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SUMMARY. Many existing cohort studies initially designed to investigate disease risk as a function of environmental exposures
have collected genomic data in recent years with the objective of testing for gene—environment interaction (G x E) effects. In
environmental epidemiology, interest in G x F arises primarily after a significant effect of the environmental exposure has been
documented. Cohort studies often collect rich exposure data; as a result, assessing G x E effects in the presence of multiple
exposure markers further increases the burden of multiple testing, an issue already present in both genetic and environment
health studies. Latent variable (LV) models have been used in environmental epidemiology to reduce dimensionality of the
exposure data, gain power by reducing multiplicity issues via condensing exposure data, and avoid collinearity problems due
to presence of multiple correlated exposures. We extend the LV framework to characterize gene—environment interaction in
presence of multiple correlated exposures and genotype categories. Further, similar to what has been done in case—control
G x E studies, we use the assumption of gene-environment (G-E) independence to boost the power of tests for interaction.
The consequences of making this assumption, or the issue of how to explicitly model G-F association has not been previously
investigated in LV models. We postulate a hierarchy of assumptions about the LV model regarding the different forms of G-E
dependence and show that making such assumptions may influence inferential results on the G, E, and G x E parameters. We
implement a class of shrinkage estimators to data adaptively trade-off between the most restrictive to most flexible form of G-E
dependence assumption and note that such class of compromise estimators can serve as a benchmark of model adequacy in
LV models. We demonstrate the methods with an example from the Early Life Exposures in Mexico City to Neuro-Toxicants

Study of lead exposure, iron metabolism genes, and birth weight.
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1. Introduction

It is now clear from many lines of evidence that pure genetics
or pure environmental factors play only a partial role in the
etiology of most complex diseases. Instead, it is now accepted
that the majority of chronic diseases likely stem from interac-
tions between genetic traits, “G,” and environmental factors,
“E’—an exponentially growing area of study (Khoury and
Wacholder, 2009). Characterizing gene—environment interac-
tions, “G x FEeffects,” is critical in understanding the biologi-
cal mechanisms of disease etiology and can impact preventive
medicine and public health by informing the way clinicians
advise their patients and the way public health practitioners
assess risk and set policy. Statistical approaches that heighten
our ability to understand G x F effects can accelerate map-
ping of the so far elusive environmental footprint of disease
etiology.

Established environmental health cohorts that have demon-
strated modest health effects of the environment are now col-
lecting genomic data to test G x F effects. However, G x E
interaction studies are statistically difficult problems because
of exposure measurement error, multiple potential exposure
markers, and prohibitive sample sizes required to reach ade-
quate power. Statistical methods to boost efficiency for testing
G x F effects have primarily been developed for case—control
studies, where imposing the assumption of independence be-
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tween environmental exposures and inherited genetic suscep-
tibility factors, so called G-E independence, boosts efficiency
of G x FE effect estimates (Chatterjee and Carroll, 2005, and
references therein). Hybrid approaches that protect against
bias under departures from independence constraints have
also been proposed (e.g., Mukherjee and Chatterjee, 2008;
Chen, Chatterjee, and Carroll, 2009; Li and Conti, 2009).
Latent variable (LV) models have been used in envi-
ronmental health studies to extract features from a set of
correlated biomarkers, thus reducing dimensionality of ex-
posure data and multiple testing burden, and enhancing
power (e.g., Budtz-Jorgensen et al., 2003b). These models
have enormous potential for modeling gene—environment in-
teraction between multiple genes and multiple environmen-
tal exposures, an area which is still in its formative phase.
Chatterjee et al. (2006) motivate a one degree of freedom
test for gene—gene interactions from an LV perspective in a
case—control study. However, the issue of modeling G-E de-
pendence through the LV framework is not discussed. More
general LV models, as proposed here, can incorporate and
estimate G-F association structures, which are of interest to
environmental health researchers, and also impose constraints
such as independence. In our motivating example, the rela-
tionship between iron metabolism genes and lead exposure
is of interest in itself (e.g., Hopkins et al., 2008). Very few
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Figure 1. Path diagram showing relationships between exposure biomarkers, latent prenatal lead exposure, iron metabolism

genes, and birth weight.

attempts exist that pose a general LV model for studying G
x Eeffects in cross-sectional or cohort studies (e.g., Dhungana
et al., 2007; Rathouz et al., 2008; Javaras, Hudson, and Laird,
2010), especially those investigating an array of G-E depen-
dence structures.

The Early Life Exposures in Mexico City to Neuro-
Toxicants (ELEMENT) Study motivates our work. ELE-
MENT consists of four longitudinal birth cohorts in Mexico
City, constituting over 2000 mother infant pairs with prospec-
tively collected exposure data and several anthropometric,
cardiovascular, neurodevelopment, and behavioral outcomes.
Genotyping for these cohorts is underway, with genotyping
for the first cohort completed on a set of candidate genes
(=400 pairs). Figure 1 is a path diagram describing relation-
ships between four biomarkers of prenatal lead exposure, their
interaction with iron metabolism genes, and birth weight.

In Section 2, we describe a model structure to summarize a
group of biomarkers into LVs, and the spectrum of G-E depen-
dence models we consider. In Section 3, we describe maximum
likelihood estimation (MLE) and a general class of shrinkage
estimators to data adaptively compromise between the most
stringent and most flexible models for G-F association. Small-
scale simulation studies (Section 4) bring out salient features
of our methodology. Section 5 presents analyses of our mo-
tivating example. Section 6 discusses the use of LV models
for G x FE studies, and shrinkage estimators in general LV
modeling beyond the G x E context.

2. A Latent Exposure Model for G x E Studies
2.1 Model Representation

For the ith of N individuals, let Y; represent a univariate
health outcome (here birth weight), and U; be an [ x 1 vector
of latent exposures measured indirectly by a set of p measure-
ments E;. In the example, [ = 1, p = 4, and U, is prenatal
lead exposure (Figure 1). Let Z; and W, represent ¢ x 1
and r x 1 covariate vectors, respectively. Without any loss of
generality, genotype classes are represented by a categorical
variable G; with classes ¢ = 0,..., G. Genotype classes may
arise from data on biallelic polymorphisms where a “risk”
allele “A” may alter the exposure metabolism pathway or af-
fect health (with the reference allele denoted by “a”) or from
combinations of genetic markers measured at multiple loci
(e.g., risk alleles A, B). In the lead example we consider two

single nucleotide polymorphisms (SNPs) implicated in iron
metabolism, but due to sparsity of data, we assume G; can
take two possible values: zero for wild type on both SNPs
(“aa” and “bb”), and 1 for at least one copy of either of
the risk alleles (i.e., “Aa,” “AA)”, “Bb,” or “BB”), consistent
with dominant/recessive models for genetic susceptibility. Al-
ternatively, genetic groups can arise as categorization of an
underlying genetic risk score that combines several markers
identified by existing genome-wide association studies (Qi et
al., 2011), or from infant—mother genotype combinations at a
single locus in studies of prenatal fetal exposure.

The LV model is then specified in two stages: a health out-
come model and an exposure model. In the outcome model, the
association between the outcome Y;, exposure U; and genetic
category G; = g conditional on covariates Z; is characterized
by either

Y = Boy +62‘",ij +6;-9Zi T € (1)

G
orY; = B+ ByU: + Z {/Gglgi +B;><Lflgi Ui +B,Z,
g=1

(2)
+ﬁ!—,r><ZIgi 'Zi} + €,

using genotype class indicators I, = I(G; = g). The mean-
zero error €; has variance 0. Equation (1) is written using
the multiple group notation (Bollen 1989), which is useful in
writing the likelihood (Section 3), and o, By ,, 87, are pa-

rameters specific to class ¢ = 0,..., G. Such notation is stan-
dard in widely used LV software. In (1), the gene—environment
interaction test is specified as Hy: By, = -+ = By ¢, i.e., ho-

mogeneity of the environment’s effects across genetic groups,
and is equivalent to testing the interaction parameters in (2),
ie, Hy: B,y =By, —Byo=0forallg=1,...,G. G x E
interactions are of interest in both environmental and genetic
epidemiology, but in environmental epidemiology the G x E
question arises after showing main effects of exposure on out-
come, and heterogeneity of effects across genetic subgroups as
well as the exposure effect within class g, B, ,, are of primary
interest.

The exposure model consists of a model for the latent vari-
able (3) dependent on covariates W, and a measurement
model (4) relating the observed exposure measurements to
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the LV

U, =ay +ayW; +§; (3)

Ei:Vy+AgUi+(si (4)

with (3) and (4) again written in the multiple group notation.
Regression coeflicients o, and ay are I x 1 and [ x r ma-
trices with v, = a, — ago being effect of genotype class on
exposure U;, and covariates W; (r x 1) may help predict ex-
posure levels for a given subject (e.g., occupation). The zero-
mean error terms, §;, are assumed independent of ¢;, and have
category-specific [ x [ covariance matrices ®,. Means vector
v, and factor loading matrix A, are p x 1 and p x [, re-
spectively, and §; has zero mean and p X p covariance matrix
Q,.

Although LV models are helpful in many respects, one
well-known problem is the potential for lack of identifiabil-
ity. Standard identifiability constraints have been developed
for linear latent variable models (Bollen, 1989), and identifia-
bility of latent class models has also been investigated (Huang
and Bandeen-Roche, 2004). Essentially, model parameters are
constrained to ensure identifiability; for example, some entries
of v, and A, are fixed to 0 or 1, although sometimes alge-
braic proofs of identifiability are needed (Sdnchez et al., 2005).
In the lead example, the constraints v, = (0,v,.9,V,.3,V5.4) ",
and A, = (1,X;2,A;3,Ag.4) " fix the mean and scale of the
latent exposure to those of patella lead. Parameters in ®,
are typically unconstrained, while the off-diagonal elements
of ®, are typically, although not necessarily, restricted to be
zero denoting conditional independence between FE;’s given
U,. However, theoretical identifiability may not necessarily
guarantee numerical stability of results, which also depends
on sample sizes. Some investigators recommend at least 5 to
10 observations per parameter estimated (Westland, 2010).

Y Var@G)=var@®

Var(8/G)=Var(d)
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Hence, users need to be attentive as to what model the avail-
able sample size allows them to fit.

2.2 Modeling G-E Dependence

In many G x F studies, it may be natural to assume that
an individual’s environmental exposure is independent of ge-
netic factors, but may not be realistic when the gene and
the exposure share a metabolic pathway. For example, iron
metabolism genes may increase lead absorption (Hopkins
et al., 2008), and characterizing such dependence may shed
insight into the mechanistic process.

Varying degrees of G-E dependence can be modeled
through imposing further constraints on the exposure model
parameters (Figure 2). The most restrictive assumption is
that parameters are homogeneous across genotypes. We use
“A0” to denote this full G-F independence

AO : (aUgv(b{nygqua@{]) = (a07<I)7V7A7®)'

With A0, the exposure model (3)—(4) has at least [ parame-
ters in each of ay and ®, p — [ factor loadings A and p — [
intercepts v, and p parameters O, for a total of at least 3p pa-
rameters. In the lead exposure model, A0 totals 13 exposure
model parameters.

A first step at relaxing A0 is to allow the intercepts and
variances in the LV equation (3) to differ by genotype. Letting
Yo = gy — oy be the gene effect on the latent exposure we
have

Al (VgaAw@y) =, A,0),
but v, # 0 or <I>;1¢I>0 # I for at least one g.

Relaxing these constraints is very natural, because genotype
status may increase absorption of pollutants from the environ-
ment as well as change exposure variability. Genotype status
may change the distribution of the observed exposure mea-
sures, F;, but modeling change in the distribution of the

re - Var(G)G) # Var(©)
Var(|G) # Var(o)

Figure 2. Path diagrams showing gene—environment dependence assumptions.
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underlying exposure is a parsimonious way of modeling
changes in the actual E;. This assumption has at least 3p
+ 2IG exposure model parameters; 15 in the lead example.
Alternatively, one could restrict the latent variable variances
@, to be equal across genotype subgroups; that is, a slightly
modified assumption A1*: (®,,v,,A,,0,) = (®,v, A, O).

Next, constraints of equal means v and factor loadings A
can be removed,

A2:0, =0.

Biological mechanisms that modify transfer of pollutants from
one compartment to another are consistent with this assump-
tion. In the lead example, three of the observed prenatal lead
exposure biomarkers are measured on the mother, while um-
bilical cord blood on the offspring. The transfer rates from
maternal compartments (i.e., blood and bone) to offspring
compartment may vary by child’s genotype, such that factor
loading A\, may vary by genotype. A2 has at least 3p + 2Gp
exposure model parameters; 21 in the lead example.

Lastly, all equality constraints on the parameters can be
removed, namely,

A3 : All model parameters differ by genotype,

yielding at least 4p + 2Gp exposure model parameters; 26 in
the lead example. In classical multiple group analyses (Bollen,
1989), one might additionally posit that the structure of the
whole model might differ by genotype; e.g., that the number of
latent variables differs by genotype. We restrict our attention
to assumptions A0-A3, where the model structure is the same
across genotypes.

Assumptions A0—-A3 have different number of parameters;
an increase from 13 to 26 parameters in the example. Con-
straints on exposure model parameters may increase efficiency
and power for the main hypotheses (G, E or G x E tests),
but could induce bias in parameters of interest if they are in-
correctly assumed. Model evaluation strategies are available
that may help select which assumption A0-A3 fits the data
best (Bentler and Hu, 1995). However, this task may not be
straightforward because many fit criteria exist for LV mod-
els. Furthermore, testing all parameter constraints may incur
a high type 1 error rate, because the study will unlikely be
powered to detect significant differences across genotypes in
all model parameters.

3. Parameter Estimation

Although various estimation procedures have been proposed
for LV models (Bollen, 1989), full MLE is the most common
estimation procedure given its wide availability in software
packages. We review MLE and describe the implementation
of shrinkage estimators that combine MLE estimates. Using
shrinkage estimators may be a more suitable approach for
parameter estimation. The strategy would be to fit the most
restrictive model A0 and the most flexible model A3 (or A2
depending on sample size), and then use shrinkage to derive
the final composite estimates.

3.1 Maximum Likelihood Estimation

Let Y= (Y;,,E])" and 6 be the vector of all model
parameters. Assuming that €, & and §; are nor-
mally distributed, and integrating over the LV, the
joint marginal distribution of the observed outcome
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and exposures, f(Y!|G;=g¢,Z;,W;;0), is a multivari-
ate normal density, with moments given by E(Y |G, =
9,Zi,Wi;0)=v; + A} (o, + Wiaw)+ B, ,Z; and Var
(Y |Gi=9,Z,W;;0)=A,®,(A;)" + O, where

ﬁ Ny ﬁ /.
: 0,9 7 A; _ U,g 7
Vg \ A,

‘*
[

/BZ,g 02 lep
By, = and @ =
. Oqu ‘ Opxl ®!/
The log  likelihood of 6 is  then, {(0)=

S log f(Y]|Gi =g, Z:,W;;60).  Parameter esti-
mates are obtained by maximizing £(@), or equivalently,
solving the score equations S(0) = Zz\:l Zf:o S; =0, where
S; =0log f(Y:"|Gi =9,Z;,W;;0)/00 is the contribution
of the ith observation to the score. Variances for parame-
ters can be obtained by inverting the information matrix,
I, = —E(9%0(0)/0600"), or by computing robust variances

-~

var(0) = B'AB ™", where A=1/NY" 37 'S8 and
N G

B=1/NY ", Zg:l] 95S,/08.

3.2 Shrinkage Estimation

Shrinkage estimators have been used in outcome-dependent
sampling based studies as a way to balance bias and efficiency
gains from assuming G-E independence while using a retro-
spective likelihood formulation of the model. Shrinkage ap-
proaches will enhance efficiency only when the retrospective
model improves efficiency. A typical formulation will factor-
ize the retrospective likelihood p(G, E, Z|Y; 61, 04, 03) as
(Y| G, E, Z 0)p(G| E, Z; 02)p(E, Z; 05)/p(Y; 01, 02, 03) with
0, being the outcome model parameters, 6, and 63 describing
the G-E dependence and exposure—covariate associations, re-
spectively, and the G-F association reflected through the term
p(G| E, Z; 05). Because p(Y; 0y, 05, 03) = > ¢ pzp(Y|G, E,
Z, 61)p(G| E, Z; 02)p(E, Z; 85) (in the denominator) depends
on the specification of p(G| E, Z; 6,), the MLE of #; depends
on the assumed model for the G-F association conditional on
covariates. It has been shown (Chatterjee and Carroll, 2005)
that assuming conditional G-FE independence, p(G| E, Z; 6,)
= p(G| Z; 0,), in case—control studies leads to large efficiency
gain for estimating the G x F interaction parameter in the
outcome model p(Y| G, E, Z; 6,). However, under violation
of the independence assumption, these estimators are biased.
Shrinkage estimators then arise as a weighted average of two
estimators: one obtained under dependence and the other ob-
tained under independence; the weights are chosen in a data-
adaptive fashion and reflect the uncertainty around the con-
ditional G-FE association (Mukherjee and Chatterjee, 2008).
Chen et al. (2009) propose a class of shrinkage estimators ap-
plicable, in principle, to estimation problems beyond G x E
effects. Shrinkage estimates can be motivated from an Empir-
ical Bayes (EB) perspective.

In a cohort or cross-sectional study, maximization of the
joint likelihood with respect to outcome model parameters,
even from modeling the joint distribution p(Y, G, E|Z; 6,
0, 03), will be independent of the specification of p(G, E| Z;
05, 05). Because of the lack of outcome dependent sampling,
and thus absence of conditioning on Y, the log likelihood be-
comes a sum of two terms that can be maximized separately.
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However, the proposed LV framework allows us to incorpo-
rate constraints on the G-E association (Section 2.2), rais-
ing the possibility of gaining efficiency. In the LV framework,
estimation of G-F model parameters cannot be completely
disentangled from estimation of outcome model parameters
due to integration of the likelihood over the LV. The extent
of efficiency and power gains for testing of outcome param-
eters due to such constraints depends on design and effect
size settings that we investigate in our simulation study. Al-
though extensive work exists on using G-F independence as-
sumptions in case—control studies, this article is the first to
propose and study the implications such assumptions in an LV
setting.

We follow Chen et al. (2009) to describe how estimates ob-
tained under assumptions A0 and A1 — A3 can be combined.
Denoting the two estimates by 64y and 6 4.,

/éshrink = 5/—1* + KN[V(/G\AU - 544 *) (5)

is the shrinkage estimator, where A* is any of A1 — A3
VW + 99 )", with § =
040 — 0,4, and V is the estimated asymptotic covariance ma-
trix of 1/) Alternatively, one may use a diagonal weight ma-
trix Kow, where the kth diagonal element is V. /(Vk + wk Y

being the kth diagonal element of V and wk the kth compo-
nent of 111 Choosing Kcw leads to “component-wise (CW)”
shrinkage, because the weights used for a given component of
O depend only on the variance and bias related to that
component; we call these estimates £ Bcw. In contrast, using
Knvy leads to so-called multivariate (MV) shrinkage (Chen
et al., 2009), which we refer to as EByy. In both cases we
use superscripts to denote which estimates were combined,
e.g., EBR?W denotes combination of estimates obtained un-
der assumptions A0 and A3. Note that (5) is only defined for
parameters that are common to both models, and we have
slightly abused notation by using 0 4. in (5) to only represent

and shrinkage weights are Kyy =

the subset of parameters that are equivalent to those in 6 4.

Additional considerations about shrinkage estimators are
worth mentioning. First, CW shrinkage may be desirable in
terms of efficiency gain, compared to multivariate shrinkage
in small samples, because large sampling error in the off-
diagonals of V' undermines the potential efficiency gain from
multivariate shrinkage (Chen et al., 2009). Second, the form
of the weights imply that E By estimates will be more prone
to favoring the more flexible models. To see this, note that the
component-wise shrinkage weights (the kth diagonal element
of Kcw) can be rewritten as 1/(1 + x?), where x? = QZE/‘/}A
is the ratio of the squared difference in the kth parameter be-
tween the two models divided by variance of the difference.
The MV shrinkage weights can be similarly rewritten: 1/(1

+ x?) where x2 = 17;‘7*11//;. X and x? can be interpreted as
a bias—variance ratios; when they are smaller than one, the
EB estimates will lean toward the simpler model. In contrast
to CW shrinkage, the MV shrinkage weight is the same for
all parameters, but the ratio x? is a weighted sum of all the
bias—variance ratios for all model parameters. Hence, in MV
shrinkage, a given parameter might be shrunk given not only
its own bias—variance ratio x} but also given bias-variance
ratios for other parameters. Furthermore, X7 has expectation
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(approximately) 1 when independence holds, whereas x? has
expectation equal to the number of model parameters esti-
mated with assumption AO0. Hence, MV shrinkage weights
1/(1 + x*) will almost always be small, leading to EB es-
timates closer to those from more flexible models. Third, the
weights summarize information about model fit in the sense of
comparing differences in estimated parameters. If the models
fit equally well, then corresponding parameters would likely
be similar. Large differences in corresponding parameters in-
dicate a poorer fitting model (e.g., constrained model). Hence,
shrinkage estimates can help assess model adequacy, with
smaller weights for the constrained model implying the more
flexible model is preferred. Finally, both CW and MV shrink-
age estimators will asymptotically converge to those from the
more flexible model.

Chen et al. (2009) provide formal arguments to derive the
variance for /ésy‘,.ir,k. H/guristically, the variance can be
obtained by treating 0s/h\rink as a function of two ran-
dom variables, 0,4, and 64., with joint covariance matrix
Y= Var((gzo,/e\;) ). Letting h(040,04.) =04.+V(V +
PYp ) lap, with 9 = 04— 04,, and employmg the multi-
variate Delta theorem, then Var(&h,mk) ~ HTEH Where
H = 0h(0.40,04.)/0(040,01.)|, 5 , 5 -Matrix s =

A0TYA0,VA«=V A

D'CcD " is constructed using the sandwich- vamance for-
mula where C = 1/NZ PP and D = 1/NZ oP, /00,
and P; = (8,5 a4.)" is a stacked vector of hkehhood score
contributions from each model.

3.3 Simpler Estimation Strategies

Instead of positing a latent exposure model, (1)-(4), one may
fit separate multiple linear regression models (MLR) on each
exposure measure, or one regression on their first principal
component (PCA), and its interactions with G. We include
these simple approaches in Sections 4 and 5.

4. Simulation Studies

We conducted a small-scale simulation study to examine the
finite sample properties of estimators under various settings
of the true data generating model using [ = 1, p = 4, and
two genetic classes. Genetic class was generated as a binary
variable with prevalence 0.2, similar to our data example. Be-
cause there are only two gene classes and one latent expo-
sure, in this section (and Section 5) we denote the gene effect
among unexposed, the exposure effect among wild types, and
the interaction parameters as B¢, By, Boxv. We investigate
the estimators’ properties under two scenarios of the G-F as-
sociation: independence (A0) and dependence (A3). We used
either By = B¢ = Bexv = 0 or By = 1, B¢ = Boxv = 2
(i-e., standardized effects of 0.2, 0.4, 0.4, respectively, because
outcome variance was o2 = 52). See Supplementary Materials
for full design.

Type I error: When G and E are independent, all approaches
retain rejection probabilities (P(R)) of approximately 0.05
for tests at the 0.05 significance level (Table 1, scenario AO0).
When the data are generated under G-E dependence (Table
1, scenario A3), MLE estimates derived assuming indepen-
dence (A0) have inflated type I error probabilities for EU and

Bg. While EBcw retain inflated type I error rates, By
estimates do not.
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Table 1
Bias, variance ratios (Var.R), MSE, and rejection probabilities (P(R)) for outcome model parameter estimates under two
scenarios of true exposure model parameters. Outcome model parameters set at By = Bq = Baxy = 0, 0° = 5; sample size was
N = 350, with 5009 replicates.

Data Est. ,73’\(] 3(: EG xU

model method® Bias VarR® MSE P(R) Bias VarR"® MSE P(R) Bias VarR"® MSE P(R)

A0 A0 0.00  1(Ref) 0.15 0.063 —0.05 1(Ref) 0.46 0.048 —0.04 1(Ref) 0.65 0.036
Al 0.00 (1.02) 016 0.059 —0.05 (1.05) 046 0.044 —0.04 (1.10) 0.69  0.038
A2 0.00 (1.01) 015 0059 —0.04 (1.11) 048 0.042 —0.05 (1.15) 0.72  0.036
A3 0.00 (1.02) 015 0061 -0.04 (1.12) 049 0.042 —0.04 (1.15) 0.74  0.044
EBY, 0.00 (1.02) 015 0.061 —0.05 (0.99) 046 0.046 —0.04 (0.99) 0.6  0.050
EBOCQW 0.00 (1.02) 0.15 0.069 —0.04 (1.02) 0.46  0.046 —0.04 (1.01) 0.66 0.050
EBY,, 0.00 (1.02) 015 0.069 —0.05 (1.03) 046 0044 —0.04 (1.04) 067 0.052
EB?\}[V 0.00 (1.03) 0.16  0.063 —0.05 (1.02) 0.46  0.044 —0.04 (1.04) 0.69 0.046
EB(II\%V 0.00 (1.03) 0.15 0.063 —0.04 (1.09) 0.48 0.044 —-0.05 (1.08) 0.71 0.044
EB?\‘;}V 0.00 (1.03) 0.15 0.063 —0.04 (1.09) 0.48 0.042 —-0.04 (1.07) 0.73 0.055
E1° 0.00 (0.23) 0.03 0.044 —-0.04 (1.38) 0.64  0.052 0.00 (0.24) 0.15 0.048
PCA‘ 0.00 (0.23) 0.03 0063 -0.04 (1.02) 046 0.048 001 (0.24) 015 0.042

A3 A0 0.03  1(Ref) 0.18 0.126  —0.07  1(Ref) 0.77  0.142 0.03  1(Ref) 0.52 0.043
Al 0.04 (2.59) 0.32 0.038 —0.10 (2.46) 1.15 0.063 0.02 (1.21) 0.66 0.050
A2 0.03 (1.42) 0.18 0.036 —0.08 (2.07) 0.95 0.056 0.03 (1.08) 0.57 0.043
A3 0.03 (1.27) 0.16 0.038 —0.09 (2.26) 1.04  0.047 0.04 (1.19) 0.63 0.050
EB%lW 0.03 (1.38) 0.23  0.020 —0.07 (1.18) 0.85 0.101 0.02 (1.81) 0.56 0.007
EB%W 0.03 (0.83) 0.18 0.171  —-0.07 (1.10) 0.80  0.119 0.03 (1.65) 0.52 0.011
EB‘éW 0.03 (0.84) 0.17  0.153 —0.08 (1.16) 0.82  0.106 0.03 (1.61) 0.53 0.018
EB(IJ\}IV 0.04 (2.59) 0.32 0.036 —0.10 (2.37) 1.15  0.074 0.02 (1.16) 0.66 0.050
EB(I]\%[V 0.03 (1.39) 0.18 0.050 —0.08 (1.98) 0.95 0.056 0.03 (1.04) 0.57 0.054
EBY,, 0.03 (1.25) 016 0054 —0.09 (2.14) 103 0059 004 (1.13) 0.63 0.061
E1° 0.01 (0.28) 0.04 0.070 —0.00 (1.97) 0.87 0.052 —0.01 (0.23) 0.12 0.047
PCA“ —0.01 (0.36) 0.04 0.038 —0.05 (1.57) 0.75 0.056 —0.01 (0.24) 0.12 0.061

2 A0, A1, A2, A3 denote MLE; A1 not included because combining A0 and A1” resulted in singular. variance matrix X (see Section 5).

bRatios of empirical variances, comparing to variance of AQ.
“Multiple regression using one exposure marker, Fj.

dMultiple regression using first PCA of (E1, Ey, E3, Ey) as exposure marker.
5 4.6% (A0) and 7.0% (A3) data sets excluded to lack of convergence or unstable results, see Supplementary Materials for details.

Efficiency/power: When G-E independence holds (Table 2,
scenario A0), gains in efficiency for E(; and B\(;Xg estimated
from AO compared to A1-A3 are very clear: the variance ratio
(Var.R) for f¢«y estimated under A3 versus A0 is 1.90. Effi-
ciency gains translate to large power gains: power for B\(;X[; is
0.44 under A3 and 0.66 under A0. Compared to A3, EBX,
and EB%ZV have lower variance ratios (1.46 and 1.74, respec-
tively) and higher power (0.53 and 0.49, respectively). The
PCA approach has power comparable to that from A0, de-
spite the bias in By and Bg v -

Bias: When G-FE independence does not hold, all parameter
estimates have large biases, except those from A3 and EBR%V
(Table 2, scenario A3). Of the MLEs, bias is larger when A0
or Al are assumed; further, A1 versus A0 does not result in
uniformly less (absolute) bias for both Gy and Sgyp. Simply
relaxing the assumption of different mean and variance for the
LV, but not the measurement model, may not be sufficient to
reduce bias, and could in fact increase it.

EBcw estimates are approximately half way between A0Q
and the more flexible models, although the exact distance
varies depending on the magnitude of the coefficient. As such,

they retain some of the bias of A0 estimates when G-E de-
pendence exists. For E'BglW7 the bias persists and is larger
for By and Bgxy than the bias in A0 for these parameters. In
contrast, EBI‘{/%V and EB},, are generally closer to the more
flexible model (see Section 3.2), and mostly eliminate the bias
in AQ.

As would be expected from the measurement error litera-
ture, parameter estimates using only El1 or PCA as the pre-
dictor in multiple regression analysis are biased, i.e., ﬂb and
ﬁp «u are attenuated. However, note that ﬁc have large bias as
well, due to the G-E dependence and the measurement error in
E1 or the first PC in measuring exposure. Measurement error
in one predictor (e.g., F;) can induce bias in regression coeffi-
cients of covariates measured without error (e.g., G) that are
correlated with the error-prone predictor (Budtz-Jgrgensen et
al., 2003a). The bias in Bp can be in either positive or nega-
tive under the alternative hypothesis (Huang, Wang, and Cox,
2005), although estimates will be unbiased when there is no
exposure effect (8y = Bexy = 0, Table 1).

MSE: EBg},, estimates eliminate the bias in A0, but are
less efficient; EBOW retain some bias, but achieve smaller
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Table 2
Percent bias, variance ratios (Var.R), MSE, and rejection probabilities (P(R)) for outcome model parameter estimates under
two scenarios of true exposure model parameters. Outcome model parameters set at By = 1, Bg = Baxy = 2, 02 = 5; sample
size was N = 350, with 500% replicates.
Data Est. E[ B(; B\(; U
model method* Bias% Var.R® MSE P(R) Bias% Var.R® MSE P(R) Bias% Var.R® MSE P(R)
A0 A0 —1.3% 1(Ref) 017 0.74 34% 1(Ref) 047 085 —1.4% 1(Ref) 0.74 0.66
Al ~1.0% (1.02) 018 0.74 3.0% (1.14) 054 078 1.3% (1.18) 0.83  0.62
A2 -1.0% (1.03) 0.18 0.74 3.0% (1.73) 0.74 0.63 31% (1.74) 1.06 0.47
A3 —-0.7%  (1.04) 0.18 0.74 2.9% (1.76) 0.75 0.63 3.1%  (1.90) 1.18 0.44
EBY,, ~12% (1.01) 017 0.73 32% (1.08) 050 082 —03% (1.08) 0.76  0.64
EB&y -1.2% (1.02) 0.17 0.74 34% (1.45) 0.56  0.71 —-0.5% (1.36)  0.82 0.56
EBY,, —1.0% (1.02) 017  0.75 33% (147) 056 0.72  —1.1% (1.46) 085  0.53
EBY.,, ~1.0% (1.02) 018 0.73 3.0% (1.12) 054  0.79 1.3% (1.13) 0.83  0.64
EBY,, -1.0% (1.03) 0.18 0.73 3.0% (1.66) 0.73 0.64 3.1% (1.64) 1.04 0.50
EB?\;Q’[V —0.7%  (1.04) 0.18 0.73 2.9%  (1.67) 0.72 0.65 2.8% (1.74) 1.14 0.49
El° —65.4% (0.22)  0.46  0.46 3.2% (1.33) 049 0.83 —63.6% (0.23) 1.79 0.4l
PCAY  —53.0% (0.22) 031 0.74 33% (0.94) 047 086 -51.5% (0.23) 1.24  0.65
A3 A0 12.1% 1(Ref) 020 0.86  357% 1(Ref) 124 094 —27.6% 1(Ref) 0.92  0.48
Al 45.6%  (2.57) 055 0.78 —18.7% (2.57) 137 035 —42.0% (1.24) 1.50 0.27
A2 8.9% (1.43) 019 079  103% (3.79) 1.96 051 —135% (1.86) 121  0.40
A3 3.7% (1.26) 0.17  0.80 —1.4% (5.18) 2.14 0.41 0.9% (2.65) 1.34 0.39
EB%IW 32.8%  (2.51) 0.43 0.72 0.0% (2.83) 1.23 044 —-37.5% (1.94) 1.30 0.19
EB%,, 10.4% (0.94) 019 088  284% (3.47) 158 067 —21.3% (1.98) 094 0.1
EB&w 7.4% (0.95) 0.18 0.86 21.8% (4.45) 1.56  0.57 —14.6% (2.48) 0.93 0.30
EBYy 45.5% (2.54) 055 077 -—-18.6% (2.55) 1.36 0.37 —42.0% (1.22) 1.51 0.27
EBY,, 9.0% (1.38) 0.19 0.79 10.7% (4.03) 193 050 —-13.7% (1.97) 1.20 0.39
EBYy 3.8% (1.23) 017 0.79 —-0.7% (4.89) 2.09 0.44 0.4% (2.50) 1.31 0.41
E1° —-63.5% (0.27) 044 051 110.7% (1.97) 559 099 -78.0% (0.23) 2.59 0.23
PCA¢ —44.2%  (0.33)  0.23  0.78 37.3% (1.52) 129 0.88 —63.7% (0.23) 1.77 048

4 A0, A1, A2, A3 denote MLE; A1" not included because combining A0 and A1~ resulted in singular variance matrix ¥ (see Section 5).

dethS of empirical variances, comparing to variance of A0.
“Multiple regression using one exposure marker, Fj.

dMultiple regression using first PCA of (E1, Ey, E3, Ey) as exposure marker.
§3.6% (A0) and 2.4% (A3) data sets excluded to lack of convergence or unstable results, see Supplementary Materials for details.

mean squared error (MSE); hence, a better bias—efficiency
tradeoff. For example, although EB W incurs 15% bias, its
MSE is 0.93, in contrast to an MSE of 1.31 for EB}3,. EBcw
estimators achieve a better bias—variance compromise in small
samples compared to EBypy .

Additional simulation results for the case of null main ef-
fects and small interaction parameter: 3y = 0, f¢ = 0, and
Bexy = 0.1 demonstrate that efficiency gains in A0 versus
A3 are still observed (Var.R = 1.5). Although to a smaller
degree, bias in E(;x £ persisted when incorrectly assuming A0
(11% versus 3% bias in A3).

Recommendation: For hypothesis testing alone, PCA ap-
proaches may be just as good as using a full LV model because
they maintain type I error (Table 1) and have power compa-
rable to A0 (Table 2). However, in terms of both bias and
efficiency, using EB03 is our recommended estimation strat-
egy. Although EBY; has slightly higher MSE than EB&y,
it yields unbiased estlmates provides better control of type I
error, and has higher power than EBE,

5. Modeling Lead Exposure, Iron Metabolism Genes,
and Birth Weight

We use data from the first ELEMENT cohort, where the fol-
lowing prenatal lead exposure biomarkers were collected on
the mother and child: maternal blood lead levels at delivery
and umbilical cord blood lead as well as maternal bone lead
levels (patella and tibia) (Gonzalez-Cossio et al., 1997). Birth
weight is the health outcome of interest in our analysis. To
be included in this analysis, children had to be genotyped,
and have measured birth weight and least one of the four
prenatal exposure biomarkers (N = 406). Missing data on co-
variates was imputed five times (Raghunathan, Solenberger,
and Van Hoewyk, 2002). Parameter estimates were obtained
from the imputed data sets and combined across the imputed
data sets according to standard formulae (Little and Rubin,
2002, p. 86).

Deleterious effects of prenatal lead exposure on birth weight
have been demonstrated (Gonzalez-Cossio et al., 1997), and
the main effects of lead exposure in this sample using the
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Table 3
Outcome model parameter estimates, robust standard errors, and t-statistics obtained using MLE under assumptions A0-A3 and
shrinkage-based estimates combining assumptions. Coefficients By and Bg <y have been rescaled to represent changes in birth
weight(g) associated with an increase of 10ugPb/g in patella bone mass. Models are adjusted for maternal age, parity, education,
and marital status.

Est. method™" By Se(ﬁu‘) Ty B 86(3(;) Tq Be v 56(5(; <U) Taxu
A0 —80.59 29.97 —2.691 —97.75 51.30 -1.91 92.42 63.50 1.46
A1 —79.51 29.79 —2.671 —99.09 51.45 —-1.93 91.92 62.56 1.47
Al —98.44 39.54 —2.49f —98.47 51.30 —1.92 103.09 52.71 1.96
A2 —85.14 33.75 —2.521 —98.83 51.42 -1.92 90.66 53.57 1.69
A3 —86.62 35.01 —2.47" —100.74 51.41 —1.961 105.00 49.24 2.131
EBgw —80.05 29.76 —2.691 —98.02 51.31 —1.91 91.90 63.25 1.45
EBgw —91.12 40.15 —2.27f —97.89 51.31 -1.91 101.95 61.06 1.67
EB&w —81.73 32.13 —2.541 —97.90 51.24 —1.91 92.58 60.07 1.54
EB&y —82.40 33.04 —2.49f —98.93 51.37 —-1.93 94.63 62.10 1.52
EBy —85.02 33.64 —2.531 —98.80 51.40 —1.92 90.70 53.76 1.69
EB{}y —86.28 34.66 —2.49f —100.58 51.39 —1.961 104.30 49.81 2.09¢
E¢ —41.58 15.06 —2.76 —191.50 71.07 —2.69' 60.59 31.19 1.94
PCA1 —46.58 15.34 —3.041 —187.92 69.27 —2.711 58.52 30.04 1.95

01x

abEgtimates from models A0, A1, and A1, were not sufficiently distinguishable from each other; hence EB%V and EBy 3y, could not be obtained

(Section 5).
“Multiple regression using patella lead, Fj.

dMultiple regression using first PCA of Ej, E», E3, Ej as exposure marker.

 pvalue < 0.05.

LV model are significant (ﬁb = —54.12786(3\5') =25.1,Ty =
—2.16, Supplementary Materials Table 2). However, individ-
uals with at least one iron metabolism gene variant may be
protected against reduced birth weight due to lead exposure
(Cantonwine et al., 2010). However, because iron metabolism
genes appear to up-regulate iron and lead absorption (Hop-
kins et al., 2008), there may be dependence between genotype
status and lead exposure. We use two SNPs related to iron
metabolism, variants of the hemochromatosis gene (C282Y
and H63D), and dichotomize genotype into wild type for both
(aa and bb) or variant for any (Aa, AA, bB, or BB); both
SNPs were in Hardy—Weinberg equilibrium, and 83 partici-
pants (20%) were classified as variants.

Increasing lead exposure among wild_types is associated
with decreased birth weight (negative Sy in Table 3). The
largest point estimate is obtained under assumption Al,
whereas the lowest is obtained using MLR with the observed
patella lead measure as the exposure marker. Such large at-
tenuation in the MLR estimate is due to measurement er-
ror of patella lead in capturing prenatal exposure. Similarly,
the MLR effect estimated from a PCA-derived exposure sum-
mary is attenuated, consistent with the simulation studies.
Among the MLE and EB estimates, those obtained from as-
sumptions A0 and A1* have the smallest standard errors, that
increase with increasing flexibility of the model as expected.
The PCA and MLR standard errors are much smaller, and
therefore, even though the point estimates are also largely at-
tenuated, the test statistics are similar to those for the MLE
estimates. Component-wise shrinkage estimates are approx-
imately halfway between those from A0 and those from the
more flexible models A1*~A3. EB{,y is closer to the estimates
obtained assuming A1, but EB% and EBE,, are closer to

the estimates from A0 than from those obtained with A2 or
A3. In contrast, EBY,, and EBY},; are closer to the estimates
from A2 or A3 compared to those from A0. CW shrinkage fa-
vors simpler models because it only trades off bias—variance
in one parameter at a time, whereas MV shrinkage favors the
more flexible model because it simultaneously considers dif-
ferences in all model parameters (Section 3.2).

Estimates and standard errors for //3’\@ are fairly constant
across G-F assumptions and EB estimates. However, g from
MLR and PCA are much higher (more negative) than those
from MLE. This can be due to bias arising due to exposure—
gene correlation and exposure measurement error (Budtz-
Jorgensen et al., 2003a; Huang et al., 2005).

Being variant for iron metabolism genes is protective
against reduced birth weight due to lead exposure (8¢ <y are
positive), as hypothesized (Cantonwine et al., 2010). Whereas
assumptions about G-F independence did not ultimately alter
the conclusions for the main effect among wild types (e.g., all
t-test statistics Ty < —2.4 in all assumptions), conclusions
about B\GX[; are impacted by the assumed G-FE model. The
most flexible model yields largest estimated effects (105.0 g
with A3 versus 92.4 g with A0) and the standard error is
lower (49.2 in A3 versus 63.5 in AQ), resulting in ¢-statistics
for the G x U effect as low as Tgxpy = 1.46 (40) and as
large as 2.13 (A3). This is likely due to a higher degree of
overall model residual variance explained in A3 due to an in-
creased number of parameters (i.e., lowest —2 log likelihood,
Table 4).

Differences in MLE estimates for the outcome parameters
can be largely explained by a few key differences exposure
model parameters by genotype (Table 4). While there is lit-
tle difference in average exposure levels between wild types
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Table 4
Exposure model parameter estimates and robust standard errors obtained under assumptions A0-AS8 described by Figure 1
A0 Al Al A2 A3

Model for LV Est.(SE) Est.(SE) Est.(SE) Est.(SE) Est.(SE)
Qo 1.536 (0.078) 1.519 (0.086) 1.526 (0.081) 1.506 (0.087) 1.506 (0.086)
Yy 0.084 (0.178) 0.050 (0.182) 0.148 (0.207) 0.148 (0.208)
@, 1.230 (0.312) 1.253 (0.317) 0.835 (0.218) 1.090 (0.306) 1.056 (0.333)
o, 1.645 (0.489) 1.440 (0.460) 2.112 (0.916)
Measurement model
Estimates for wild types
Vo 1.031 (0.053) 1.021 (0.057) 1.024 (0.056) 1.040 (0.057) 1.040 (0.056)
V3 1.759 (0.024) 1.757 (0.025) 1.758 (0.025) 1.756 (0.027) 1.756 (0.027)
vy 2.043 (0.023) 2.041 (0.023) 2.042 (0.023) 2.034 (0.026) 2.034 (0.026)
A2 0.553 (0.126) 0.542 (0.124) 0.680 (0.136) 0.527 (0.136) 0.558 (0.157)
Az 0.140 (0.036) 0.138 (0.035) 0.156 (0.036) 0.129 (0.041) 0.131 (0.043)
Ay 0.125 (0.032) 0.124 (0.032) 0.140 (0.033) 0.114 (0.037) 0.116 (0.039)
O 1.172 (0.283) 1.148 (0.289) 1.401 (0.219) 1.236 (0.262) 1.258 (0.311)
O9 0.710 (0.099) 0.717 (0.097) 0.624 (0.103) 0.671 (0.096) 0.627 (0.104)
O3 0.218 (0.017) 0.218 (0.017) 0.218 (0.017) 0.218 (0.017) 0.217 (0.019)
Oy 0.194 (0.015) 0.194 (0.015) 0.194 (0.015) 0.195 (0.015) 0.197 (0.017)
O34 0.168 (0.014) 0.168 (0.014) 0.168 (0.014) 0.168 (0.014) 0.168 (0.016)
Estimates for variants
Vo 0.880 (0.156) 0.920 (0.139)
V3 1.746 (0.059) 1.751 (0.056)
v, 2.053 (0.055) 2.056 (0.051)
Ao 0.768 (0.162) 0.496 (0.205)
A3 0.180 (0.058) 0.142 (0.063)
As 0.161 (0.053) 0.136 (0.058)
O1; 0.612 (0.809)
O 1.077 (0.259)
O3 0.226 (0.040)
Ou 0.183 (0.032)
O3y 0.171 (0.033)
Model fit criteria®,(criterion for good fit)
Number of parameters® 23 24 25 31 36
—2LL (smaller is better) 12,302.8 12,302.6 12,296.6 12,291.4 12,287.0
AIC (smaller is better) 12,348.8 12,350.6 12,346.5 12,353.4 12,359.0
BIC (smaller is better) 12,440.9 12,446.7 12,446.6 12,477.6 12,503.2
CFI? (>.95) 0.963 0.962 0.970 0.968 0.967
TLI? (>.95) 0.961 0.959 0.967 0.962 0.958
RMSEA! (<.05) 0.041 0.042 0.038 0.041 0.043

& Parameters estimates for variants are the same for as for wild types unless shown here.
b For the exposure and outcome model combined, underlined values denote better fitting model.

¢ Including outcome model parameters.
4 See Bentler and Hu (1995) for definitions.

and variants (small 7, ), the variance of the LV is twice as
high among variants @gzl = 2.11) than among wild types
(69:0 = 1.05). Residual variances for F; and Fy, ©1; and Oy,
also appear to differ between genotypes (51% and 72% differ-
ence, respectively), as does Ay (17% difference). This deserves
further study—e.g., differences in ©1; and @5, might be due to
maternal genotypes, which are inherently correlated to infant
genotype. Such investigation is out of the scope of the current
work, but this finding highlights the utility of LV models in
elucidating potential biological pathways.

In this example, implementing multivariate shrinkage was
possible only for combining estimates from A0 with those from
A3 and A0 with A2 estimates. MV shrinkage using A0 and A1l
(and A1*) estimates resulted in a numerically singular vari-

ance matrix 3 = Var((/é; 05 a:*)T), likely due to measurement
model parameters being too similar (and correlated) when
only making small changes in the LV model (3). Although in
the example we implemented all approaches for exposition,
and even though standard model fit criteria (Table 4) would
point toward model Al being a better model in this particu-
lar example, as a general strategy we prefer outcome model
parameters estimated using the EBRfIV approach. This ap-
proach avoids the potential for increased type I errors due
to fitting multiple models before arriving at a final model,
and minimizes bias in outcome model parameters that may
persist due to differences in exposure model parameters as-
sociated to genotype that may not be declared “significantly
different” due to lack of power.
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6. Discussion

The presence of multiple correlated measures of exposure ex-
acerbates existing challenges in G x E studies. The current
article is the first step toward an integrated framework where
LV models are used to reduce the dimensionality of the ex-
posure measures, thereby limiting the number of tests made
and boosting power. Due to the general model formulation, it
is easy to accommodate measurement errors in predictors, a
pervasive problem in environmental epidemiology, and reduce
multicollinearity concerns. Furthermore, a major intuitive ap-
peal of the LV approach is that it provides not only estimates
of the disease model parameters, but also a clearer picture of
the underlying G-E association and helps capture the essence
of the scientific problem. For a genetic marker and exposure
which may have a common metabolic pathway, this model
is more meaningful to practitioners than a multiple regres-
sion model relating Y; to G; and E;, which is not informative
about the association between G; and E;.

Because of the flexibility afforded by LV models, one chal-
lenge is the potential for model misspecification. In this partic-
ular application of LV models, we described various specifica-
tions of the G-F association, and discussed how restrictions in
the G-F model boost efficiency of the G x F associations, but
may incur bias when such restrictions are incorrectly made.
‘We proposed a strategy where one would fit a restricted model
and the most flexible model afforded by the data, and then
combine estimates based on shrinkage ideas. The proposed
approach yields estimates that data adaptively compromise
between bias and variance, and avoids having to fit and re-
fit models until a best-fitting model is found. Alternatively,
estimation could proceed in two stages. First, the most flex-
ible model could be estimated, and genotype differences in
exposure model parameters tested. In the second stage, pa-
rameters that were found to not differ by genotype would be
constrained to be equal across genotypes. However, such two-
stage approach would also suffer from inflated type I error
(Mukherjee and Chatterjee, 2008). Yet another alternative,
with a similar flavor to what we proposed here, is to average
parameter estimates obtained under various G-E assumptions
according to prior information of the G-E association (Li and
Conti, 2009) or using model fit criteria as weights (Hjort and
Claeskens, 2003). Further still, one could use LASSO or Ridge
penalties to select which exposure model parameters vary by
genotype (Leoutsakos et al., 2010). Lastly, extensions of the
methods proposed could include using a continuous genetic
risk score @, such that a larger number of genetic categories
can be (indirectly) included without collapsing to a few cat-
egories due to limited sample size. Such extension may not
be straightforward because the multiple group analysis used
here would not apply. Compromise estimators like the ones
presented have not been used in the LV modeling literature,
but can be a tool to achieve improved modeling strategies and
robustness in LV models in applications even beyond G x E
studies.

It is possible that one may use the proposed approach for
screening G x FE effects in genome-wide interaction studies.
In our simulation studies, the estimation procedure takes ap-
proximately 0.36 minutes per data set in a desktop computer
with 3.2 GHz Intel processor and 1 GB RAM. In the advent

475

of cluster and parallel computing the proposed approach is
scalable to genome-wide studies. Nevertheless, if the intent
is solely testing, and not estimation, the PCA approach may
be suitable, because, as shown in the simulation studies, it
had comparable power to the proposed shrinkage estimates,
despite substantial bias. Employing dimension-reduction ap-
proaches to the environmental exposure data will reduce mul-
tiple testing problems because only one genome-wide scan
would be needed, instead of one scan for each observed ex-
posure. Our methods are particularly appealing to study
G x F effects with a given environmental exposure and ge-
netic subclasses defined through genes on a related metabolic
pathway.

The availability of higher-dimensional genomic data, and
multiple continuous or categorical outcomes point to several
extensions of our work. General LV models encompass latent
class models (Skrondal and Rabe-Hesketh, 2004); hence one
could posit a latent class model for multiple genetic factors,
G;, which borrows strength from multiple loci and can min-
imize the chance of false positives (Schumacher and Kraft,
2007). Recent proposals (Chatterjee et al., 2006) pose gene—
gene interaction models based on an LV approach, and can be
extended to reduce the dimension of gene-gene-environment
interaction models. Similar to what we have done for the ex-
posure model in the present article, a latent outcome model
to summarize correlated multivariate or longitudinal outcome
data Y; can be proposed. One would summarize multivariate
correlated outcomes by latent traits, i.e., express Y; in terms
of latent outcomes f; (e.g., Budtz-Jgrgensen et al., 2003b),
and estimate model parameters for a regression of f, on U;
and G;. When Y'; involves repeated measures over time (e.g.,
growth curves), the model for the observed multivariate vec-
tor Y; for subject i, measured at multiple time points may
contain a random slope and random intercept, which are in-
herently latent variables. The random effects can be modeled
as dependent on U; and G; and other covariates, such that
inferences on how exposure and genes modify growth rates
can naturally be obtained. Moreover, multivariate observa-
tions reflecting LVs repeated over time (Roy and Lin, 2000),
and time-to-event data (Proust-Lima et al., 2009) can be in-
corporated. In summary, extensions of the present model can
involve summarization of all three data components: Y, G,
and FE.

7. Supplementary Materials

Supplementary Materials referenced in Section 4 are available
under the Paper Information link at the Biometrics website
http://wuw.biometrics.tibs.org.
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