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ABSTRACT 

Motivation: RNA sequencing (RNA-Seq) is a powerful new technol-

ogy for mapping and quantifying transcriptomes using ultra high-

throughput next generation sequencing technologies. Using deep 

sequencing, gene expression levels of all transcripts including novel 

ones can be quantified digitally. Although extremely promising, the 

massive amounts of data generated by RNA-Seq, substantial bias-

es, and uncertainty in short read alignment pose challenges for data 

analysis. In particular, large base-specific variation and between-

base dependence make simple approaches, such as those that use 

averaging to normalize RNA-Seq data and quantify gene expres-

sions, ineffective. 

Results: In this study, we propose a Poisson mixed-effects (or in 

short, POME) model to characterize base-level read coverage within 

each transcript. The underlying expression level is included as a key 

parameter in this model. Because the proposed model is capable of 

incorporating base-specific variation as well as between-base de-

pendence that affect read coverage profile throughout the transcript, 

it can lead to improved quantification of the true underlying expres-

sion level. 

Availability and Implementation: POME can be freely downloaded 

at http://www.stat.purdue.edu/~yuzhu/pome.html. 

Contact: yuzhu@purdue.edu or zhaohui.qin@emory.edu.  

Supplementary information: Supplementary data are available at 

Bioinformatics online. 

*To whom correspondence should be addressed. 

1 INTRODUCTION  

The transcriptome is the complete set of transcripts in a cell under 

any given developmental stage or physiological condition. Com-

prehensively cataloging all the components in the transcriptome is 

a grand challenge in the post-genome era. In the past decade, mi-

croarray technology has played a prominent role in advancing our 

understanding of transcriptome complexity by allowing scientists 

to simultaneously monitor the expression of almost all the genes in 

the genome (Lockhart, et al., 1996; Schena, et al., 1995). Despite 

its overwhelming success, microarray technology has its limita-

tions. For example, designing probes on the chip requires 

knowledge of the genome sequence and annotation; hence novel 

transcripts will be missed. Additionally, cross-hybridization, back-

ground signal and saturation result in a reduction of microarray’s 

dynamic range and accuracy. 

A recently developed sequencing-based technology for measur-

ing gene expression, termed RNA-Seq, has the potential to over-

come these limitations (Mortazavi, et al., 2008; Wang, et al., 2009). 

The ultra-high-throughput next generation sequencing technologies 

capable of producing millions of sequence reads dramatically in-

crease the throughput in DNA sequencing compared to conven-

tional Sanger technology and at a much lower cost. An array of 

studies has been published that successfully apply these new se-

quencing technologies to measure mRNA expression levels in cells 

from various species (Cloonan, et al., 2008; Lister, et al., 2008; 

Maher, et al., 2009; Marioni, et al., 2008; Morin, et al., 2008; Mor-

tazavi, et al., 2008; Nagalakshmi, et al., 2008; Prensner, et al., 

2011; Trapnell, et al., 2010; Wilhelm, et al., 2008). Since Illumi-

na’s platforms have been widely adopted in RNA-Seq experiments, 

we focused on short read RNA-Seq data generated from the Illu-

mina platform in this study. 

In RNA-Seq experiments using the aforementioned sequencing 

technologies, RNA molecules are first converted to a library of 

cDNA fragments with adaptors attached to both ends. Each mole-

cule, often after amplification, is then sequenced using one of the 

next generation sequencing technologies. Following sequencing, 

the resulting reads are aligned to known transcripts or de novo 

assembled together to produce a genome-scale transcriptional pro-

file.  

A fundamental question in RNA-Seq data analysis is to derive 

expression level from raw sequencing output data. This is the basis 

of almost all further investigation such as detecting differentially 

expressed genes, alternative splicing events, etc. Sophisticated and 

tailor-made data analysis methods are needed to fully realize the 

power of the new sequencing technologies. 

A natural idea is to use the total number of reads mapped inside 

each transcript, or region of interest (ROI), to represent the expres-

sion level. Mortazavi et al. proposed to use the number of reads per 

kilobase of a transcript per million mapped reads (RPKM) as the 

transcript’s expression level (Mortazavi, et al., 2008). The RPKM 
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method is easy to implement and takes into consideration the tran-

script length and the total number of uniquely mapped reads. How-

ever, the RPKM method is oversimplified, as it ignores the varia-

bility of read coverage within a ROI demonstrated by real RNA-

Seq data. More sophisticated methods are required to account for 

the complexity and uncertainties associated with read mapping and 

read depth within a ROI. In that regard, model-based methods can 

potentially improve upon the RPKM method by explicitly model-

ing the varying sequencing read coverage within a ROI. A number 

of models have been proposed in the literature, such as Poisson 

model (Marioni, et al., 2008), generalized Poisson model 

(Srivastava and Chen, 2010) and negative binomial model (Bullard, 

et al., 2010). However, these models are not sophisticated enough 

to capture all the variability demonstrated in the observed RNA-

Seq data. For example, they do not consider variation in sequenc-

ing read coverage within a ROI resulted from local genomic fea-

ture and fluctuation in the base-level PCR amplification rate. To 

accommodate this type of variation, Li et al. proposed to use Pois-

son distribution with varying intensity rate to model read counts 

covering different positions in a ROI and developed a method 

called mseq to quantify its expression level (Li, et al., 2010). The 

mseq method utilizes neighborhood sequence information and can 

better explain base-level read counts variation in RNA-Seq data.  

Despite improvement over other existing methods, the mseq 

method assumes that the observed base-level read counts are sto-

chastically independent with each other in a ROI. Analyzing real 

data indicated that this assumption is not valid in a substantial 

proportion of the ROIs. We found that in highly expressed tran-

scripts, between-base or spatial dependence is not negligible (see 

Results), Ignoring this dependence may lead to less accurate esti-

mation of the true expression levels.  

The presence of location-specific variation along with between-

location correlation is a outstanding characteristic of many spatial 

data generated in geostatistics, spatial epidemiology, and image 

processing and has been studied in the literature of spatial statistics 

(Best, et al., 2005; Diggle, et al., 1998; Wakefield, 2007). Typical-

ly, Poisson mixed-effects models are used to analyze such spatial 

count data. In this study, in order to model base-specific read cov-

erage while accounting for their dependency simultaneously, we 

apply the spatial Poisson mixed-effects model to characterize tran-

script level RNA-Seq data. 

2 METHODS 

2.1  Poisson mixed-effects model 

Let jkY represent the number of reads whose mapping starts at 

the j th base of a specified transcript in the k th sample.  

Here nj ,...,1= , n is the length of the transcript, 

and mk ,...,1= , m  is the number of samples. The definition of 

jkY is the same as in mseq (Li, et al., 2010). Further let kθ repre-

sent the expression index of the transcript in the k th sample, 

which is of primary interest. Our goal is to build a statistical model 

to capture the base-specific variation and between-base correlation 

in jkY . This idea is motivated by the model-based expression index 

(MBEI) model proposed by Li and Wong to model probe-level 

microarray gene expression data (Li and Wong, 2001). 

In order to avoid over-fitting using a complex model, we pro-

pose the following Poisson mixed-effects (or in short, POME) 

model for jkY : 

 

})exp{(~,,| jkjkkjkjkkjk VUnPoissonVUY +θθ  

(1) 

 

In addition to the fixed effect kθ , which is the expression index  

that is of primary interest, there are two random effects terms in 

this model: jkU ’s and jkV ’s. As in spatial statistics, jkV ’s are 

assumed to be independent and identically distributed 

as ),0( 2

vN σ , and used to account for unstructured variability, 

which may be attributed to some latent factors for over-dispersion; 

jkU ’s are used to represent the correlation between the read 

counts of different base pairs. Like in spatial statistics, there are 

various ways to specify this correlation structure. In POME, we 

chose the intrinsic conditional autoregressive (ICAR) structure 

(Besag, 1974). The ICAR structure specifies between-base correla-

tion using a Gaussian Markov random field. Originally, the ICAR 

structure was proposed for image processing and was later used for 

disease mapping in spatial epidemiology (Clayton and Kaldor, 

1987). For a fixed base j , first we define its neighborhood, denot-

ed by j∂ as the collection of the two bases 1−j and 1+j that are 

adjacent to base j . Other definitions of neighborhood are possible, 

for example, bases that are not immediately adjacent to base j can 

be included in j∂ (Cressie and Chan, 1989). Second, we define a 

weight matrix )( ijwW = as follows. For nji ≤≤ ,1 , 

0=iiw ; 1=ijw if ji ∂∈ ; and 0=ijw  otherwise. Let 

kjU )(− denote the collection of 
ik

U ’s with ji ≠ . The condi-

tional distribution of jkU given kjU )(− is assumed to be: 
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(2) 

 

The ICAR structure induces correlation between different bases.  

Another option for the correlation structure is the joint structure 

(Wakefield, 2007). The joint structure assumes that in the k th 

sample, jkU ’s follow the multivariate Gaussian distribu-

tion ),0( 2ΣuN σ , where )( ijσ=Σ is the correlation matrix of 

jkU ’s and 10, <<= ρρσ ijd

ij , ijd is the distance or the 

number of base pairs between the i  th base and the j th base, i.e., 

|| jidij −= . When the ICAR structure in POME is replaced by 
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the joint structure, the resulting model is referred to as the joint 

model. 

The discussion about the pros and cons of the joint versus  ICAR 

structure can be found in the disease mapping literature (Best, et 

al., 2005; Wakefield, 2007). We choose the ICAR structure in 

POME because read coverage for some transcripts may be sparse 

and the excessive zero counts pose a challenge for the joint model. 

POME is flexible in that covariates or deterministic patterns that 

affect kθ  can be incorporated into the POME model in a straight-

forward fashion.  

In the literature on disease mapping, Markov chain Monte Carlo 

(MCMC) techniques (Gilks, et al., 1998; Liu, 2001) are the pre-

dominant methods used for fitting the POME model and perform-

ing subsequent statistical inference, following (Besag, et al., 1991) 

and (Diggle, et al., 1998). In the literature on image processing, 

however, maximum likelihood methods are also used for model 

fitting and inference; see (Zhu, et al., 2009) for example. The pref-

erence for Bayesian computational methods is due to the fact that 

the random effects jkU ’s and jkV ’s are not directly observable; 

and it takes high-dimensional integration to integrate them out, 

which can be computationally challenging. In this study, following 

the tradition in disease mapping, we use Bayesian computational 

methods when applying the POME model for transcript level 

RNA-Seq data analysis. 

2.2 Model implementation 

The MCMC methods are employed to carry out the fitting of the 

POME model and subsequent statistical inference. We start from 

assigning appropriate priors for the model parameters. The mar-

ginal distributions of the random effects jkU and  

jkV are ),0( 2

uN σ and ),0( 2

vN σ , respectively. Following the 

approach by Wakefield (Wakefield, 2007), we define the total 

precision as
122 )( −+= vu σστ , and specify a Gamma prior for 

it, which is ),(~ baΓτ . Let )/( 222

vuup σσσ += represent 

the proportion of base-specific variation in the total variation. We 

assign a Beta prior ),( dcBeta to p .  

If the joint structure is assumed for jkU ’s, there is another pa-

rameter ρ determining the extent of between-bases correlation. We 

assign another Beta prior ),( feBeta to ρ . A non-informative 

prior ),0( +∞I  is assigned for kθ . 

As the default, we specify 1==== fedc  so that the pri-

ors for p and ρ are uniform distributions on [0, 1]. The total pre-

cision 
122 )( −+= vu σστ plays a crucial role in the model and 

the final result is sensitive to the prior assigned toτ . We adopt an 

empirical Bayesian method to further specify a and b in the prior 

),( baΓ for τ by setting 1=a and kmkb τ̂max1 ≤≤=  (Sup-

plementary Material Section 1). 

It is straightforward to derive the joint posterior distribution in-

volving all the fixed and random effects or parameters (Supple-

mentary Material Section 2), and we use Gibbs sampler to itera-

tively sample parameters from the conditional posterior distribu-

tions. Since we use the conjugate priors, the conditional posterior 

distributions for kθ and τ are Gamma distributions, which are 

easy to sample from. The conditional posterior distributions for 

random effects jkU ’s and jkV ’s are rather complicated and not 

in closed forms. Since both are log-concave functions, we use the 

adaptive rejection sampling (ARS) method (Gilks and Wild, 1992) 

to draw samples from them. For the other parameters, p and ρ , 

their conditional posterior distributions are nearly log-concave. We 

use the adaptive rejection Metropolis-Hasting sampling (ARMS) 

technique (Gilks, et al., 1995) to draw samples from these compli-

cated distributions. One important issue in using ARS and ARMS 

is to assign appropriate ranges for the parameters. In ARS, we use 

the interval [-5, 5] for random effects jkU ’s and jkV ’s. For the 

parameters p and ρ , we use their natural range [0, 1] in ARMS. 

In addition, to make the fixed parameter kθ identifiable, we im-

pose the following two constrains on the random effects in each 

iteration of the Gibbs sampler: 

 

mkVU
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j
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(3) 

 

 When fitting the POME model, we ran 10,000 MCMC itera-

tions for each transcript. The first 9,000 samplers were dropped as 

the burn-in stage, and then every 10th sample in the last 1,000 sam-

plers were used to calculate the posterior means.  

3 RESULTS 

3.1 Data description 

To evaluate the performance of POME, we choose a published real 

RNA-Seq data, obtained from twelve prostate cancer cell lines and 

tissues (Sam, et al., 2011). More details about the samples can be 

found in Table S1 in the Supplementary Material. A brief descrip-

tion of the reads mapping procedure used by Sam, et al., 2011 is 

provided in the Supplementary Material Section 3. We choose this 

dataset because these samples were profiled using two types of 

sequencing instruments with different technologies: Illumina Ge-

nome Analyzer using sequencing by synthesis technology and 

Helicos HeliScope using single-molecule sequencing technology. 

The Helicos technology represents a new wave of next generation 

sequencing technologies in which samples were profiled directly 

without the polymerase chain reaction (PCR) step, thus eliminating 

the overrepresentation or underrepresentation biases introduced by 

the copying process of PCR, a necessary step in Illumina sequenc-

ing technology. Given this, we use the expression measure ob-

tained from Helicos as the gold standard when evaluating expres-

sion measures reported by different algorithms analyzing RNA-

Seq data generated by the Illumina platform.  

     Transcript-level expression measures from Helicos and mapped 

Illumina reads information are kindly provided by the Chinnaiyan 

Lab. The details of the involved data processing procedures can be 

found in Sam et al. 2011. We plotted log 2 mean versus log 2 vari-

ance of the Illumina read coverage of these transcripts in all twelve 

cell lines (Figure S1). We observed that the variance of read count 
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is much larger than the mean, indicating the presence of substantial 

over-dispersion, especially for highly expressed transcripts. This is 

consistent with the observation of Li et al. (Li, et al., 2010). Fur-

thermore, when we selected the most highly expressed transcripts 

(top 500 according to the gold standard Helicos measures, of 

which 439 also satisfied the minimum read coverage criterion in 

Illumina (>0.3 RPKM noise level used in the Sam et al. study) and 

minimum effective length criterion (with more than 100 non-zero 

jkY ’s)). When examining these transcripts in the LnCaP_0 sample 

(Supplementary Material Table S1), we found that the median of 

the lag one autocorrelations between base-level read counts of 

these transcripts is 0.11, the 3rd quartile is 0.18, and the maximum 

correlation is 0.57. We checked on other samples and observed 

similar patterns. These findings indicate that dependence between 

read counts of adjacent base pairs is real and needs to be consid-

ered.  

      

3.2 Simulation study 

3.2.1 Simulated data from the joint POME model 

We conducted a simulation study to compare the performance of 

the POME method against the commonly used methods in quanti-

fying transcript-level gene expression: RPKM (Mortazavi, et al., 

2008), mseq (Li, et al., 2010) and GPseq (Srivastava and Chen, 

2010). 

We simulated the read coverage profiles from the spatial Poisson 

mixed effects model with the joint correlation structure, i.e., the 

joint model which is different from POME. To make our simula-

tion study more realistic, we first used the joint model to fit ob-

served read count data in the 439 transcripts of high expression 

levels. We then sampled putative sequencing coverage profiles for 

these transcripts from the joint model. The proportion of base-

specific variation in the total variation p was drawn randomly 

from a uniform distribution defined on the interval (0.1, 0.9). 

The simulation was repeated 100 times. For each dataset, we ap-

plied RPKM, mseq, GPseq and POME, and calculated the mean 

square errors (MSE) of the four resulting estimates of expression 

index θ .  

For all 439 transcripts, the POME method achieved the smallest 

MSE (1.2024, standard error 0.0379). The MSEs reported by 

RPKM, mseq and GPseq were much larger: 65.4605 (standard 

error 4.2217), 87.1559 (standard error 23.3511) and 16.0718 

(standard error 0.0692), respectively. The RPKM method overes-

timated the true expression level when data showed strong over-

dispersion. On the other hand, mseq used 40 base pairs in the 

neighborhood of each nucleotide as local sequence features that 

affect the base-level read coverage rate, which may have caused it 

to over fit the data. Although GPseq is capable of modeling both 

over-dispersion and under-dispersion patterns in the data, it does 

not take into account the spatial dependence between adjacent base 

pairs which may result in less accurate estimates.  

 

3.2.2 Simulated data from the generalized Poisson model 

Next we conducted another simulation study with a different simu-

lation strategy. We simulated the read coverage data from the gen-

eralized Poisson distribution GP(θ ,λ ). We again used the 439 

highly expressed transcripts in the previous simulation study, and 

fitted a generalized Poisson model using GPseq (Srivastava and 

Chen, 2010) to obtain the empirical estimates θ̂  and λ̂  in each 

transcript.  

We then simulated the read coverage profiles from GP(θ̂ , λ̂ ) 

for all 439 transcripts. We applied the RPKM method, mseq and 

the POME method to estimateθ , separately. We did not apply 

GPseq in this simulation study since the data was simulated from 

the generalized Poisson distribution. The simulation was repeated 

100 times, and the mean square errors (MSEs) of the three result-

ing estimates of θ  were calculated.  

For all 439 transcripts, the MSEs achieved by POME, mseq and 

RPKM were 20.6736 (standard error 0.4633), 160.7138 (standard 

error 33.5309) and 166.1414 (standard error 7.9313), respectively. 

The results were similar to what we obtained in the previous simu-

lation study. Although the data was simulated from generalized 

Poisson distribution with over-dispersion, POME nevertheless was 

able to provide more accurate estimate ofθ  through explicitly 

modeling the position specific variation. 

 

3.3 Real data analysis 

We next analyzed real RNA-Seq data in the twelve prostate cancer 

samples. Because highly expressed transcripts often display high 

level of over-dispersion, we selected the 5,000 most highly ex-

pressed transcripts according to Helicos measures in each sample 

and removed those that show extreme low read coverage in Illumi-

na (<0.3 RPKM noise level as in Sam et al., 2011). The numbers of 

corresponding transcripts measured by Illumina sequencing were 

listed in Table 1. 

We applied RPKM (Mortazavi, et al., 2008), mseq (Li, et al., 

2010), GPseq (Srivastava and Chen, 2010) and POME as before. 

For mseq, we used 40 base pairs in the neighborhood of each nu-

cleotide, and used the top 500 highly expressed transcripts as the 

training dataset. To avoid complication of missing data due to 

unmappable regions or dubious annotation, we removed all posi-

tions with zero coverage from each transcript in the data pre-

processing step. 

We used Helicos measure as the gold standard and compared the 

Spearman's rank correlation coefficients between the Helicos 

measure and the estimates of transcript-level gene expression gen-

erated by the four tested methods, respectively.  

Table 1 shows the overall performances of the four tested meth-

ods. POME achieved the highest Spearman correlation coefficients 

in ten out of the twelve samples except for sample “aT34N” and 

sample “VCaP”, where GPseq and RPKM were the best, respec-

tively.  

To further investigate the differences between POME and the 

other three competing methods, we focused on a subset of tran-

scripts with high over-dispersion and high spatial dependence. The 

magnitudes of over-dispersion and spatial dependence were meas-

ured by variation-to-mean ratio (also called “Fano factor”) and lag 

one autocorrelation between base-level reads count, respectively. 

In each sample around 1,500 transcripts were selected with both 

above-median over-dispersion and above-median spatial depend-

ence. The numbers of selected transcripts in each sample were 

listed in Table 2. 

We again compared the Spearman's rank correlation coefficients 

between the Helicos measure and the estimates of transcript-level 

gene expression generated by the four tested methods, respectively. 

Table 2 shows the overall performances of the four tested methods 

in the selected subset of transcripts with high over-dispersion and 

high spatial dependence. The POME method achieved the highest 

Spearman correlation coefficients in all twelve samples. Based on 

the real data results above, we believe that POME provides more 
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accurate quantification of transcript-level expression than the other 

three competing methods, especially for transcripts with high over-

dispersion level and high spatial dependence. 

 

Table 1. Comparison of Spearman correlation coefficients be-

tween four different expression measures (RPKM, mseq, GPseq 

and POME) in twelve real datasets. In each dataset, the method 

with the highest Spearman correlation coefficient is highlighted in 

bold. 

            

Sample #1 RPKM mseq GPseq POME 

LnCaP_0 4,964 0.6246 0.6155 0.5265 0.6887 

LnCaP_24 4,956 0.6186 0.6035 0.5466 0.6728 

LnCaP_48 4,946 0.6001 0.5955 0.4964 0.6407 

VCaP_0 4,939 0.5801 0.5607 0.5822 0.6046 

VCaP_24 4,948 0.5988 0.5474 0.5936 0.6234 

VCaP_48 4,941 0.6222 0.4577 0.6129 0.6569 

aT34 4,869 0.5789 0.5668 0.4351 0.5958 

aT34N 4,747 0.4281 0.4245 0.4624 0.3944 

DU145F 4,947 0.5945 0.5793 0.4575 0.6350 

DU145F2 4,943 0.5939 0.5783 0.4608 0.6263 

VCaP 4,944 0.5204 0.4024 0.4398 0.5175 

RWPE 4,969 0.5600 0.5514 0.4762 0.6013 

       1The number of transcripts measured in Illumina sequencing. 

 

Table 2. Comparison of Spearman correlation coefficients be-

tween four different expression measures (RPKM, mseq, GPseq 

and POME) on transcripts with high over-dispersion and high spa-

tial dependence in twelve real datasets. In each dataset, the method 

with the highest Spearman correlation coefficient is highlighted in 

bold. 

            

Sample #1 RPKM mseq GPseq POME 

LnCaP_0 1,495 0.6454 0.6232 0.6071 0.7362 

LnCaP_24 1,534 0.6248 0.5990 0.5828 0.7118 

LnCaP_48 1,518 0.6059 0.5963 0.5152 0.6795 

VCaP_0 1,525 0.6641 0.6452 0.6496 0.7106 

VCaP_24 1,523 0.6259 0.5783 0.6691 0.6841 

VCaP_48 1,500 0.6354 0.5094 0.6820 0.7022 

aT34 1,563 0.6705 0.6470 0.5214 0.6914 

aT34N 1,476 0.6322 0.6268 0.6203 0.6523 

DU145F 1,525 0.6254 0.6017 0.5326 0.6749 

DU145F2 1,529 0.6239 0.5984 0.5375 0.6809 

VCaP 1,689 0.6211 0.5534 0.4853 0.6301 

RWPE 1,548 0.6250 0.6079 0.5173 0.6730 

      1The number of transcripts measured in Illumina sequencing 

with high over-dispersion and high spatial dependence. 

 

We next repeated the above analyses using the Pearson correla-

tion coefficients and obtained similar results. The POME method 

achieved the highest Pearson correlation coefficients in seven out 

of twelve samples using highly expressed transcripts (Table S2). 

Using a subset of transcripts with high over-dispersion and high 

spatial dependence, the POME method achieved the highest Pear-

son correlation coefficients in nine out of twelve samples (Table 

S3).  

To understand the differences between POME and the other 

three competing methods (RPKM, mseq and GPseq), we zoomed 

in on those transcripts for which the tested methods gave dramati-

cally different expression measures. In the discussion below, sam-

ple LnCaP_0 was used as an illustrative example. To be specific, 

we first transferred the estimated transcript-level expression values 

and the Helicos measures (gold standard) into ranks, since we used 

Spearman rank correlation coefficient to measure the performance 

of a tested method. Next we calculated the rank differences be-

tween POME and other three competing methods, and selected the 

top ten transcripts with the largest rank differences. We used the 

ranks provided by the Helicos measure as the gold standard and 

assumed that the better method provides a closer rank to the Heli-

cos rank. The selected transcripts were listed in Table S4 in which 

we also reported the variance-to-mean ratio and the lag one auto-

correlation for each transcript. 

First we looked at the ten transcripts with the largest rank differ-

ences between POME and RPKM. We found that POME outper-

formed RPKM in all ten transcripts. The RPKM method overesti-

mated the expression levels of these ten highly over-dispersed 

transcripts. In contrast, the two random effect terms in the POME 

model were able to account for extra variability, which contributed 

to POME’s improved accuracy. 

For the ten transcripts with the largest rank differences between 

POME and GPseq, POME outperformed GPseq in eight of the ten 

transcripts. All of these ten transcripts are extremely highly over-

dispersed (variance-to-mean ratios are larger than 10). GPseq was 

not able to accommodate such huge variability by the two parame-

ters of the assumed generalized Poisson model and in most cases 

underestimated the expression level.  

For the ten transcripts with the largest rank differences between 

POME and mseq, POME outperformed mseq in eight of the ten 

transcripts. POME produced more accurate estimates than mseq 

when the data showed high spatial dependence, since POME ex-

plicitly incorporated the spatial dependence while mseq assumed 

spatial independence between reads counts covering different base 

pairs. 

4 DISCUSSION 

In microarray data analysis, it is now widely accepted that esti-

mates of the expression levels based on parametric models such as 

the model-based expression index (MBEI) (Li and Wong, 2001) 

are more accurate in reflecting the underlying expression levels 

than summary statistics of raw intensity values. Inspired by the 

success of model-based methods in microarray data analysis, in 

this study, we strived to develop a model-based method for analyz-

ing RNA-Seq data.  

 When exploring the properties of base-level sequencing depth 

in RNA-Seq data, we found substantial variation in sequencing 

depth within most transcripts, especially for those that are highly 

expressed. We also found that a large proportion of transcripts 

(around 25%) shows over-dispersion in base-level sequencing 

depth (Figure S1), which is consistent with what has been reported 

in the literature (Li, et al., 2010). Additionally, we found that base-

level sequencing depth displays substantial dependence between 

base pairs that are close to each other. This type of dependence 

resembles spatial correlation between neighboring areas considered 

in spatial statistics research (Waller and Gotway, 2004), and to the 
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best of our knowledge, has not yet been reported in the literature 

on RNA-Seq data analysis. Based on these observations, we be-

lieve that spatial models that can incorporate correlations such as 

POME have advantages over existing models in characterizing 

base-level RNA-Seq data.   

  In this study, we used POME to estimate the expression level 

of an individual transcript. Two types of random effects are intro-

duced to characterize two types of variation in read counts, which  

are between adjacent base pairs (i.e. spatial correlation) and specif-

ic to each base pair (i.e. non-spatial variation), respectively. Anal-

yses of both simulated and real RNA-Seq data demonstrate that the 

expression indices estimated by POME reflect the underlying ex-

pression levels more accurately compared to existing methods. We 

believe that the improvement of estimation accuracy of POME 

comes from modeling the dependence between the read counts of 

base pairs adjacent to each other. The POME model can also be 

used for differential gene expression analysis by incorporating 

biological or experimental conditions or other covariates. We will 

pursue research in these directions in the future. 

POME model assumes over-dispersion in the observed count da-

ta which is the case for a large proportion of transcripts in RNA-

Seq data, especially those highly expressed. For this reason, we 

focused on highly expressed transcripts in this study. From our 

experience, about one quarter of all transcripts belong to this cate-

gory. For these transcripts, our analysis on simulated as well as 

real data demonstrated POME offers more accurate expression 

measure than other methods we compared. We have also per-

formed small scale tests on transcripts with medium level expres-

sion, and found POME again outperforms RPKM, mseq and 

GPseq methods (data not shown). For lowly expressed transcripts 

we do not recommend to use POME for inference because ob-

served data may be under-dispersed.  

  Like many other model-based methods, the POME method is 

more computational intensive than read enumeration methods. For 

a 100 bp transcript without replicate, it takes POME 23 seconds to 

complete 10,000 MCMC iterations on a Dell PowerEdge 1950 

computing node (2.83 GHz CPU processors and 8 GB RAM). The 

computation time increases almost linearly with the length of tran-

scripts. However, because model fitting of individual transcript is 

independent of each other and thus can be performed simultane-

ously, the computational intensity of the POME method can be 

much mitigated by parallel computing. The power of modern clus-

ter computers will also help in this regard. After all, we believe 

that accuracy in statistical inference outweighs computation cost as 

long as the latter is affordable. 

Although we only applied the POME method to RNA-Seq data 

obtained from the Illumina platform in this study, we believe it can 

also be applied to RNA-Seq data collected from other sequencing 

platforms such as SOLiD with little or no modification, because 

these data possess similar data structures.  
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