EXTENDED EXPERIMENTAL PROCEDURES

Interaction Calling
Interactions were determined in five distinct steps.

PET parsing. Fastq files were parsed into three files depending on whether they contained the
same pair of linkers (AA or BB), chimeric pairs of linkers (AB or BA), or if they were ambiguous (XX,
AX, XA, BX, XB). Matches to linkers sequence required a perfect match to fist 10 positions in the linker
(GTTGGATAAG or GTTGGAATGT). PETs were trimmed to remove linker sequences and PETs
containing trimmed reads shorter than 15 bp at either end were removed. Only PETs containing AA or
BB were used for further analyses.

Read Alignment. Reads were aligned using Bowtie (version 0.12.7) allowing zero mismatches
(arguments: -v 2 -S -k 1--best --strata -m 1)(Langmead et al. 2009).

PET filtering. Aligned PETs were filtered to remove PETs that contained reads that were
unmapped or that mapped to multiple locations in the genome. We conservatively removed PETs that
represent duplicate reads by filtering any PETs whose reads start within +/- 2 bases of another PET
and who have the same pair of linkers. PETs comprised of reads that map within a certain genomic
distance are likely to arise from self-circularization rather than ligation to an interacting fragment. In
order to avoid false positives introduced by this artifact we filtered out short distance interactions. To
accurately determine the cutoff for these interactions we exploited a read orientation bias of self-
circularization reads. PETs arising from self-circularization always contain reads that map to opposite
strands (+- or -+). PETs arising from ligation of interacting fragments should exhibit no preference for
the same or opposite strands. We determine a minimum PET cutoff above which we see no
observable bias for opposite strand PETs. To determine the expected ratio of opposite to same
orientation reads we calculate the mean and standard deviation of the log2 ratio of same to opposite

strand PETs in all bins greater than ~400 kb. This value is typically very close to zero. Our minimum



PET distance is set as the size corresponding to the smallest bin that falls within 2 standard deviations
of the expected ratio. PETs with distance below this distance are removed.

Peak Calling. In order to determine binding sites we use MACS2 (version 2.0) for RAD21 and
POLR2A and SICER (version 1.1) for histone marks (Zhang et al. 2008; Zang et al. 2009). P-value
cutoffs for MACS2 and SICER were 0.0001 and 0.01 respectively. The binding sites determined from
this analysis are heretofore referred to as ‘ChlA-PET binding sites’ or CPBS.

Interaction Calling. Peaks were extended in both directions by 1500. PETs that overlapped
peaks at both ends were determined and those that did not were removed. Raw interaction scores

were determined by the following formula:

12
- (Py X Pp)

where S is raw interaction score, L is number of PETs linking the two peaks, and P, and P, are number
of PETs overlapping each of the two regions in question.

Previous studies have shown that interactions between genomic loci show a strong dependence
on linear genomic distance(Dekker et al. 2002; Sanyal et al. 2012).
To account for this we developed a resampling method to construct a distance-matched rewired (DMR)
ChIA-PET data set that allows for distance-corrected scoring of interaction frequencies as well as
estimation of false discovery rate (FDR). Rewired ChIA-PET data sets are constructed in a two-step
process. First, paired-end reads are disassociated from each other and re-paired with replacement
generating a large set of rewired PETs (200 times the original size of the data set). Second, the
distribution of PET distances from the original data set is determined. Distances are drawn at random

from this distribution and matched to the rewired PET that has the most similar distance. This rewired



PET gets included in our final set of DMR PETs. This procedure is repeated until the number of DMR
PETs is equal to the number of observed PETSs. Interaction frequencies and raw scores are calculated
for both observed and DMR data sets as described above. Z-scores are calculated for both observed
and DMR data sets by comparison to the weighted mean and standard deviation of the DMR data set
and a Z-score cutoff is set so that a user defined fraction of the interactions with a Z-score greater than
that cutoff come from the rewired data set. This allows for data sets to be filtered to a user-defined
FDR. In order to more easily compare with recent 5C data sets, that had FDRs of 18% and 9%, we
chose to filter our data sets to an FDR of 10%.

For better discrimination of real vs random interactions we iteratively applied minimum PET
cutoffs (minimum values of L) and maximum distance cutoffs. For each combination of cutoffs FDR
filtering was applied. The combination of cutoffs that generated the maximum number interactions at a
fixed FDR (10%) was used.

Though this method can detect interchromosomal interactions very few were determined (287)
and they had significantly lower Z-scores than intrachromosomal interactions and are more likely to be
false positives (p < 2 x 107'°, Wilcoxon signed-rank test). Therefore, we excluded interchromosomal
interactions from all of our analyses.

Sequencing replicates were combined at the fastq level. Biological replicates were combined
after PET filtering. And data from different factors were combined after all steps of interaction calling

were completed

Detection of differential interactions between K562 and GM12878 cells

1.1 Determining pairs of loci for differential analysis

In order to fairly compare the two data sets we first merged all reads from both the K562 and GM12878
RAD21 ChlA-PET experiments and determined a set of putative interacting loci. To determine which
pairs of loci to compare we then used a clustering method previously described (Ester M 1996). Each

PET is represented as a point in the two-dimensional Euclidean space and clustered by DBSCAN



(Density-Based Spatial Clustering of Applications with Noise) described in (Ester M 1996) with the
python package Scikit-learn (Pedregosa 2011). The DBSCAN parameters are set as: the size of the ¢-
neighborhood of a point, Eps = 1500 bp; and the minimum number of points required to form a cluster,
MinPts = 3 (Chepelev et al. 2012). Those PETs that do not belong to any PET clusters were removed
since they are likely random ligation products formed in solution. These PET clusters were then tested

for differential interaction between the two cell types.

1.2 Modeling variability as a function of PET counts

In order to distinguish true quantitative differences from technical variability we first needed to model
variability as a function of PET counts. We reasoned that pairs of loci linked by higher PET counts
should be les variable and less subject to technical variability than those linked by lower PET counts.

To accurately model this distribution we generated MA plots using the following equations.

For a specific PET cluster (A, B), denote

Cg])Bs' i = 1,2: PET counts between region A and B for experiment i (i=1,2 refers to either K562 or

GM12878, respectively)

@

c,y’, 1 =1,2: PET end counts within region A for experiment i

cg), i = 1,2: PET end counts within region B for experiment i

p%, i = 1,2: Interacting probability between region A and B for experiment i
n;, i = 1,2: Total PET counts that belong to PET clusters for experiment i

We assume cgl)3~Binom (ni, pgl)g) i=1,2

By Central Limit Theorem, when n; is large enough:
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Using function g;(x) = log (n;x), and according to Delta Method.
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When n;, n, are large enough. Assume Cz(xlB) and CE\ZB) are independent and denote M =X —-Y, A= (X +
Y)/2, then

M~Norm(j,, = My = Hy, 0% = 0% + 0%)

A~Norm (pA =

After some derivation (Wang et al. 2010), the conditional distribution of M|A follows
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1.3 Assigning statistical confidence estimates to differential interactions
Using the estimates of variability determined by our model we can calculate Z scores and ultimately p
values to describe the statistical confidence of each differential interaction. However, differential

binding events can lead to differences in contact frequencies and must be accounted for. In order to



account for differential binding we first model the correlation between peak depths (Ca and Cg) and
contact frequencies (pas)-

Assume pﬁ\% = pgng(cg),cg)),i = 1,2, in which p(()igB is the interacting probability between region A and

B after removing the factor of protein binding intensity f(c,, cg). Then the hypothesis to test whether (A,
B) is a differential interaction between two cells is Hy: p&)B = png)B = pg versus Hy: pglA)B * p(()i)B.
Based on the above deduction,
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h(R) is a logistic-like function, thus we set
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h(R) =B,
Parameters of B, B,, B, can be determined by maximizing the log-likelihood function

I(BO' By Bz |mkl ak) = 2 log(P(mklak))
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Then by using the two estimations of expectation and variation, we can calculate the Z-score and
convert it to the two-side p-value to describe whether PET cluster (A, B) is a differential interaction

between K562 and GM12878 cells or not.

- ‘m—E(M|A=a)

VD(M|A = a)

1.4 FDR estimation

Finally, we estimate the False Discovery Rate (FDR) of differential interactions by comparing observed
results to results from a permutated data set. We randomly shuffle the label of PETs that belong to
K562 or GM12878 experiment, and calculate the permutated Z-score (Z,) again. Then FDR is
estimated by comparing the observed Z-score (Z,) with permutated Z-score.

#{Zp > z}

FDR(z) = 4 757

In which #{-} is a counting function. We filter observed differential interactions to an FDR of 0.05.



SUPPLEMENTAL TABLES

Non-
Tec Ambigu uniquely Un- Self- Intra- Inter-

Bio h Sequenci Same Chimeri ous mapped mapped Duplica ligated chromoso chromoso Interacti
Cells Factor Rep Rep ng Depth PETs ¢ PETs PETs PETs PETs te PETs PETs mal PETs mal PETs Peaks ons
K562 H3K27ac 1 1 165109173 79722577 54750055 30636541 54489345 17864 948089 3487570 1411505 19368204 74011 579
K562 H3K27ac 2 1 177322797 131390006 27235810 18696981 87947223 40433 21345695 1583530 2923249 17549876 48193 993
K562 H3Kamel 1 1 162190720 111183880 31486229 19520611 72640135 30237 823103 3148349 2230690 32311366 74039 492
K562 H3Kamel 2 1 148997533 112686495 19821264 16489774 75649209 32946 4196124 7715087 2290646 22802483 67763 3137
K562 H3Kame2 1 1 133923924 104263094 14050408 15610422 66495132 28978 15452476 1470806 1689123 19126579 51455 287
K562 H3Kame2 2 1 168742629 127227629 18238500 23276500 81903555 148326 20662035 2014471 1442184 21057058 49666 379
K562 H3Kame3 1 1 150470693 97438798 36903231 16128664 60294912 12862 25719458 3656146 988794 6766626 19285 1179
K562 H3Kame3 2 1 164584679 104878365 31507991 28198323 72769843 26592 26255888 872069 462849 4491124 16845 190
K562 Pol2A 1 1 180430214 150231459 6149148 24049607 97669589 62791 29383443 7745028 1620423 13750185 28906 2782
K562 Pol2A 2 1 72576997 62118832 2570540 7887625 40407462 22731 8607792 4079368 923646 8077833 21567 1187
K562 Pol2A 2 2 182627883 154157458 7334726 21135699 100367933 39942 34586770 5940180 1331197 11891436 26140 2211
K562 RAD21 1 1 115140018 86819909 1099957 27220152 59005051 71532 21379381 1203125 656550 4504270 22899 3315
K562 RAD21 1 2 138473050 89125493 1137119 48210438 60514193 13103 22217994 1201248 667904 4511051 22982 3632
K562 RAD21 2 1 148398674 121245356 7572488 19580830 78168531 61271 34484473 3088468 1293736 4148877 42454 11134
GM12878 RAD21 1 1 225434403 154049990 46248174 25136239 101742999 110014 30392738 3925495 1887906 15990838 58316 11364
GM12878 RAD21 2 1 138472402 111086757 4375566 23010079 76646643 19760 20697497 2829649 1384418 9508790 30721 8689

Table S2. ChlA-PET statistics for individual data sets.

General Factor-Specific

Factor Binding peaks Interactions Interactions Interactions

H3K4me2 51095 513 276 237
H3K4me3 22463 1360 764 596
H3K27ac 69138 2231 1344 887
H3K4mel 86567 5012 3235 1777
POLR2A 40581 5549 3376 2173
RAD21 48894 14701 10012 4689



Table S3. ChlA-PET statistics for individual factors.

% of each element overlapped by a peak % of each element overlapped by an anchor region

H3K27a H3K4me H3K4me H3K4me Pol2 RAD2 all H3K27a H3K4me H3K4me H3K4me POLR2 RAD2 all
Total c 1 2 3 A 1 peaks c 1 2 3 A 1 anchors
CTCF 29389 98.7 96.6 99.4 95.3 83.6 28.2 99.7 5.3 9.5 21 12.4 20.2 8.7 35.5
E 35176 93.3 96.1 92.6 36.1 41.7 145 98 5.9 8.1 2.2 5.2 6.5 3.6 21
PF 1079 68.8 85.1 54.5 8 14.7 4.5 86.2 4.1 6.8 0.9 1 1.5 0.8 119
R 22072 393 50.2 28.8 8.6 25.8 76.2 84.7 6.5 13.8 1.5 1.9 9.6 37.4 439
T 12082 62 70.4 71.4 35.7 14.6 0.8 79.3 23 5.8 0.9 33 0.6 0.1 9.7
TSS 42999 48.3 59.4 27.3 10.9 7.3 1 64 2.8 53 0.7 1.4 0.9 0.3 8.7
WE 27074 15.9 25.7 12.8 3.6 1.2 0.7 28.9 1 24 0.2 0.3 0.1 0.2 37
Total 169871 68 74.6 62.1 35.8 37.4 24.2 82.7 4.7 8.3 1.5 4.9 8.5 9.6 24

Table S4. Comparison of ChlA-PET peaks and interactions with various genomic elements.

SUPPLEMENTAL FIGURE CAPTIONS

Figure S1. Comparison of ChlA-PET and 5C data sets.

(A) Percent of ChlA-PET interactions also found by 5C. Only ChIA-PET interactions that were
tested by 5C were considered. Grey bars represent expected percentages generated by randomly
selecting interactions from tested 5C region while retaining the same distribution of interaction
distances. Stars represent a p-value < 0.05 (permutation testing, 1000 permutations). Black bars
represent ChIA-PET data published by Li et al. (B) Density plot depicting the distribution of
interacting distances. (C) Density plot depicting the distribution of anchor region sizes. (D) Barplot
depicting the number of general interactions (those found in more than one data set) and factor
specific interactions (those found only in one data set). (E) Plot depicting the overlap between two

biological replicates as a function of the highest N% of interactions.



Figure S2. TF enrichment at interacting loci.

(A) TF enrichment at interacting loci for each individual data set. X-axis represented the log2 ratio
of observed vs expected TFs binding peaks overlapping interacting loci. Y-axis represents the
number of interacting regions at which factor is bound. Colors of circles represent the level of
enrichment (see Supplementary Methods).

(B) Box and whisker plot of Z-scores of interactions that overlap a RAD21 peak at both, one, or
neither end of an interaction for each individual data set. Asterisks mark significant differences (p

< 0.05, Wilcoxon signed-rank test).

Figure S3. Characteristics of hierarchical networks.

(A) Based on the GM12878 networks, the percentage of targets found in the distal, proximal, or
both networks are depicted for each TF.

(B) Based on the GM12878 networks, hierarchical networks built from proximal, distal, and
combined TF only networks are shown. Blue lines represent downward edges, red lines represent
upward edges, and grey lines represent lateral edges. The colors of the nodes represent the tier
that the node resides in in the proximal network. The size of the node represents the degree (total
number of inward and outward edges) for each node in that network.

(C) Based on the GM12878 networks, box and whisker plots depicting the degree (total inward and

outward edges) of nodes in each tier of each hierarchical network.
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(D) Plot depicting the number of TFs in the top, middle, and bottom tier of each hierarchical
network determined from K562 cells. (E) Plot depicting the number of TFs in the top, middle, and

bottom tier of each hierarchical network determined from GM12878 cells.

Figure S4. Proximal vs distal regulation of GO terms.

(A) Six plots highlighting examples of GO terms that exhibit different profiles of enrichment. Each
circle represents a TF. The size of the circle represents the number of targets of each TF
corresponding to that GO term. The color of the circle represents the relative enrichment using the
same scale as shown in panel A.

(B) Six plots highlighting examples of TFs that exhibit different profiles of GO term
enrichment. Each circle represents a GO term. The size of the circle represents the number of
targets in that GO term that that TF factor regulates. The color of the circle represents the relative

enrichment (log2(direct p—value / indirect p—value)).

Figure S5. Proximal vs distal regulation of GO terms in GM12878 cells.

(A) Heatmap comparing enrichment of GO terms in proximal vs distal targets of each TF. Each
row corresponds to a GO term. Each column corresponds to a transcription factor. Red indicates
greater enrichment in distal targets. Blue represents greater enrichment in proximal targets.

(B) Three plots highlighting examples of GO terms that exhibit different profiles of
enrichment. Each circle represents a TF. The size of the circle represents the number of targets
in that GO term that TF factor regulates (both proximally and distally). The color of the circle

represents the relative enrichment (proximal vs distal) using the same scale as shown in panel A.
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