,v )1 M 1 h k

re-evaluating equation (2). The check is computationally
inexpensive and takes !2% of the time required to list
possible founder haplotype configurations and calculate
their probabilities. Even when many inheritance vectors
are compatible with the observed genotype data for a
cluster of markers, we find that the number of distinct
founder haplotypes sets is much smaller and that the
savings resulting from this simple check can be quite
useful.

Estimation of Haplotype Frequencies in General
Pedigrees

The approach described in the previous section re-
quires founder haplotype frequencies for each cluster as
input. Although estimating haplotype frequencies in a
set of unrelated individuals is now straightforward (Ex-
coffier and Slatkin 1995; Stephens et al. 2001), esti-
mating maximum-likelihood haplotype frequencies in
pedigrees is more challenging. Here, we outline a gene-
counting–based expectation-maximization (EM) algo-
rithm (Ceppellini et al. 1955; Dempster et al. 1977) that
can be used to estimate haplotype frequencies within
each cluster. The approach is applicable to nuclear fam-
ilies and other small pedigrees. The exact constraints on
the algorithm depend not only on pedigree size but also
on the number of markers being considered and the in-
formativeness of the marker data. The algorithm per-
forms fastest on pedigrees for which founder haplotype
configurations have little uncertainty (for example, when
founder genotypes are available) and performs slower
when founder haplotype configurations are more un-
certain (for example, when founder genotypes are miss-
ing and sibships are small). We find that our algorithm
can typically handle ∼20 markers per cluster in pedigrees
with ∼20 individuals. Our algorithm also allows for al-
lele frequency estimation and, for pedigrees of modest
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Figure 3 Founder allele graphs used to identify possible haplotype states for a pedigree. A, Summary of the observed genotype data for
two markers. B, Possible inheritance vector or genetic descent graph. Genotyped alleles are shown in gray, and the connections they induce
between founder alleles are denoted with dashed lines. C, Representation of the founder allele graph corresponding to panels A and B. D,
Possible haplotype states, calculated as the Cartesian product of possible states for each founder allele graph component.

size, executes much faster than standard algorithms
based on numerical optimization of the likelihood
(Boehnke 1991).

As with other gene-counting strategies for allele and
haplotype frequency estimation, our algorithm involves
two basic steps. First, conditional on current haplotype
frequency estimates, the expected number of copies of
each haplotype in the sample is calculated. Next, these
expected counts are used to generate a new set of hap-
lotype frequency estimates. After updating haplotype
frequencies and estimated counts in turn several times,
the process converges to maximum-likelihood estimates
of haplotype frequencies. Adequate convergence can be
verified by repeating the process with different initial
guesses for haplotype frequencies.

The key step in implementing this gene-counting–
based EM algorithm is evaluating the expected number
of copies of each haplotype in each pedigree, conditional
on current haplotype frequency estimates. For each hap-
lotype , let be the num-k p 1 … h 0 � n (H … H ) � 2fk 1 2f

ber of copies of haplotype k among founder haplotypes
. Typically, founder haplotypes are not observedH … H1 2f

directly, so that calculating the expected number of cop-
ies of haplotype k, conditional on observed genotypes

and allele frequencies, requires summing overG … G1 M

all configurations that are compatible with the observed
genotype data and weighting each configuration by its
probability. Thus,

n (G … G Fp … p )k 1 M 1 h

2f� � n (H … H ) � P(HFp … p )k 1 2f i 1 h
H�S(G …G , ) ip1v v1 Mp . (3)2f� � � P(HFp … p )i 1 h

H�S(G …G , ) ip1v v1 M

Although this formulation is sufficient for imple-
menting an EM algorithm for haplotype frequency es-
timation in family data, we again note that many in-
heritance vectors will produce identical sets of
compatible founder haplotypes. Thus, it is advanta-
geous to group these vectors and reduce the number of
terms in the sums above. Thus, we define a non-
redundant subset of inheritance vectors U p {j:Gi !
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Table 1

Comparison of Different Analysis Strategies under the Null Hypothesis, without Missing Data

AVERAGE LOD INFORMATION CONTENT

SIGNIFICANCE THRESHOLD

FOR aa p .05

ANALYSIS STRATEGY

Ignore
LD

Model
LD

Independent
SNPs

Ignore
LD

Model
LD

Independent
SNPs

Ignore
LD

Model
LD

Independent
SNPs

No parents genotyped:
2 sibs per family 1.762 �.005 �.004 .413 .394 .247 13.65 1.33 1.22
3 sibs per family 2.971 .003 .002 .547 .537 .358 20.16 1.34 1.27
4 sibs per family 2.470 �.007 �.008 .646 .641 .452 16.30 1.26 1.20

One parent genotyped:
2 sibs per family .586 �.002 �.004 .710 .705 .470 6.06 1.40 1.27
3 sibs per family .686 �.004 �.006 .786 .785 .568 6.34 1.31 1.22
4 sibs per family .484 �.002 �.002 .832 .833 .635 4.51 1.37 1.31

Two parents genotyped:
2 sibs per family �.001 �.001 �.001 .804 .806 .608 1.46 1.45 1.32
3 sibs per family �.003 �.003 �.002 .837 .838 .654 1.44 1.44 1.36
4 sibs per family .003 .003 .004 .858 .859 .687 1.41 1.42 1.32

NOTE.—We fixed the number of genotyped individuals at 2,000. When neither parent was genotyped, this resulted in 1,000,
666, and 500 families with 2, 3, and 4 affected siblings, respectively. When one parent was genotyped, this resulted in 666, 500,
and 400 families with 2, 3, and 4 affected siblings, respectively. When both parents were genotyped, this resulted in 500, 400, and
333 families, with 2, 3, and 4 affected siblings, respectively.

a In simulated ∼100-cM chromosome.

, so that each vector inj,S(G … G ,v ) ( S(G … G ,v )}1 M 1 Mj i

U produces a different list of compatible founder hap-
lotypes. For each of these vectors we define a list of
equivalent inheritance vectors E p {i:S(G … G ,v ) {j 1 M j

and a weight , which is simplyS(G … G ,v )} w p FEF1 M j ji

the number of equivalent inheritance vectors. Equation
(3) now becomes

n (G … G Fp … p )k 1 M 1 h

2f� w � n (H … H ) � P(HFp … p )j k 1 2f i 1 h
j�U H�S(G …G , ) ip1v1 M jp .2f� w � � P(HFp … p )j i 1 h

j�U H�S(G …G , ) ip1v1 M j

(4)

With this formula, the expected number of copies of
a particular haplotype in any family can be calculated
quickly. This quantity can be summed over all families
and divided by the total number of founder haplotypes
in the sample to update estimated haplotype frequencies
and proceed with the gene-counting–based EM algo-
rithm.

Implementation

We have implemented our methods for multipoint
analysis with clustered markers and for haplotype fre-
quency estimation in the Merlin package (Abecasis et al.
2002). Since these methods enhance the underlying hid-
den Markov model for multipoint analysis, they natu-
rally extend to all the analyses performed by Merlin,
including haplotyping and haplotype frequency esti-
mation, parametric and nonparametric multipoint link-

age analysis, variance-components and regression-based
analysis of quantitative traits (Sham et al. 2002), cal-
culation of IBD or kinship coefficients, and case selection
for follow-up association studies (Fingerlin et al. 2004).

Our implementation can handle user-specified clusters
or, alternatively, can automatically identify clusters with
a simple criteria based on pairwise or intermarker2r
distance thresholds. The criterion groups markers for2r
which pairwise exceeds a predefined threshold, to-2r
gether with intervening markers, into a cluster. The dis-
tance criterion groups markers that are close together
into a cluster, without taking marker-marker LD into
account. By default, allele frequencies within each cluster
are calculated with a single run of the EM algorithm as
described in the previous section, but user-defined hap-
lotype frequencies can also be accommodated. Although
our method assumes that the recombination fraction
within clusters is zero, real data will sometimes include
obligate recombinants within a cluster of markers in LD.
For families in which an obligate recombinant is ob-
served within a cluster, our implementation automati-
cally flags the “problematic” genotypes and treats them
as missing. Since recombination events between markers
in LD should be extremely rare, only a very small frac-
tion of the data should be treated in this manner. Our
approach is not appropriate when there is substantial
recombination between markers in LD within the avail-
able pedigrees.

Simulations

To evaluate the performance of our approach, we an-
alyzed a series of simulated data sets. Each data set con-
sisted of a series of affected sibships, each with two,
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Table 2

Comparison of Different Analysis Strategies under the Null Hypothesis, with 5% Missing Data

AVERAGE LOD INFORMATION CONTENT

SIGNIFICANCE THRESHOLD

FOR aa p .05

ANALYSIS STRATEGY

Ignore
LD

Model
LD

Independent
SNPs

Ignore
LD

Model
LD

Independent
SNPs

Ignore
LD

Model
LD

Independent
SNPs

No parents genotyped:
2 sibs per family 1.539 �.004 �.004 .397 .378 .230 11.81 1.29 1.23
3 sibs per family 2.699 .003 .002 .531 .521 .336 18.11 1.34 1.23
4 sibs per family 2.380 �.006 �.007 .631 .627 .426 15.54 1.26 1.20

One parent genotyped:
2 sibs per family .549 �.003 �.004 .683 .680 .432 5.40 1.40 1.29
3 sibs per family .682 �.004 �.007 .769 .769 .534 6.18 1.31 1.23
4 sibs per family .508 �.001 �.001 .820 .821 .603 4.62 1.38 1.25

Two parents genotyped:
2 sibs per family .032 �.001 �.001 .781 .784 .561 1.54 1.43 1.32
3 sibs per family .027 �.002 �.004 .823 .825 .619 1.52 1.41 1.35
4 sibs per family .024 .003 .003 .849 .850 .659 1.49 1.40 1.32

a In simulated ∼100-cM chromosome.

three, or four affected siblings and zero, one, or two
genotyped parents (for a total of nine different family
configurations). We fixed the total number of genotyped
individuals at 2,000 in each data set and adjusted the
number of simulated sibships accordingly. For example,
data sets with two affected sibs and no genotyped par-
ents included 1,000 affected sibships each, whereas those
with four affected sibs and two genotyped parents in-
cluded only 333 sibships. We simulated genotypes for a
SNP linkage mapping panel covering chromosome 13
(∼100 cM) and used HapMap information to determine
realistic levels of marker-marker LD for nearby markers
(The International HapMap Consortium 2003). Briefly,
we first selected 100,000-bp windows along the heter-
ochromatic portion of chromosome 13, with window
centers separated by 5,000,000 bp. Next, within each
window, we defined parameters for a cluster of SNPs in
LD by using HapMap data for the CEPH Utah panel to
select three SNPs with minor-allele frequency 15% and
to estimate their corresponding haplotype frequencies.
This resulted in a total of 20 clusters and 59 SNPs (one
window included only 2 SNPs, and 3 SNPs were selected
from each of the remaining 19 windows). Each cluster
included an average of 3.7 common haplotypes (fre-
quency 15%). Average pairwise was 0.227 for mark-2r
ers within the same cluster, with 9% of within-cluster
marker pairs in complete LD ( ) and 14%, 17%,2r p 1.0
and 26% of within-cluster marker pairs exceeding 2r
thresholds of 0.80, 0.50, and 0.20, respectively. We then
used the estimated haplotype frequencies to generate
founder haplotypes for use in gene-dropping simulations
(Ott 1991). Note that this simulation does not generate
LD between clusters. When segregating SNPs through
the pedigree, we assumed a recombination rate of 10�8

per bp (corresponding to the genomewide average of ∼1

cM per 1,000,000 bp [Yu et al. 2001]). For comparison
purposes, we also repeated our simulations with the
within-cluster recombination rate set to zero and/or with
a larger window size of 500,000 bp. We performed sim-
ulations both under the null, with no linked genetic effect
simulated, and under the alternative, with use of a mul-
tiplicative model corresponding to sibling recurrence risk

(disease-allele frequency of 0.10; penetrancesl p 1.08s

of 0.01, 0.02, and 0.04 for genotypes with 0, 1, and 2
copies of the susceptibility allele, respectively). We cal-
culated Kong and Cox LOD scores for each data set
with the use of the linear model (Kong and Cox 1997)
and the Spairs statistic (Whittemore and Halpern 1994).
We considered three analysis strategies: (1) modeling LD
for clusters of tightly linked markers, as described in the
previous sections; (2) using a naive approach that ignores
LD between markers; or (3) selecting one SNP from each
cluster for analysis, thereby focusing on a set of “in-
dependent” SNPs that are in linkage equilibrium. To
evaluate the informativeness of these SNP linkage maps,
we also simulated microsatellite data for markers sep-
arated by recombination fractions of 0.05 and 0.10 (∼5
cM and 10 cM) for comparison. Each simulated micro-
satellite had four alleles of equal frequency (heterozy-
gosity of 75%).

Applied Example: Analysis of a Map Including SNPs
and Microsatellites

Our exemplary data set consists of the psoriasis data
of Stuart et al. (2005). The data were collected to ex-
amine evidence for linkage and association between pso-
riasis and chromosome 17q (a locus originally suggested
by Tomfohrde et al. [1994]). The data consist of 3,158
individuals in 274 families recruited in Germany and the
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Figure 4 Analysis of affected sibship data with one parent genotyped, with and without the modeling of LD. This simulated data set
included 500 sibships, each with three affected siblings and one genotyped parent.

United States, each with �2 individuals with psoriasis.
Genotypes were available for up to 21 individuals per
family, corresponding to a total of 2,598 genotyped in-
dividuals. Genotype data were available for a total of
32 microsatellites and six SNPs, including data from an
initial linkage scan and markers selected for fine map-
ping. Clusters were defined such that markers in a cluster
have a standardized multiallelic disequilibrium coeffi-
cient D′ (Hedrick 1987) of at least 0.3 and a nominal
x2 contingency table P value of !.001. Disequilibrium
coefficients were calculated with GOLD (Abecasis and
Cookson 2000).

Results

Simulated Data

In our simulations, we evaluated three alternative
strategies for analyzing the simulated SNP linkage data:
(1) we ignored LD and used a standard implementation
of the Lander-Green algorithm; (2) we modeled marker-
marker LD within clusters with the strategy described
in the “Methods” section; or (3) we selected a subset of

“independent” SNPs for analysis, retaining a single SNP
from each cluster and discarding the others. Tables 1
and 2 summarize the performance of the three strategies
for 5,000 simulated data sets generated under the null
hypothesis (i.e., when no linked genetic effect was sim-
ulated and the analyzed sibships exhibited only random
sharing). Table 1 presents results with no missing data
among genotyped individuals, and table 2 includes 5%
missing data among genotyped individuals.

In each table, the first three columns summarize av-
erage estimated Kong and Cox (1997) LOD scores, cal-
culated by use of the linear model (Kong and Cox 1997).
Limited analyses with the exponential model produced
similar results (data not shown). The expected LOD un-
der the null is zero because a negative sign was arbitrarily
assigned to the statistics when less-than-expected sharing
was observed. It is clear that, when parental genotypes
are not available, ignoring marker-marker LD produces
noticeable biases. The bias is severe when both parents
are missing (average LOD 1 1.5 for sibships with 2, 3,
or 4 affected siblings) and is still large when only one
parent is genotyped (average LOD 1 0.5 for sibships
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Table 3

Comparison of Different Analysis Strategies under the Alternative Hypothesis, without
Missing Data

AVERAGE PEAK LOD POWER FOR a p .05

ANALYSIS STRATEGY

Ignore
LD

Model
LD

Independent
SNPs

Ignore
LD

Model
LD

Independent
SNPs

No parents genotyped:
2 sibs per family 9.774 .965 .818 .094 .261 .227
3 sibs per family 15.912 1.705 1.274 .125 .568 .428
4 sibs per family 13.498 2.932 1.997 .189 .886 .718

One parent genotyped:
2 sibs per family 3.644 .882 .740 .081 .199 .179
3 sibs per family 4.630 1.557 1.234 .162 .517 .423
4 sibs per family 4.574 2.693 2.062 .466 .815 .690

Two parents genotyped:
2 sibs per family .864 .864 .760 .170 .172 .169
3 sibs per family 1.489 1.488 1.296 .444 .444 .400
4 sibs per family 2.494 2.494 2.140 .780 .777 .724

with 2, 3, or 4 affected siblings). In contrast, both our
clustering strategy for modeling LD and selection of in-
dependent SNPs perform correctly and produce average
LOD scores of ∼0, whether or not parental genotypes
are available.

The next three columns of tables 1 and 2 summarize
information content (calculated with use of the entropy
of the inheritance vector distribution [Kruglyak et al.
1996]). It appears that ignoring marker-marker LD pro-
duces slightly inflated estimates of information content,
whereas discarding genotypes for two SNPs per cluster
and retaining only independent markers significantly
lowers information content. As expected, information
content is higher when genotypes for one parent are
available and is even higher when genotypes for both
parents are available.

The final set of three columns summarizes thresholds
corresponding to a 5% significance level in these sim-
ulation experiments (i.e., exceeded in only 5% of sim-
ulated chromosomes). When parental genotypes are not
available and marker-marker LD is ignored, very large
LOD scores can occur in the absence of linkage (Huang
et al. 2004), and very high significance thresholds must
be employed (e.g., 111 when both parents are missing).
If parental genotypes are available, modeling LD be-
tween markers is less important, but even 5% missing
data among genotyped individuals can produce inflated
LOD scores and significance thresholds (table 2). When
marker-marker LD is modeled, or when independent
markers are selected, significance thresholds are much
lower and vary only slightly with sibship size and the
proportion of parental genotypes available. As expected,
significance thresholds for multipoint analysis in each
family configuration increase slightly with information
content (for a discussion of related issues, see Kruglyak
and Daly [1998]), and, thus, estimated thresholds are

slightly higher (1) when data are complete for genotyped
individuals than when some genotypes are missing at
random; (2) when parental genotypes are available than
when they are missing; and, finally, (3) when LD is mod-
eled than when independent markers are selected for
analysis. In all three cases, the more informative setting
requires slightly higher thresholds.

Next, using the empirical significance thresholds dis-
cussed above and listed in the final three columns of
tables 1 and 2, we evaluated power for the three analysis
strategies. Again, we simulated data sets with 2,000 ge-
notyped individuals and a trait locus with disease-allele
frequency 0.10 and penetrances 0.01, 0.02, and 0.04
(corresponding to ). The trait locus was sim-l ≈ 1.08sib

ulated at 62.5 cM and in linkage equilibrium with ge-
notypes for the two flanking clusters (one at ∼60.0 cM
and another at ∼65.0 cM). The relative performance of
the three analysis strategies was similar when larger ef-
fect sizes were simulated (data not shown). Figure 4 gives
representative results for one of the simulated data sets.
Note the two extremely high LOD score peaks that result
when LD between markers is ignored (LOD of 6.75 at
∼20 cM and LOD of 4.72 at ∼70 cM). When LD be-
tween markers is modeled, the higher peak completely
disappears. A single peak persists (LOD of 2.92 at 75
cM) close to the position of the simulated disease locus
at 62.5 cM. In both cases, trait locus genotypes were
hidden during calculation of linkage statistics, and the
trait locus is in linkage equilibrium with all the geno-
typed markers.

Results from 5,000 simulations are summarized in
two tables, one corresponding to simulations with no
missing data for genotyped individuals (table 3) and the
other corresponding to 5% missing data (table 4). The
first three columns of each table summarize the average
peak LOD score in chromosomes with a simulated dis-
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Table 4

Comparison of Different Analysis Strategies under the Alternative Hypothesis, with 5%
Missing Data

AVERAGE PEAK LOD POWER FOR a p .05

ANALYSIS STRATEGY

Ignore
LD

Model
LD

Independent
SNPs

Ignore
LD

Model
LD

Independent
SNPs

No parents genotyped:
2 sibs per family 8.280 .950 .796 .094 .268 .217
3 sibs per family 14.126 1.673 1.234 .128 .555 .426
4 sibs per family 12.857 2.885 1.923 .192 .880 .700

One parent genotyped:
2 sibs per family 3.234 .869 .723 .084 .192 .168
3 sibs per family 4.501 1.535 1.196 .162 .511 .394
4 sibs per family 4.618 2.661 1.977 .454 .804 .685

Two parents genotyped:
2 sibs per family .923 .852 .735 .166 .170 .163
3 sibs per family 1.562 1.476 1.252 .445 .452 .387
4 sibs per family 2.548 2.470 2.060 .765 .775 .696

ease locus. The next three columns summarize empirical
power. It is clear that, although ignoring marker-marker
LD produces the largest LOD scores, it also produces
the lowest power. LOD scores are randomly inflated by
LD between markers and lose the ability to discriminate
evidence for linkage. It appears that, although selecting
one marker from each cluster is preferable to ignoring
marker-marker LD, modeling disequilibrium is the best
option, providing greater power in all cases when some
parental genotypes are missing and similar power to
the other strategies when all parental genotypes are
available.

In the simulations described above, cluster boundaries
were known without error (that is, analyses used the
same cluster boundaries used to generate the data). We
also repeated analysis by calculating cluster boundaries
with the use of pairwise measures estimated from the2r
available data. For each data set, we defined clusters to
include any pair of markers for which pairwise ex-2r
ceeded 0.10 or 0.20, together with all intervening mark-
ers. In this setting, we typically recovered ∼15 (with 2r
threshold of 0.10) or ∼12 (with threshold of 0.20) of2r
the original 20 simulated clusters. Some of the estimated
clusters included only two markers, rather than the orig-
inal three. In this setting, we observed a slight bias in
average LOD scores (e.g., when no parents were geno-
typed, average LOD scores were ∼0.18 when an 2r
threshold of 0.20 was used and ∼0.07 when an thresh-2r
old of 0.10 was used). Although the results illustrate
that even low levels of unaccounted-for marker-marker
LD can inflate LOD scores, they also illustrate that even
imperfect knowledge of cluster boundaries can resolve
the majority of the bias resulting from marker-marker
LD in multipoint linkage analysis.

Finally, we simulated microsatellite mapping panels
composed of markers with four equally frequent alleles

(75% heterozygosity) distributed ∼5 cM or ∼10 cM
apart. Table 5 summarizes observed information content
and power for the microsatellite panels. It is clear that
clusters of three SNPs in LD spaced ∼5 cM apart pro-
vide higher information content, higher expected LOD
scores, and higher empirical power than microsatellite
markers spaced either 5 cM or 10 cM apart. Within
each cluster, SNPs were selected at random among
HapMap SNPs with frequency 15% and average minor-
allele frequency of ∼24%. Also, note that SNP scans
have higher power despite the fact that empirical sig-
nificance thresholds were slightly lower for microsatellite
scans than for scans with clustered SNPs (table 5,
footnote).

Applied Example with Psoriasis Data: Analysis of a
Map Including SNPs and Microsatellites

This data set also includes a mixture of different ped-
igree structures, including several two-, three-, and four-
generation pedigrees, each with up to 30 individuals.
There are a total of 2,598 genotyped individuals. In these
data, genotypes collected for the original microsatellite
genome scan were augmented with markers selected for
fine mapping, and, thus, the example illustrates the abil-
ity of our method to handle data sets including both
SNP and microsatellite markers (with 6–13 alleles). We
identified four clusters of markers in LD (defined as mul-
tiallelic D′ 1 0.3). Two of these clusters included only
microsatellite markers (two each), another cluster in-
cluded only SNPs (three), and the final cluster included
three SNPs and one microsatellite marker. Estimating
haplotype frequencies for these data took !2 min,
whereas completing a full multipoint nonparametric
analysis took ∼50 min. The results are summarized in
figure 5. Using the NPLALL scoring statistic, we observed
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Table 5

Comparison of SNP and Microsatellite (Short Tandem Repeat Polymorphism [STRP]) Maps

AVERAGE PEAK LOD INFORMATION CONTENT POWER FOR aa p .05

ANALYSIS STRATEGY

Clustered
SNPs

5-cM
STRPs

10-cM
STRPs

Clustered
SNPs

5-cM
STRPs

10-cM
STRPs

Clustered
SNPs

5-cM
STRPs

10-cM
STRPs

No parents genotyped:
2 sibs per family .965 .835 .691 .394 .304 .197 .261 .222 .204
3 sibs per family 1.705 1.448 1.029 .537 .431 .288 .568 .533 .386
4 sibs per family 2.932 2.312 1.452 .641 .537 .371 .886 .795 .553

One parent genotyped:
2 sibs per family .882 .778 .626 .705 .534 .349 .199 .205 .159
3 sibs per family 1.557 1.371 1.021 .785 .652 .449 .517 .478 .384
4 sibs per family 2.693 2.342 1.646 .833 .728 .522 .815 .782 .654

Two parents genotyped:
2 sibs per family .864 .790 .638 .806 .710 .506 .172 .160 .157
3 sibs per family 1.488 1.425 1.146 .838 .756 .557 .444 .485 .393
4 sibs per family 2.494 2.434 1.895 .859 .787 .594 .777 .784 .695

a Empirical significance thresholds for the STRP and SNP scans were determined by analyzing 5,000 data sets generated
under the null. Thresholds for the scan with clustered SNPs are given in table 1 (under the heading “Model LD”). For the
5-cM STRP scan, thresholds for families with 2, 3, and 4 affected siblings were 1.28, 1.15, and 1.16 for those with no
parents genotyped, 1.25, 1.24, and 1.24 for those with one parent genotyped, and 1.41, 1.29, and 1.34 for those with two
parents genotyped. For the 10-cM STRP scan, thresholds for families with 2, 3, and 4 affected siblings were 1.14, 1.10,
and 1.11 for those with no parents genotyped, 1.17, 1.04, and 1.06 for those with one parent genotyped, and 1.21, 1.20,
and 1.14 for those with two parents genotyped.

a peak Kong and Cox (1997) LOD score of 3.21 (gray
line in fig. 5) at ∼126 cM when LD between markers
was ignored. A second peak, corresponding to a LOD
score of 2.61, was observed at ∼145 cM. These two
peaks correspond to the two clusters of candidate SNPs
selected for fine mapping. When LD between markers
was modeled using our clustering approach (dark line
in fig. 5), the peak LOD score decreased to 2.73 at ∼128
cM, and there was no second peak at ∼145 cM. Thus,
although there is good evidence for linkage of psoriasis
to the chromosome 17q locus (peak LOD p 2.73 in
this data set), results show that the signal can be inflated
when LD between markers is not modeled, even if the
data include only a few markers in LD. Although as-
sociation of SNPs in this region with psoriasis had been
reported previously, Stuart et al. (2005) report that there
is no evidence for association between psoriasis and any
of the SNPs selected for fine mapping in their data. As
a result, we expect that changes in LOD scores reflect
marker-marker LD, rather than any effects of trait-
marker LD.

Discussion

We have described a practical method for handling LD
between markers in pedigree analysis. Our method is
general and can be incorporated into parametric and
nonparametric multipoint linkage analysis of discrete
traits, variance-components and regression-based anal-
yses of quantitative traits (Sham et al. 2002), calculation
of IBD or kinship coefficients, case selection for follow-

up association studies (Fingerlin et al. 2004), and many
other likelihood-based pedigree analyses. In addition, we
have described a companion EM algorithm for rapid
estimation of allele and haplotype frequencies in pedi-
grees of modest size. These advances will facilitate the
use of high-throughput SNP data in studies of human
pedigrees.

The arrival of low-cost, high-throughput SNP geno-
typing presents human geneticists with exciting possi-
bilities but also generates some novel analytical chal-
lenges. We show that when LD between available SNP
markers is appropriately modeled, SNP linkage panels
can outperform standard microsatellite mapping panels
in studies of affected sibships. This is an important ad-
vance, but we expect that low-cost, rapid SNP geno-
typing will not only facilitate traditional analysis of
human pedigrees but also enable new gene-mapping ap-
proaches. For example, genomewide association scans
are now within reach (Abecasis et al. 2005), and prom-
ising new gene-mapping approaches that use pedigree
data to model LD between genotyped markers and un-
observed disease alleles are being developed (Cantor et
al. 2005; Li et al. 2005).

Our simulation results and analysis of an exemplary
data set emphasize the importance of modeling marker-
marker LD in pedigree analysis. For example, we show
that ignoring marker-marker LD can lead to severe bi-
ases in LOD score calculations for affected sibships and
that these biases are resolved when our approach is
used. Our method also resolves inflation in multipoint
estimates of IBD and kinship coefficients (data not
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Figure 5 Analysis of exemplary psoriasis data set

shown). When modeling LD between markers with the
methods described here is impractical, we recommend
that a set of markers that are approximately in linkage
equilibrium should be selected for analysis.

How to organize available markers into clusters is an
important practical question. Sometimes, the genotyped
SNPs will fall naturally into clusters of tightly linked
markers separated by gaps with no SNPs, but this will
not always be the case. In general, we recommend that
a liberal approach be taken when grouping markers into
clusters, so that even modest evidence for LD between
markers (say ) should lead to markers being2r 1 0.10
placed in the same cluster. We are actively comparing
different automated strategies for grouping markers
that appear to be in LD with each other (G. R. Abecasis,
J. E. Wigginton, M. Boehnke, and R. Pruim, unpub-
lished data).

For computational convenience, our method makes
two important assumptions: (1) that there is no recom-
bination within clusters and (2) that there is no LD
between clusters. If clusters are relatively small (!0.1
cM in most of our simulations), the assumption of no
recombination within clusters causes a small fraction of
genotypes to be discarded and produces no noticeable

bias in LOD score calculations. When measured in
terms of the recombination fraction, clusters are un-
likely to grow very large because very low recombina-
tion rates are required to maintain substantial levels of
LD in human populations. Nevertheless, we repeated
our simulations with larger 500-kb windows for each
cluster of three markers (corresponding to a recombi-
nation rate of ∼0.005 per cluster per generation within
simulated pedigrees). Again, this produced no signifi-
cant change in our conclusions, since (1) our clustering
approach still produced LOD scores of ∼0 on average
under the null, (2) information content was increased
compared with situations in which we focused on a
subset of independent markers, and (3) modeling of LD
within clusters remained the most powerful analysis
strategy.

The effect of LD between clusters is potentially more
serious and will depend on the approach used to define
the clusters. If there is substantial LD between clusters,
we expect that biases in LOD scores for affected sib
pair analyses and other statistics will result. Fortunately,
in our experience, the patchy nature of LD in the ge-
nome (e.g., see Abecasis et al. 2001b; Dawson et al.
2002) means that there are often natural breakpoints
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in LD that lead to very little disequilibrium between
clusters.

We used an EM algorithm to estimate haplotype fre-
quencies within clusters. The method can comfortably
handle haplotypes of 10–20 SNPs per cluster in small-
sized and medium-sized pedigrees, but it is not practical
for handling very large numbers of SNPs within a clus-
ter. In principle, large clusters (120 SNPs) can be han-
dled with a divide-and-conquer strategy (Abecasis et al.
2001a; Qin et al. 2002), in which haplotype frequencies
are first estimated for small stretches with fewer
markers.

We have implemented our methods for multipoint
analysis with clustered markers and for haplotype fre-
quency estimation in the Merlin package (Abecasis et
al. 2002). Our implementation is freely available and,
in addition to handling user-defined clusters, includes
simple automated algorithms for grouping markers into
clusters before analysis. We hope it will enable research-
ers to more fully realize the benefits of high-throughput
SNP genotyping technologies.
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