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EXTENDED EXPERIMENTAL PROCEDURES 

 

Interaction Calling 

Interactions were determined in five distinct steps. 

 PET parsing.  Fastq files were parsed into three files depending on whether they contained the 

same pair of linkers (AA or BB), chimeric pairs of linkers (AB or BA), or if they were ambiguous (XX, 

AX, XA, BX, XB).  Matches to linkers sequence required a perfect match to fist 10 positions in the linker 

(GTTGGATAAG or GTTGGAATGT). PETs were trimmed to remove linker sequences and PETs 

containing trimmed reads shorter than 15 bp at either end were removed.  Only PETs containing AA or 

BB were used for further analyses. 

 Read Alignment. Reads were aligned using Bowtie (version 0.12.7) allowing zero mismatches 

(arguments: -v 2 -S -k 1--best --strata -m 1)(Langmead et al. 2009). 

 PET filtering. Aligned PETs were filtered to remove PETs that contained reads that were 

unmapped or that mapped to multiple locations in the genome.  We conservatively removed PETs that 

represent duplicate reads by filtering any PETs whose reads start within +/- 2 bases of another PET 

and who have the same pair of linkers.  PETs comprised of reads that map within a certain genomic 

distance are likely to arise from self-circularization rather than ligation to an interacting fragment.  In 

order to avoid false positives introduced by this artifact we filtered out short distance interactions.  To 

accurately determine the cutoff for these interactions we exploited a read orientation bias of self-

circularization reads.  PETs arising from self-circularization always contain reads that map to opposite 

strands (+- or -+).  PETs arising from ligation of interacting fragments should exhibit no preference for 

the same or opposite strands.  We determine a minimum PET cutoff above which we see no 

observable bias for opposite strand PETs.  To determine the expected ratio of opposite to same 

orientation reads we calculate the mean and standard deviation of the log2 ratio of same to opposite 

strand PETs in all bins greater than ~400 kb.  This value is typically very close to zero.  Our minimum 
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PET distance is set as the size corresponding to the smallest bin that falls within 2 standard deviations 

of the expected ratio.  PETs with distance below this distance are removed. 

 Peak Calling. In order to determine binding sites we use MACS2 (version 2.0) for RAD21 and 

POLR2A and SICER (version 1.1) for histone marks  (Zhang et al. 2008; Zang et al. 2009).  P-value 

cutoffs for MACS2 and SICER were 0.0001 and 0.01 respectively.  The binding sites determined from 

this analysis are heretofore referred to as ‘ChIA-PET binding sites’ or CPBS. 

 Interaction Calling. Peaks were extended in both directions by 1500.  PETs that overlapped 

peaks at both ends were determined and those that did not were removed.  Raw interaction scores 

were determined by the following formula: 

 

 

𝑆 = 𝐿!

(𝑃  !  ×  𝑃!)
 

 

 

where S is raw interaction score, L is number of PETs linking the two peaks, and P1 and P2 are number 

of PETs overlapping each of the two regions in question. 

Previous studies have shown that interactions between genomic loci show a strong dependence 

on linear genomic distance(Dekker et al. 2002; Sanyal et al. 2012). 

To account for this we developed a resampling method to construct a distance-matched rewired (DMR) 

ChIA-PET data set that allows for distance-corrected scoring of interaction frequencies as well as 

estimation of false discovery rate (FDR). Rewired ChIA-PET data sets are constructed in a two-step 

process.  First, paired-end reads are disassociated from each other and re-paired with replacement 

generating a large set of rewired PETs (200 times the original size of the data set).  Second, the 

distribution of PET distances from the original data set is determined.  Distances are drawn at random 

from this distribution and matched to the rewired PET that has the most similar distance.  This rewired 
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PET gets included in our final set of DMR PETs. This procedure is repeated until the number of DMR 

PETs is equal to the number of observed PETs. Interaction frequencies and raw scores are calculated 

for both observed and DMR data sets as described above. Z-scores are calculated for both observed 

and DMR data sets by comparison to the weighted mean and standard deviation of the DMR data set 

and a Z-score cutoff is set so that a user defined fraction of the interactions with a Z-score greater than 

that cutoff come from the rewired data set.  This allows for data sets to be filtered to a user-defined 

FDR.  In order to more easily compare with recent 5C data sets, that had FDRs of 18% and 9%, we 

chose to filter our data sets to an FDR of 10%. 

For better discrimination of real vs random interactions we iteratively applied minimum PET 

cutoffs (minimum values of L) and maximum distance cutoffs.  For each combination of cutoffs FDR 

filtering was applied.  The combination of cutoffs that generated the maximum number interactions at a 

fixed FDR (10%) was used. 

Though this method can detect interchromosomal interactions very few were determined (287) 

and they had significantly lower Z-scores than intrachromosomal interactions and are more likely to be 

false positives (p < 2 x 10-16, Wilcoxon signed-rank test).  Therefore, we excluded interchromosomal 

interactions from all of our analyses. 

 Sequencing replicates were combined at the fastq level.  Biological replicates were combined 

after PET filtering.  And data from different factors were combined after all steps of interaction calling 

were completed 

 

Detection of differential interactions between K562 and GM12878 cells 

1.1 Determining pairs of loci for differential analysis 

In order to fairly compare the two data sets we first merged all reads from both the K562 and GM12878 

RAD21 ChIA-PET experiments and determined a set of putative interacting loci.  To determine which 

pairs of loci to compare we then used a clustering method previously described (Ester M 1996).  Each 

PET is represented as a point in the two-dimensional Euclidean space and clustered by DBSCAN 
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(Density-Based Spatial Clustering of Applications with Noise) described in (Ester M 1996) with the 

python package Scikit-learn (Pedregosa 2011). The DBSCAN parameters are set as: the size of the ε-

neighborhood of a point, Eps = 1500 bp; and the minimum number of points required to form a cluster, 

MinPts = 3 (Chepelev et al. 2012). Those PETs that do not belong to any PET clusters were removed 

since they are likely random ligation products formed in solution.  These PET clusters were then tested 

for differential interaction between the two cell types. 

 

1.2 Modeling variability as a function of PET counts 

In order to distinguish true quantitative differences from technical variability we first needed to model 

variability as a function of PET counts.  We reasoned that pairs of loci linked by higher PET counts 

should be les variable and less subject to technical variability than those linked by lower PET counts.  

To accurately model this distribution we generated MA plots using the following equations. 

 

For a specific PET cluster (A, B), denote 

c!"
(!) , i = 1,2: PET counts between region A and B for experiment i (i=1,2 refers to either K562 or 

GM12878, respectively) 

c!
(!), i = 1,2: PET end counts within region A for experiment i  

c!
(!), i = 1,2: PET end counts within region B for experiment i 

p!"
(!) , i = 1,2: Interacting probability between region A and B for experiment i 

n!, i = 1,2: Total PET counts that belong to PET clusters for experiment i 

We assume c!"
(!)~Binom n!, p!"

! , i = 1,2 

By Central Limit Theorem, when n! is large enough: 

n!
c!"
!   
n!

− p!"
! ~Norm 0, p!"

! 1 − p!"
! , i = 1,2 

Using function g! x = log  (n!x), and according to Delta Method. 
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n! log n!
c!"
!   
n!

− log  (n!p!"
! )   

= n! g!
c!"
!   
n!

− g!  (p!"
! )   

~  Norm 0, p!"
! 1 − p!"

! g!′ p!"
! !

  

= Norm 0,
1 − p!"

!

p!"
! , i = 1,2 

Let X = log c!"
! , Y = log c!"

! , then 

X~Norm µ! = log n!p!"
! ,σ!! =

1 − p!"
!

n!p!"
!   

Y~Norm µ! = log n!p!"
! ,σ!! =

1 − p!"
!

n!p!"
!  

When n!, n! are large enough. Assume c!"
!  and c!"

!  are independent and denote M = X − Y, A = (X +

Y)/2, then 

M~Norm(µ! = µ
!
− µ!,σ!

! = σ!! + σ!!) 

A~Norm µ! =
µ! + µ!

2
,σ!! =

σ!! + σ!!

4
 

After some derivation (Wang et al. 2010), the conditional distribution of M|A follows 

M|(A = a)~Norm µ! − µ! + 2
σ!! − σ!!

σ!
! + σ!!

a −
µ! + µ!

2
,
4σ!!σ!!

σ!
! + σ!!

 

 

1.3 Assigning statistical confidence estimates to differential interactions 

Using the estimates of variability determined by our model we can calculate Z scores and ultimately p 

values to describe the statistical confidence of each differential interaction.  However, differential 

binding events can lead to differences in contact frequencies and must be accounted for.  In order to 
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account for differential binding we first model the correlation between peak depths (CA and CB) and 

contact frequencies (pAB). 

 

Assume p!"
! = p!"#

! f c!
(!), c!

(!) , i = 1,2, in which p!"#
!  is the interacting probability between region A and 

B after removing the factor of protein binding intensity f c!, c! . Then the hypothesis to test whether (A, 

B) is a differential interaction between two cells is H!:  p!"#
! = p!"#

! = p! versus H!:  p!"#
! ≠ p!"#

! . 

Based on the above deduction,  

2µ! = µ! + µ! = log n!p!"
! n!p!"

! = log n!n!f c!
! , c!

! f c!
! , c!

! p!!  

Thus 

p! =
exp  (2µ!)

n!n!f c!
! , c!

! f c!
! , c!

!  

Denote R = log !!
! !!

!

!!
! !!

!  and assume log !(!!
! !!

! )

!(!!
! !!

! )
= ℎ log !!

! !!
!

!!
! !!

! = ℎ(𝑅). 

Use a as an estimate of µ!, then 

E(M│A = a) = log
n!
n!

+ h R   

D M A = a =
4 exp h R

2 − α 1 − α exp h R
2

α n! exp h R + n! − α n! + n! exp h R
2

, α =
exp  (2a)
n!n!

 

h R  is a logistic-like function, thus we set 

h R = β!
1 − exp  (β!R + β!)
1 + exp  (β!R + β!)

 

Parameters of β!, β!, β! can be determined by maximizing the log-likelihood function 

l β!, β!, β! m!, a! = log P m! a!
!
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Then by using the two estimations of expectation and variation, we can calculate the Z-score and 

convert it to the two-side p-value to describe whether PET cluster (A, B) is a differential interaction 

between K562 and GM12878 cells or not. 

Z =
m − E M A = a

D M A = a
 

 

1.4 FDR estimation 

Finally, we estimate the False Discovery Rate (FDR) of differential interactions by comparing observed 

results to results from a permutated data set.  We randomly shuffle the label of PETs that belong to 

K562 or GM12878 experiment, and calculate the permutated Z-score (Z!) again. Then FDR is 

estimated by comparing the observed Z-score (Z!) with permutated Z-score. 

FDR z =
#{Z! > 𝑧}
#{Z! > 𝑧}

 

In which #{∙} is a counting function.  We filter observed differential interactions to an FDR of 0.05. 
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SUPPLEMENTAL TABLES 

Cells	
   Factor	
  
Bio	
  
Rep	
  

Tec
h	
  
Rep	
  

Sequenci
ng	
  Depth	
  

Same	
  
PETs	
  

Chimeri
c	
  PETs	
  

Ambigu
ous	
  
PETs	
  

Non-­‐
uniquely	
  
mapped	
  
PETs	
  

Un-­‐
mapped	
  
PETs	
  

Duplica
te	
  PETs	
  

Self-­‐
ligated	
  
PETs	
  

Intra-­‐
chromoso
mal	
  PETs	
  

Inter-­‐
chromoso
mal	
  PETs	
   Peaks	
  

Interacti
ons	
  

K562	
   H3K27ac	
   1	
   1	
   165109173	
   79722577	
   54750055	
   30636541	
   54489345	
   17864	
   948089	
   3487570	
   1411505	
   19368204	
   74011	
   579	
  

K562	
   H3K27ac	
   2	
   1	
   177322797	
   131390006	
   27235810	
   18696981	
   87947223	
   40433	
   21345695	
   1583530	
   2923249	
   17549876	
   48193	
   993	
  

K562	
   H3K4me1	
   1	
   1	
   162190720	
   111183880	
   31486229	
   19520611	
   72640135	
   30237	
   823103	
   3148349	
   2230690	
   32311366	
   74039	
   492	
  

K562	
   H3K4me1	
   2	
   1	
   148997533	
   112686495	
   19821264	
   16489774	
   75649209	
   32946	
   4196124	
   7715087	
   2290646	
   22802483	
   67763	
   3137	
  

K562	
   H3K4me2	
   1	
   1	
   133923924	
   104263094	
   14050408	
   15610422	
   66495132	
   28978	
   15452476	
   1470806	
   1689123	
   19126579	
   51455	
   287	
  

K562	
   H3K4me2	
   2	
   1	
   168742629	
   127227629	
   18238500	
   23276500	
   81903555	
   148326	
   20662035	
   2014471	
   1442184	
   21057058	
   49666	
   379	
  

K562	
   H3K4me3	
   1	
   1	
   150470693	
   97438798	
   36903231	
   16128664	
   60294912	
   12862	
   25719458	
   3656146	
   988794	
   6766626	
   19285	
   1179	
  

K562	
   H3K4me3	
   2	
   1	
   164584679	
   104878365	
   31507991	
   28198323	
   72769843	
   26592	
   26255888	
   872069	
   462849	
   4491124	
   16845	
   190	
  

K562	
   Pol2A	
   1	
   1	
   180430214	
   150231459	
   6149148	
   24049607	
   97669589	
   62791	
   29383443	
   7745028	
   1620423	
   13750185	
   28906	
   2782	
  

K562	
   Pol2A	
   2	
   1	
   72576997	
   62118832	
   2570540	
   7887625	
   40407462	
   22731	
   8607792	
   4079368	
   923646	
   8077833	
   21567	
   1187	
  

K562	
   Pol2A	
   2	
   2	
   182627883	
   154157458	
   7334726	
   21135699	
   100367933	
   39942	
   34586770	
   5940180	
   1331197	
   11891436	
   26140	
   2211	
  

K562	
   RAD21	
   1	
   1	
   115140018	
   86819909	
   1099957	
   27220152	
   59005051	
   71532	
   21379381	
   1203125	
   656550	
   4504270	
   22899	
   3315	
  

K562	
   RAD21	
   1	
   2	
   138473050	
   89125493	
   1137119	
   48210438	
   60514193	
   13103	
   22217994	
   1201248	
   667904	
   4511051	
   22982	
   3632	
  

K562	
   RAD21	
   2	
   1	
   148398674	
   121245356	
   7572488	
   19580830	
   78168531	
   61271	
   34484473	
   3088468	
   1293736	
   4148877	
   42454	
   11134	
  

GM12878	
   RAD21	
   1	
   1	
   225434403	
   154049990	
   46248174	
   25136239	
   101742999	
   110014	
   30392738	
   3925495	
   1887906	
   15990838	
   58316	
   11364	
  

GM12878	
   RAD21	
   2	
   1	
   138472402	
   111086757	
   4375566	
   23010079	
   76646643	
   19760	
   20697497	
   2829649	
   1384418	
   9508790	
   30721	
   8689	
  

 

 

Table S2. ChIA-PET statistics for individual data sets. 

 

Factor	
   Binding	
  peaks	
   Interactions	
  
General	
  
Interactions	
  

Factor-­‐Specific	
  
Interactions	
  

H3K4me2	
   51095	
   513	
   276	
   237	
  

H3K4me3	
   22463	
   1360	
   764	
   596	
  

H3K27ac	
   69138	
   2231	
   1344	
   887	
  

H3K4me1	
   86567	
   5012	
   3235	
   1777	
  

POLR2A	
   40581	
   5549	
   3376	
   2173	
  

RAD21	
   48894	
   14701	
   10012	
   4689	
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Table S3. ChIA-PET statistics for individual factors. 

 

	
   	
  
%	
  of	
  each	
  element	
  overlapped	
  by	
  a	
  peak	
   %	
  of	
  each	
  element	
  overlapped	
  by	
  an	
  anchor	
  region	
  

	
  	
   Total	
  
H3K27a
c	
  

H3K4me
1	
  

H3K4me
2	
  

H3K4me
3	
  

Pol2
A	
  

RAD2
1	
  

all	
  
peaks	
  

H3K27a
c	
  

H3K4me
1	
  

H3K4me
2	
  

H3K4me
3	
  

POLR2
A	
  

RAD2
1	
  

all	
  
anchors	
  

CTCF	
   29389	
   98.7	
   96.6	
   99.4	
   95.3	
   83.6	
   28.2	
   99.7	
   5.3	
   9.5	
   2.1	
   12.4	
   20.2	
   8.7	
   35.5	
  

E	
   35176	
   93.3	
   96.1	
   92.6	
   36.1	
   41.7	
   14.5	
   98	
   5.9	
   8.1	
   2.2	
   5.2	
   6.5	
   3.6	
   21	
  

PF	
   1079	
   68.8	
   85.1	
   54.5	
   8	
   14.7	
   4.5	
   86.2	
   4.1	
   6.8	
   0.9	
   1	
   1.5	
   0.8	
   11.9	
  

R	
   22072	
   39.3	
   50.2	
   28.8	
   8.6	
   25.8	
   76.2	
   84.7	
   6.5	
   13.8	
   1.5	
   1.9	
   9.6	
   37.4	
   43.9	
  

T	
   12082	
   62	
   70.4	
   71.4	
   35.7	
   14.6	
   0.8	
   79.3	
   2.3	
   5.8	
   0.9	
   3.3	
   0.6	
   0.1	
   9.7	
  

TSS	
   42999	
   48.3	
   59.4	
   27.3	
   10.9	
   7.3	
   1	
   64	
   2.8	
   5.3	
   0.7	
   1.4	
   0.9	
   0.3	
   8.7	
  

WE	
   27074	
   15.9	
   25.7	
   12.8	
   3.6	
   1.2	
   0.7	
   28.9	
   1	
   2.4	
   0.2	
   0.3	
   0.1	
   0.2	
   3.7	
  

Total	
   169871	
   68	
   74.6	
   62.1	
   35.8	
   37.4	
   24.2	
   82.7	
   4.7	
   8.3	
   1.5	
   4.9	
   8.5	
   9.6	
   24	
  

 

Table S4. Comparison of ChIA-PET peaks and interactions with various genomic elements. 

 

 

SUPPLEMENTAL FIGURE CAPTIONS 

 

Figure S1. Comparison of ChIA-PET and 5C data sets. 

(A) Percent of ChIA-PET interactions also found by 5C.  Only ChIA-PET interactions that were 

tested by 5C were considered.  Grey bars represent expected percentages generated by randomly 

selecting interactions from tested 5C region while retaining the same distribution of interaction 

distances.  Stars represent a p-value < 0.05 (permutation testing, 1000 permutations).  Black bars 

represent ChIA-PET data published by Li et al. (B) Density plot depicting the distribution of 

interacting distances.  (C) Density plot depicting the distribution of anchor region sizes. (D)  Barplot 

depicting the number of general interactions (those found in more than one data set) and factor 

specific interactions (those found only in one data set). (E) Plot depicting the overlap between two 

biological replicates as a function of the highest N% of interactions. 
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Figure S2.   TF enrichment at interacting loci. 

(A) TF enrichment at interacting loci for each individual data set.  X-axis represented the log2 ratio 

of observed vs expected TFs binding peaks overlapping interacting loci.  Y-axis represents the 

number of interacting regions at which factor is bound.  Colors of circles represent the level of 

enrichment (see Supplementary Methods). 

(B) Box and whisker plot of Z-scores of interactions that overlap a RAD21 peak at both, one, or 

neither end of an interaction for each individual data set.  Asterisks mark significant differences (p 

< 0.05, Wilcoxon signed-rank test). 

 

 

Figure S3.  Characteristics of hierarchical networks. 

(A) Based on the GM12878 networks, the percentage of targets found in the distal, proximal, or 

both networks are depicted for each TF. 

(B) Based on the GM12878 networks, hierarchical networks built from proximal, distal, and 

combined TF only networks are shown.  Blue lines represent downward edges, red lines represent 

upward edges, and grey lines represent lateral edges.  The colors of the nodes represent the tier 

that the node resides in in the proximal network.  The size of the node represents the degree (total 

number of inward and outward edges) for each node in that network. 

(C) Based on the GM12878 networks, box and whisker plots depicting the degree (total inward and 

outward edges) of nodes in each tier of each hierarchical network. 
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(D) Plot depicting the number of TFs in the top, middle, and bottom tier of each hierarchical 

network determined from K562 cells. (E) Plot depicting the number of TFs in the top, middle, and 

bottom tier of each hierarchical network determined from GM12878 cells.  

  

 

Figure S4.   Proximal vs distal regulation of GO terms. 

(A) Six plots highlighting examples of GO terms that exhibit different profiles of enrichment.  Each 

circle represents a TF.  The size of the circle represents the number of targets of each TF 

corresponding to that GO term.  The color of the circle represents the relative enrichment using the 

same scale as shown in panel A. 

(B) Six plots highlighting examples of TFs that exhibit different profiles of GO term 

enrichment.  Each circle represents a GO term.  The size of the circle represents the number of 

targets in that GO term that that TF factor regulates.  The color of the circle represents the relative 

enrichment (log2(direct p−value / indirect p−value)). 

 

Figure S5.   Proximal vs distal regulation of GO terms in GM12878 cells. 

(A) Heatmap comparing enrichment of GO terms in proximal vs distal targets of each TF.  Each 

row corresponds to a GO term.  Each column corresponds to a transcription factor.  Red indicates 

greater enrichment in distal targets.  Blue represents greater enrichment in proximal targets. 

(B) Three plots highlighting examples of GO terms that exhibit different profiles of 

enrichment.  Each circle represents a TF.  The size of the circle represents the number of targets 

in that GO term that TF factor regulates (both proximally and distally).  The color of the circle 

represents the relative enrichment (proximal vs distal) using the same scale as shown in panel A. 
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