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Abstract: Complex traits result from an interplay between genes and environment. A better understanding of 
their joint effects can help refine understanding of the epidemiology of the trait. Various tests have been pro-
posed to assess the statistical interaction between genes and the environment (G × E) in case-parent trio data. 
However, these tests can lose power when the form of G × E departs from that for which the test was devel-
oped. To address this limitation, we propose a data-smoothing approach to estimate and test G × E between 
a single nucleotide polymorphism and a continuous environmental covariate. For estimating G × E, we fit a 
generalized additive model using penalized likelihood. The resulting point- and interval-estimates of G × E 
lead to a graphical display, which can serve as a visualization tool for exploring the form of interaction. For 
testing G × E, we propose a permutation approach, which accounts for the extra uncertainty introduced by the 
smoothing process. We investigate the statistical properties of the proposed methods through simulation. We 
also illustrate the use of the approach with an example data set. We conclude that the approach is useful for 
exploring novel interactions in data-rich settings.
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1  Introduction
Complex traits result from an interplay between genes and environment. For example, obesity is more highly 
associated with dietary fat intake in carriers than in non-carriers of the Pro12Ala allele in the PPAR-γ gene 
(e.g., Garaulet et al., 2011). Therefore, a better understanding of the joint effects of genes and environment 
can help refine understanding about the epidemiology of the trait. For dichotomous traits, one way to sum-
marize these joint effects is in terms of genetic relative risks that vary as a function of the environmental risk 
factor. Throughout, we refer to this statistical interaction as G × E.

In the case-parent trio design, genotype information is collected from unrelated affected children and 
their parents. Information on environmental or non-genetic covariates can also be collected from the affected 
children. For studying early-onset diseases such as childhood leukemia, for which controls can be difficult to 
obtain, this design is attractive because there is no need to collect controls. In effect, family-based controls, 
matched to the case for ancestry, are created by conditioning on parent genotypes in the analysis. The con-
ditioning on parents provides inference of genetic main effects that is robust against population stratifica-
tion (e.g., Schaid and Sommer, 1993). It also protects against population stratification for inference of G × E, 
 provided that the genotype is measured on a causal marker (Shi et al., 2011).

Various conditional approaches to inference of G × E have been proposed. These approaches include 
conditional logistic regression (e.g., Schaid, 1999; Cordell et  al., 2004), family-based association test of 
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gene-environment interaction (FBATI; Lake and Laird, 2004), and a log-linear modeling approach (Umbach 
and Weinberg, 2000). However, all these methods are tuned for a particular form of G × E. Conditional logis-
tic regression fits the functional form of G × E that is specified in the regression model. FBAT-I is designed to 
detect the linear component of G × E because its test statistic is a measure of linear association between the 
genetic and environmental risk factors. The log-linear modeling approach parametrizes G × E in terms of a 
dichotomized non-genetic covariate. These approaches lose resolution and power when the form of G × E 
departs from that for which the approach was tuned. As the underlying form of G × E is generally unknown, we 
present a data-driven method to explore it. We also present a test for G × E which is appropriate when nothing 
is known about the form of interaction.

The remainder of the paper is structured as follows. In Section 2, we introduce the disease model for our 
problem. In Section 3, we propose a data-driven approach to estimating G × E and a permutation approach 
to testing G × E. In Section 4, we present a simulation study that evaluates the performance of the proposed 
approach. In Section 5, we illustrate our methods on an example data set. In Section 6, we summarize and 
discuss our findings.

2  Model
Consider a single-nucleotide polymorphism (SNP) that is causal for a binary trait D (D = 1 affected). Let G 
denote the number of copies of the SNP index allele carried by an individual and E, his/her continuously 
varying non-genetic covariate. We assume mating symmetry for the parental genotype pairs such that, for 
example, a mother having no copies of an allele and a father having one copy has the same probability of 
occurring as a mother having one copy and the father having no copies. We also assume the SNP segregates 
from the parents to the child according to Mendel’s laws, with no mutation. Under these assumptions, only 
parental mating types with at least one heterozygous parent lead to variability in G, and hence are informa-
tive. Denote the informative mating types by
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for the non-index allele,
if one parent is heterozygous,and one parent is homozygous2=
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3 if both parents are heterozygous.

pG

 

(1)

We assume that, within families, G and E are independent; i.e., they are conditionally independent given Gp.
We use genotype relative risks as the basis for inference of G × E. A genotype relative risk (GRR) is the 

ratio of disease risks between individuals with one genotype and those with another genotype (Schaid and 
Sommer, 1993). We define G × E as GRRs that vary with the levels of E. For a SNP, G × E can be assessed through 
two GRRs which, for a fixed value of E = e, we define as
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The smooth functions f1(e) and f2(e) allow for G × E because GRRs can vary with E = e when f1(e)≠0 or f2(e)≠0. 
Under standard identifiability constraints on f1(e) and f2(e) discussed in §2.2, γh is the sample average of 
log(GRRh(e)) in trios informative for GRRh. In the absence of G × E (i.e., f1(e) = f2(e)≡0), log(GRRh(e))≡γh for all 
E = e. We discuss which trios are informative for GRRh in §2.1.

The parameterizations in (2) follow from a log-linear model of disease risk (e.g., Shin et al., 2010) in which

 P(D = 1|G = g, E = e) = exp{k+z1(g)γ1+z2(g)γ2+ξ(e)+z1(g)f1(e)+z2(g)f2(e)}. (3)
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In this risk model, the dummy variables z1(g) and z2(g) implement codominant genetic coding for the 
genotype G = g, with z1(g) indicating g > 0 and z2(g) indicating g = 2. However, dominant, recessive and log-
additive penetrance modes may be specified by setting γ2 = 0 and f2≡0; γ1 = 0 and f1≡0; and γ1 = γ2 and f1≡f2, 
respectively. In the absence of G × E, the nuisance parameters ξ(e) and k describe the disease risk of an 
individual with G = 0.

3  Methods

3.1  Likelihood

We adopt a likelihood approach to inference of G × E. The full likelihood can be written as

 P(G = g, E = e, Gp = m|D = 1) = P(G = g|E = e, Gp = m, D = 1)P(E = e, Gp = m|D = 1). (4)

In general, conditioning results in a loss of information. However, conditional inference of linear G × E, based 
on P(G = g|E = e, Gp = m, D = 1), is asymptotically efficient for data from case-parent trios (Moerkerke et al., 2010). 
Hence, we expect minimal loss of information from conditioning when working with the large numbers of 
trios required to characterize G × E.

To write the likelihood, we introduce a binary variable Ymjg indicating whether G = g in the jth trio from the 
mth mating type; i.e.,
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if the child has = ,1
.
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Let μmg(e)≡E(Ymjg|E = e, Gp = m, D = 1) = P(G = g|E = e, Gp = m, D = 1). Expressions for μmg(e) are presented in Table 1 
(Duke, 2007). In calculating these expressions, the nuisance parameters k and ξ(e) of the disease risk model 
(3) cancel out and hence are not estimable.

Let μ(e) = (μ10(e), μ11(e), μ21(e), μ22(e), μ30(e), μ31(e), μ32(e)). Then the log-likelihood l(μ(e)) can be written as 
a sum of contributions from trios in the informative mating types Gp = 1,2 and 3:

 l(μ(e)) = l1(μ10(e), μ11(e))+l2(μ21(e), μ22(e))+l3(μ30(e), μ31(e), μ32(e)), (5)

where the mating-type-specific log-likelihoods lm(‧) are defined below. From the definition (1) of mating types, 
trios with Gp = 1 have one parent heterozygous and one parent homozygous for the non-index allele; hence 
G = 2 is impossible. Similarly, trios with Gp = 2 have one parent heterozygous and one homozygous for the index 
allele, and hence G = 0 is impossible. All genotype values are possible for trios with Gp = 3. Therefore, l1(‧), l2(‧) 
are binomial log-likelihoods, and l3(‧) is a trinomial log-likelihood; specifically,

Table 1 Expressions for μmg(e)≡P(G = g|E = e, Gp = m, D = 1).
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(6)

where nm is the number of trios from the mth mating type, and emj is the value of the non-genetic covariate for 
jth trio from the mth mating type.

Substituting the expressions for μmg(e) in Table 1 into the mating-type-specific log-likelihoods of equation 
(6) enables the log-likelihood (5) to be re-written as
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Thus, trios from Gp = 1, 3 are used to estimate γ1 and f1(e), while trios from Gp = 2, 3 are used to estimate γ2 and 
f2(e).

3.2  Flexible estimation of GRR curves

To estimate GRR curves, we take a penalized likelihood approach under a generalized additive modeling 
framework (Wood, 2006). The penalized log-likelihood lp(‧) is defined from the log-likelihood in (7), by sub-
tracting terms that penalize models for fh(e) that are too wiggly:
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where λh, for h = 1, 2, are smoothing parameters that control the tradeoff between goodness-of-fit in the first 
(likelihood) term and smoothness in the second (penalty) term.

To represent fh(e) for h = 1, 2, we use natural cubic spline functions with Kh knots (e.g., Wood, 2006). We aim 
to characterize interaction of reasonable complexity and set K1 = K2 = 5, by default. We place knots at sample 
quantiles of the observed E in the trios from mating types Gp = 1, 2 and Gp = 2, 3, respectively. For example, with 
a total of five knots, we place three at the 25th, 50th and 75th quantiles and two at the endpoints of the data. 
Following Wood (2006), to identify the model parameters, we impose constraints on f1(e) and f2(e):

 ∈ ∈

= =∑ ∑ ∑ ∑1 2
{1,3} {2,3}

( ) 0; and ( ) 0.mj mj
m j m j

f e f e
 

(9)

These constraints involve sums over all observed E = emj in trios from appropriate mating types. Estimating the 
GRR parameters γ1, γ2, f1(e) and f2(e) amounts to estimating 1 1 2 2( , , , ) ,γ γ= c c� � �β  where 1 2 1( , , , )

hh h h hKc c c −=c … �  
is the spline coefficient vector for fh(e) that satisfies the constraint.

Given a fixed set of smoothing parameters (λ1, λ2), the penalized likelihood estimator β̂  can be obtained 
via penalized re-weighted least squares optimization (Shin, 2012, Section 3.3.2). The smoothing parameters 
are obtained by minimizing the generalized Akaike information criterion function (Shin, 2012, Appendix B.3). 
To obtain interval estimates of G × E curves, we adopt a Bayesian approach (e.g., Wood, 2006), which has been 
shown to yield good frequentist coverage probabilities when the bias is a relatively small fraction of the mean 
squared error (Marra and Wood, 2012). Details about the Bayesian credible bands may be found in Section 
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3.3.3 of Shin (2012). To explore the form of interaction, we plot the fitted curves 1̂f  and 2̂f  along with their 
95% Bayesian credible bands.

3.3  Permutation test of G × E

We adopt a permutation approach to testing G × E that takes into account the extra uncertainty introduced by 
estimating the smoothing parameters. We define the test statistic T as

 
1ˆ ˆ{ } ,T V −= cc c�

 

where ĉ  is the penalized likelihood estimate of 1 2( , ) ,=c c c� � �  and Vc is the Bayesian posterior variance-covar-
iance matrix for ĉ  (e.g., Wood, 2006). Details about the Bayesian posterior variance-covariance matrix may 
be found in Section 3.3.3 of Shin (2012). Under the null hypothesis of no G × E, independence between G and 
E within a random family implies independence between G and E within a random affected family (e.g., 
Umbach and Weinberg, 2000; Shi et al., 2010). Since the analysis is conditional on parental genotypes, we 
may therefore approximate the null distribution of T by shuffling E within parental mating types.

It should be noted that the approach to approximating the null distribution of T can be invalid when the 
test locus is not causal but in linkage disequilibrium (LD) with the causal locus, and the study population has 
multiple subpopulations. In a stratified population, a single mating type stratum may consist of families from 
multiple subpopulations. In that case, different haplotype frequency and E distributions in the subpopula-
tions can induce correlation between E and the genotypes G at the test locus (e.g., Shi et al., 2011). Without 
G-E independence, one cannot guarantee exchangeability within mating types, and hence the validity of the 
test.

4  Simulation study
We conducted a simulation study to evaluate the proposed approach.

4.1  Performance measures

We investigated the performance of the smoothing estimators of the interaction curves f1 and f2 through the 
empirical integrated squared error for interaction (EISEI), defined as 2

1
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with 3h hn n n≡ +�  denoting the number of informative trios used for estimating GRRh(e) and ,
hnP�  the empirical 

measure of the values of E from the hn�  informative trios.
We assessed the performance of the proposed permutation test of G × E by evaluating its type 1 error rates 

and power. Tests of G × E that do not condition on parental mating types are subject to inflated type 1 error 
rates when there is population G-E dependence due to population stratification (Umbach and Weinberg, 
2000). To verify the validity of our test, we evaluated its type 1 error rates under both G-E independence and 
G-E dependence induced by population stratification. We compared the power of the test to other popular 
tests, including the likelihood ratio test from conditional logistic regression (e.g., Schaid, 1999; Cordell et al., 
2004), FBAT-I (Lake and Laird, 2004) and the likelihood ratio test from the log-linear modeling approach 
(Umbach and Weinberg, 2000).
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Our test statistic T was calculated by fitting data with K1 = K2 = 5 knots. The p-values were estimated from 
1000 permutation replicates. For the other tests, we set f1(e) and f2(e) as follows. For conditional logistic 
regression, we specified linear G × E with f1(e) = βge1e and f2(e) = βge2e. For FBAT-I, we specified a log-additive 
penetrance mode by setting z1(g) = z2(g) = g and f1(e) = f2(e). Lastly, for the log-linear approach, we dichotomized 
E based on its sample median µ�  such that β µ= > �1 1( ) I{ }gef e e  and β µ= > �2 2( ) I{ }.gef e e

4.2  Simulation settings

Under G-E independence, we considered a homogeneous population, having SNP index-allele frequency of 
q = 0.1, and a normally distributed non-genetic attribute E with mean of 0 and variance of 1. To induce G-E 
dependence, we considered a stratified population composed of two equal-sized subpopulations S = 0 and 
S = 1 with different distributions of G and E. For G, the subpopulation-specific allele frequencies were q0 = 0.1 
and q1 = 0.9. For E, the subpopulation-specific distributions were Normal with means μ0 = –0.8 and μ1 = 0.8 and 
common variance 0.36. In the overall population, these settings induced a mean of 0 and a variance of 1 for 
E, with G-E correlation of 0.71. For details of the calculations, see Shin et al. (2010). In the homogeneous 
population or within each subpopulation, G was generated according to Mendel’s laws, based on parental 
genotypes Gp, and E was generated independently of G and Gp. Parental genotypes were generated under 
Hardy-Weinberg proportions.

Disease status D was simulated according to the disease penetrance model (3). The baseline parameter 
k and the non-genetic main effect term ξ(e) were set to be zero for convenience. Dominant, log-additive and 
recessive penetrance modes were considered. The penetrance modes were calibrated to have equal values 
of GRR1(e) × GRR2(e) for all E = e. This calibration ensures that the GRR for two versus zero copies of the index 
allele is the same across modes. For dominant, log-additive and recessive penetrance modes, the genetic 

main effect parameters (γ1, γ2) were, respectively: (log 3, 0), ( )log 3,log 3  and (0, log 3). The interaction 

functions  (  f1(e), f2(e)) were, respectively: (f(e), 0), 
1 1( ), ( ) ,
2 2

f e f e
 
  

 and (0, f(e)).

To understand how the form of interaction affects performance, we considered no G × E (H0), as well as 
linear (H1L), piecewise-linear (H1P) and quadratic (H1Q) interaction functions. Under H0, f(e)≡0. Under H1L, we 
let f(e) be a linear function with slope βge. Under H1P, we let f(e) be a piecewise-linear function created by 
joining a straight line with slope βge > 0 and a horizontal line together at a point E = zp. Under H1Q, we let f(e) be 
a quadratic function with a quadratic coefficient βge and an axis of symmetry at zp. We let zp be the pth quantile 
of the distribution of E to see the effect of the placement of the non-linear feature (i.e., joining point or axis 
of symmetry) relative to the mass of data. Under H1P and H1Q, for a fixed βge, varying p changes the strength of 
linear trend in f(e). Under H1P, the linear trend in f(e) becomes weaker as p decreases. Under H1Q, the linear 
trend becomes weaker as p gets closer to 0.5. The parameterizations and parameter values for f(e) are sum-
marized in Table 2.

Finally, to understand how data concentration around the non-linear interaction feature affects 
 performance, we added a scenario with uniform E over the interval (–4, 4), in a homogeneous popula-
tion. The limits of E were chosen to match the 99.99% prediction interval of a standard normal random 
variable.

Table 2 Parameterizations for f(e) under different settings. The pth quantile of the distribution of E is denoted by zp.

G × E   Setting  f(e)   βge  p

None   H0   0   –  –
Linear   H1L   βgee   (–0.10, –0.17, –0.24)  –
Piecewise-Linear   H1P   βgeI{e < zp}‧(e–zp)  (0.2, 0.6, 0.10)  (0.1, 0.3, 0.5)
Quadratic   H1Q   βge(e–zp)2   (–0.04, –0.12, –0.20)  (0.1, 0.3, 0.5)
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4.3  Simulation results

To save space, we present only highlights of the simulation results. A more detailed summary of results can 
be found in Supplementary Tables A1 and A2.

As expected, EISEIs decreased as the number of informative trios increased (results not shown). When 
interaction was non-linear, EISEIs decreased as the concentration of data around the non-linear feature 
increased. For example, Figure 1 summarizes results under piecewise linear and quadratic G × E (settings H1P 
and H1Q) when the joining point or axis of symmetry of f(e) is placed at the median of the distribution of E. In 
this case, the concentration of data around the non-linear feature is higher when E is normally distributed 
than when it is uniformly distributed. As a result, EISEIs are lower under the normal distribution.

As expected, our test maintained the nominal level of significance, within simulation error, whether 
G and E were independent or not, under all penetrance models (Table 3). Highlights of the results related 
to power are as follows. When G × E was non-linear with a stronger linear trend, or G × E was linear, the 
proposed test had lower power than conditional logistic regression, lower power than FBAT-I with cor-
rectly specified penetrance, comparable power to the log-linear modeling approach, and higher power 
than FBAT-I with incorrectly specified penetrance (e.g., Figure 2). When G × E was non-linear with a weaker 
linear trend, the proposed test had comparable power to that of conditional logistic regression and FBAT-I 
but higher power than the log-linear approach (e.g., Figure 3A and B, for p = 0.3). However, when the linear 
trend in the interaction curve was negligible, the proposed test had the highest power among the four tests 
(e.g., Figure 3).

5  Illustration
We illustrate our methods with an example data set simulated to mimic real data from a study of childhood 
acute lymphoblastic leukemia (ALL).

ALL is the most common type of leukemia in children under 19 years old. As shown in Figure A1, ALL 
can occur at any age, but the age-adjusted incidence rates are highest between ages 2 and 6 years, decrease 
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Figure 1 Average empirical integrated squared errors for interaction (EISEIs) for E simulated from a normal (red-triangles) or 
uniform (black-circles) distribution. In the simulations, G and E are independent and f1(e) = f(e),  f2(e) = 0. Vertical lines connect 
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tional logistic regression, red diamonds with dotted lines; log-linear modeling, yellow triangles with dot-dashed lines. To assist 
with comparison, we have included vertical bars representing  ± 2 simulation errors on results for the proposed test and FBAT-I. 
Results are based on 500 simulation replicates of 3000 informative trios.

Table 3 Type 1 error rates (simulation error) for the proposed test of G × E. The nominal significance level of the test was 0.05.

Inheritance mode   G-E independence

Yes  No

Dominant   0.053 (0.007)  0.060 (0.008)
Log-additive   0.043 (0.006)  0.044 (0.006)
Recessive   0.049 (0.007)  0.061 (0.008)
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Figure 3 Empirical power under piecewise-linear (βge = 0.8, panel A) and quadratic (βge = –0.2, panel B) G × E. The data were 
generated under G-E independence and a dominant penetrance mode. The quantile zp of the distribution of E at which the non-
linear feature is placed is controlled by p on the horizontal axis. In panel A, the linear trend increases with p while, in panel B, it 
decreases. Proposed test, black circles with solid lines; FBAT-I, blue crosses with dashed lines; conditional logistic regression, 
red diamonds with dotted lines; log-linear modeling, yellow triangles with dot-dashed lines. To assist with comparison, we 
have included vertical bars representing  ± 2 simulation errors on results for the proposed test and FBAT-I. Results are based on 
500 simulation replicates of 3000 informative trios.
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during young-adulthood and then start increasing again at ages  > 50 years (Ries et al., 1999). The bimodal dis-
tribution of incidence with age is consistent with different disease mechanisms for younger- and older-onset 
patients. For example, younger cases could have a genetic basis, whereas older cases could be sporadic. This 
motivates us to search for age-dependent genotype relative risks for ALL. The genetic risk factor we consider 
is the C609T polymorphism in the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene. NQ01 plays a role in 
detoxification of carcinogenic by-products (e.g., Ross and Siegel, 2004).

We generated a data set with 1000 informative case-parent trios mimicking those in a smaller data set. 
Details on how these example data were generated can be found in the Supplementary Materials. The mating-
type-specific distribution of genotype frequencies and the histogram of age-at-diagnosis among cases in the 
example data set are shown in Table 4 and Figure 4, respectively.

According to Table 4, heterozygous parents transmit the variant allele to the cases 662/1190 = 56% of the 
time. The transmission disequilibrium test (TDT; Spielman et al., 1993) confirms that the variant allele was 
transmitted slightly more frequently than expected (p = 0.0001). A similar trend was observed in the original 
data, for which the observed proportion was 171/322 = 53% (p = 0.29). Figure 4 shows the age-at-onset distribu-
tion, which closely mimics the original data.

A co-dominant penetrance model was fitted to the simulated data. Three knots for f1(e) or (f2(e)) were 
placed at the quartiles of the observed E in trios from Gp = 1 or Gp = 2 and 3; two knots were placed at the 
minimum and maximum values of E. Figure 5 shows the fitted interaction curves and the associated Bayesian 
95% credible intervals for f1(e) and f2(e). The credible intervals are correctly suggestive of dominant non-linear 
G × E between NQO1 C609T and age (see Figure A2 for the true G × E curves).

We applied our permutation test of G × E to the example data, using a co-dominant penetrance model 
and 10,000 permutation replicates. We also applied our test using a dominant penetrance model (i.e., setting 
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Figure 4 Histogram of age-at-diagnosis in informative trios of the example data. The dashed-line is the kernel density estimate 
obtained from the observed ages-at-onset of cases from informative trios in the original ALL data.

Table 4 Mating-type-specific frequencies (%) of case genotypes in the example data.

Number of copies of NQO1 C609T variant 
 

Informative mating type (m*)

1  2  3

0   328 (43)  –  36 (19)
1   440 (57)  19 (45)  109 (57)
2   –  23 (55)  45 (24)
nm   768 (100)  42 (100)  190 (100)

*Mating types m = 1, 2, 3 are defined in equation (1) of the text.
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f2(e)≡0) and 10,000 permutation replicates. For comparison, the other tests were applied using a dominant 
penetrance model. Referring to disease risk model (3), we specified G × E as linear such that f1(e) = βgee for con-
ditional logistic regression and we dichotomized E based on its sample median µ�  such that β µ= > �1( ) I{ }gef e e  
for the log-linear modeling approach. We used 10,000 permutation replications for FBAT-I. All tests were 
evaluated at significance level 5%. Our test indicated G × E under both codominant and dominant penetrance 
models (p = 0.035 and p = 0.008, respectively), while the other tests did not (p = 0.803, 0.761 and 0.061, for con-
ditional logistic regression, FBAT-I and log-linear modeling, respectively).

6  Discussion
In this work, we propose a data-smoothing approach to estimating and testing G × E using data from case-
parent trios. The approach offers a flexible way to explore statistical interaction between a causal SNP and 
a continuous non-genetic covariate, using a generalized additive model (e.g., Wood, 2006). In particular, it 
allows for two separate genotype relative risks, depending on the number of copies of the variant allele and 
models interaction functions via regression splines. Consequently, instead of making assumptions about the 
penetrance mode and the parametric form for G × E, the proposed approach lets the data determine them. We 
use this data-driven approach to obtain graphical displays for the point- and interval-estimates of the interac-
tion curves (e.g., Figure 5). To our knowledge, this is the first tool for visualizing G × E for continuous E in case-
parent trios. We also propose a permutation test of G × E, which is appropriate when the form of interaction is 
unknown. This test accounts for the extra uncertainty introduced by the smoothing process.

We evaluated the proposed approach in a simulation study and found the following. The precision of the 
estimators depends on the number of informative case-parent trios, particularly the number concentrated 
around non-linear features of the interaction curve (e.g., Figure 1). To investigate the sample size required for 
accurate estimates of the G × E curves under our simulation settings, we varied the sample size in additional 
limited simulations. We found that precision was adequate when the number of informative trios was 2000, 
and did not greatly improve with the addition of more trios (results not shown). For a causal SNP, our permu-
tation test is valid when there is G-E dependence due to population stratification. When G × E is non-linear 
with negligible linear trend, our test has more power than other tests of interaction that are tuned for linear 
G × E (e.g., Figure 3). When applied to an example data set, simulated to have non-linear G × E, our graphical 
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Figure 5 Fitted G × E for the example data set. The left and right panels, respectively, show the estimated interaction curves 1̂f  
and 2̂.f  The dashed lines indicate the 95% pointwise Bayesian credible limits.
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display correctly suggested G × E, and our test provided stronger evidence for interaction than the other tests 
considered. These results suggest that our graphical display is a useful tool for exploring G × E.

It is well known that detecting G × E requires large sample sizes (e.g., Smith and Day, 1984; Dempfle et al., 
2008), and our method is no exception. In our context, the sample size is the number of informative case-
parent trios. However, as the sample size increases, our permutation test becomes more computationally 
demanding. For example, on a Mac with 3.06 GHz Intel Core 2 Duo processor and 4 GB RAM, it took about 0.6 s 
for fitting the 1000 informative trios generated for illustration in Section 4. For data sets with 2000 and 3000 
informative trios generated under the same scenario, fitting took about 2.4 and 4.5 s, respectively. Hence, 
to complete the proposed permutation test with 1000 replicates, about 10, 40 or 75 min would be required 
when the sample size is 1000, 2000 or 3000, respectively. To minimize the computational burden of the test, 
early termination (Besag and Clifford, 1991) can be deployed. On the other hand, the graphical display of 
G × E scales well with sample size and gives investigators a useful tool to characterize G × E. In interpreting the 
graphical display, we caution that the Bayesian CIs are meant only as guide, since their coverage probabilities 
can be lower-than-nominal when the underlying interaction functions are non-linear but close to straight 
lines (Marra and Wood, 2012).

One of the key assumptions for all methods in this work is that the genotype is measured on a causal 
marker. However, in practice, we often have observations on nearby non-causal markers that are in linkage 
disequilibrium with the causal marker. Under such circumstances, approaches that condition on parental 
mating types, including our own, may be subject to biased assessment of gene-environment interaction when 
the study population has multiple hidden subpopulations with different distributions both for E and for hap-
lotypes composed of the non-causal and causal loci. Such biased assessment can lead to either inflated type 
1 error rates or reduced power, as alluded to by Shi et al. (2010) and later demonstrated by Shi et al. (2011) and 
Shin et al. (2012). Further research is underway to strengthen our approach against such population stratifi-
cation, using ancestry informative markers or random markers measured on affected children.

Recently, many studies of G × E are genome-wide association studies. Methods for inference from such 
data (reviewed in Gauderman et al., 2013) focus on testing, rather than exploring the form of the interac-
tion. In a genome-wide setting, application of the proposed permutation test to millions of markers will be 
computationally prohibitive. One way to reduce the computational burden is to adopt the two-step approach 
proposed by Gauderman et al. (2010): In step 1, screen variants, based on tests of association between Gp and 
E in cases (e.g., comparing the mean or median of E in different mating-type strata); and in step 2, apply the 
proposed permutation test only to those SNPs that pass the screening step, using appropriate methods to 
control for multiple testing.

Complex diseases result from both genetic and non-genetic risk factors interacting together. Character-
izing statistical interaction between genes and the environment can thus provide important insights into 
the epidemiology of the disease. In this work, we show how a data-smoothing approach can be useful for 
exploring and testing statistical interaction between genetic and environmental covariates using data from 
case-parent trios. As with all tests of statistical interaction, our permutation test requires large sample sizes 
to ensure adequate power. Nevertheless, we anticipate that the proposed graphical display will be useful for 
understanding statistical interaction between genes and the environment. An advantage of our approach is 
that neither the parametric form of interaction or the mode of penetrance need to be specified. This feature 
is useful for investigating novel interactions, for which no prior information is available. The approach is 
implemented in an R package trioGxE, which is available on CRAN (R Core Team, 2012).

Although our method is designed to estimate and test G × E between one SNP and a continuous covari-
ate, it can be easily extended to combinations of multiple SNPs by appropriately modifying the disease risk 
model (3). For example, with two SNPs, there will be eight genotype relative risks, and hence the risk model 
can be modified as P(D = 1|G1 = g1, G2 = g2, E = e) = exp(k+z(g)γ+z(g)f(e)), where γ = (γ1, γ2, …, γ8)T and f(e) = (f1(e),  
f2(e), …, f8(e))T represent the genetic effect and G × E interaction, respectively; and the genetic coding vector 
z(g1, g2) = (z1(g1, g2), z2(g1, g2), …, z8(g1, g2)) is binary, as before. In such multi-variate SNP analyses, however, 
power to detect G × E may become an issue, considering that sample size requirements are large even for a 
single SNP analysis.
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A common issue with case-parents designs is missing parental genotype data. Typically, in trios with 
missing genotype data, only the affected child and one parent contribute DNA. With parametric models, one 
can often include trios with a missing parental genotype in a likelihood-based data analysis by employing the 
EM algorithm or through multiple imputation. In the Supplementary Materials, we provide a sketch of a pos-
sible EM-based approach, whose implementation and operating characteristics are areas for future research.

Many other challenges remain in the study of gene-environment interaction, with the most daunting one 
being the measurement of environmental exposures (e.g., Thomas, 2010). Feasibility, cost and especially 
validity of such measures are challenging, particularly in large population studies; resulting measurement 
or misclassification error issues can affect the interpretation of gene-environment interaction results in ways 
that require more research in terms of identification and correction.
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