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Single-cell genome-wide bisulfite
sequencing uncovers extensive
heterogeneity in the mouse liver
methylome
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Abstract

Background: Transmission fidelity of CpG DNA methylation patterns is not foolproof, with error rates from less
than 1 to well over 10 % per CpG site, dependent on preservation of the methylated or unmethylated state and
the type of sequence. This suggests a fairly high chance of errors. However, the consequences of such errors in terms
of cell-to-cell variation have never been demonstrated by experimentally measuring intra-tissue heterogeneity in an
adult organism.

Results: We employ single-cell DNA methylomics to analyze heterogeneity of genome-wide 5-methylcytosine (5mC)
patterns within mouse liver. Our results indicate a surprisingly high level of heterogeneity, corresponding to an average
epivariation frequency of approximately 3.3 %, with regions containing H3K4me1 being the most variable and
promoters and CpG islands the most stable. Our data also indicate that the level of 5mC heterogeneity is dependent
on genomic features. We find that non-functional sites such as repeat elements and introns are mostly unstable and
potentially functional sites such as gene promoters are mostly stable.

Conclusions: By employing a protocol for whole-genome bisulfite sequencing of single cells, we show that the liver
epigenome is highly unstable with an epivariation frequency in DNA methylation patterns of at least two orders of
magnitude higher than somatic mutation frequencies.
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Background
Transmission fidelity of CpG DNA methylation (5mC)
patterns is not foolproof, with error rates from less than
1 to well over 10 % per CpG site, dependent on preser-
vation of the methylated or unmethylated state and the
type of sequence [1, 2]. This suggests a fairly high
chance of errors. Indeed, while the numerous cellular
identities in complex metazoa are shaped by epigenetic
regulation, there is a lack of information as to the stabil-
ity of epigenetic marks, such as DNA methylation, in
differentiated cell types during development and aging.
However, the consequences of such errors as well as
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regulated variation, in terms of increasing 5mC variance
between a single cell and the bulk cell population, here
termed “epivariation”, in tissues of an adult organism
have never been demonstrated experimentally.
Using a single-cell bisulfite PCR-based approach, we

have recently shown that, within a few selected gene
promoter regions of mouse hepatocytes, the frequency
of epivariations due to erroneous methylation or de-
methylation of a CpG site is indeed quite high, i.e., be-
tween 1.6 % for methylating epivariations and 2.7 % for
demethylating epivariations [3]. This finding prompted
us to directly test for epivariation in DNA methylation
across the entire genome in mouse liver hepatocytes.
Our results indicate a level of epimosaicism in adult
mouse liver that is very high, corresponding to an aver-
age epivariation frequency of 3.3 %. Interestingly, the
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Fig. 1 Global methylation and coverage of single-cell WGBS. a
Genome wide 5mC levels and coverage in single fibroblasts (blue)
and hepatocytes (red). From outside to inside, the first layer represents
5mC level, the second layer coverage at each CpG site. 5mC levels and
coverage were averaged among cells from each group and estimated
using 1-Mb non-overlapping sliding windows. b Global 5mC levels at
CpG sites for single cells and bulk for the two cell types and two age
groups. c Percentage of genomic 3-kb windows containing at least 5
CpG sites in single hepatocytes and fibroblasts. Virtually all qualified
windows in the single cells were found to overlap with their bulk
samples. Grey, fibroblasts; blue, young hepatocytes; red, old hepatocytes
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level of 5mC instability was found to depend on specific
genomic features, with promoters and CpG islands being
the most stable and non-functional regions the most un-
stable. Such heterogeneity could be responsible, at least
in part, for the remarkably large intrinsic gene expres-
sion variability observed among hepatocytes in mamma-
lian liver [4].

Results and discussion
Single-cell whole-genome bisulfite sequencing accurately
reports genome-wide 5mC patterns
In order to experimentally measure intra-tissue liver het-
erogeneity, diploid hepatocytes were isolated from six
mice, three 4-months old and three 26-months old, by
liver perfusion and sorted using fluorescence-activated
cell sorting (FACS) into PCR tubes after Hoechst 33342
staining. A total of 21 hepatocytes (at least two cells per
animal) were subjected to bisulfite treatment followed by
whole-genome library preparation and sequencing on an
Illumina HiSeq 2500 with 100-base, single-end reads.
For each animal we also performed whole-genome bisul-
fite sequencing (WGBS) of DNA from bulk hepatocytes.
For comparison, we also sequenced libraries generated
from five manually picked individual mouse embryonic
fibroblasts, as well as DNA from two bulk fibroblast cell
populations.
On average, 17 million reads were mapped for each

single hepatocyte (109 million for the bulk), correspond-
ing to a mapping efficiency of 32.3 % for the single cells
and 55.9 % for the bulk (Additional file 1: Table S1). The
somewhat lower mapping efficiency of the single-cell
DNA may be due to reduced complexity of the DNA
amplified from single cells compared with the bulk and
was also found by Smallwood et al. [5]. Mapped reads
appeared as randomly distributed across the genome,
providing information on all genomic features, covering
2.2 million CpG sites on average for the single cells and
21.6 million on average for the bulk DNAs (Additional
file 1: Figure S1 and Table S1). Coverage was distinct-
ively lower for the single cells than for the bulk DNA, in
agreement with data from others [5] (Fig. 1a). Bisulfite
conversion efficiency was 98 % or higher, as assessed by
analysis of non-CpG methylation (Additional file 1:
Table S1). Additional file 1: Table S2 compares these
methodological specifics with two previously published
protocols for single-cell methylomics [5, 6], showing that
performances of all three methods are fairly similar
(Additional file 1: Table S2).
While the vast majority of CpG sites were either meth-

ylated or unmethylated, a small fraction was found to
show partial methylation (1.07 ± 0.98 %; Fig. 1b;
Additional file 1: Figure S2). Interestingly, the fraction of
partially methylated sites was consistently smaller in sin-
gle cells compared with the bulk (Fig. 1b). While in bulk
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cell populations partially methylated sites most likely re-
flect amplification from multiple alleles (from many
cells), in single cells amplification is only from two al-
leles and, in practice, due to the low coverage in most
cases, from only one. This is the most likely explanation
for the very small fraction of partially methylated sites in
single cells. This is in keeping with the slightly higher
fraction of partial methylation in the manually selected
control fibroblasts, coverage of which was significantly
higher than the hepatocytes (due to better single-cell
DNA quality in these cells, which had not gone through
enzymatic isolation and cell sorting; Fig. 1b).
To analyze 5mC patterns in the isolated hepatocytes,

we subdivided the genome in 3-kb sliding windows with
a step size of 600 bp and determined the weighted aver-
age of 5mC in each window as described in Additional
file 1: Supplemental Experimental Procedures. Only win-
dows containing at least 5 CpG sites were used for the
analysis (Fig. 1c). Before proceeding with an in-depth
analysis of 5mC heterogeneity, we verified the accuracy
of our single-cell procedure in faithfully reporting cor-
rect DNA methylation status using two approaches.
First, we tested if the DNA methylation patterns ob-
tained for the studied single cells were indeed specific
for hepatocytes. Because 5mC promoter status is gen-
erally inversely correlated with gene expression status
[7–9], we used a set of 58 liver-specific genes identi-
fied through multi-tissue RNA-seq analyses by Lin. et
al [10]. As those genes are specifically expressed in the
liver, we expected their promoters to be generally
hypomethylated. Indeed, our results show that the
average 5mC level of promoters of these liver-specific
genes in all single hepatocytes was very similar to that
in the bulk hepatocytes and significantly lower (p < 0.001,
one-tailed t-test) than that in the promoters of these same
genes in fibroblasts (Fig. 2a).
Second, we merged methylation patterns of single he-

patocytes as well as fibroblasts and compared this with
their corresponding bulk patterns. Similar methylation
levels of the merged and the bulk were observed for
every window (Fig. 2b). Principle component analysis
(PCA) revealed that single cell and bulk cluster accord-
ing to cell type and age (Fig. 2c). In both cell types the
clustering was affected by sequencing coverage, as ex-
pected because of the much higher coverage of the bulk
samples (Fig. 2c; Additional file 1: Figure S1). We no-
ticed that one young hepatocyte, “y14”, clustered with fi-
broblasts in PCA, although it has similar promoter
methylation patterns to liver-specific genes. This may re-
flect the diversity and heterogeneity of the hepatocyte
population. Based on the promoter methylation patterns
and PCA clustering, we conclude that our single-cell
DNA methylomics protocol correctly identified cell
type-specific DNA methylation patterns.
5mC heterogeneity in liver is high and dependent on
sequence feature
To quantitatively analyze 5mC heterogeneity among the
single hepatocytes, we compared the average 5mC content
of the 3-kb sliding windows overlapping between each sin-
gle hepatocyte and its bulk population and calculated the
variance between each cell and the bulk from which it was
derived (Fig. 3a; Additional file 1: Supplemental Experi-
mental Procedures). To control for possible artifacts
caused by sequencing depth variation, we also calculated
the variance between the bulk and artificial cells, simu-
lated by downsampling of the bulk itself to a single-cell se-
quencing depth. This “noise” (y-axis, Fig. 3a), which was
between 53.3 ± 13.0 % of the actual variations between the
real cells and the bulk, was then subtracted from the raw
variance values (x-axis, Fig. 3a). The results confirm a sig-
nificant level of cell-to-cell variation in 5mC across the
genome. As expected, heterogeneity was significantly
higher among hepatocytes compared with the five fibro-
blasts included as control cells (P = 0.016, one-tailed per-
mutation test on the mean variance of each group). As
these cells had been taken from the same plate, both the
number of cell divisions and chronological time between
them was much shorter than for the hepatocytes, each of
which went through the process of development and
aging, with ample opportunity to undergo epivariation.
Due to the high level of 5mC heterogeneity, both in

young and old hepatocytes, our sample size (ten single
cells per age group) does not provide enough power to
significantly distinguish potential differences between
age groups. Interestingly, while not statistically signifi-
cant, variance (from cell to bulk) of hepatocytes from
the aged mice was higher than in the young animals
(P = 0.148, one-tailed permutation test on the mean
variance of each group) (Fig. 3a, b). Higher heterogen-
eity in hepatocytes compared with fibroblasts was con-
firmed when comparing the fraction of differentially
methylated windows (DMWs) rather than comparing
the variance (Fig. 3b; Additional file 1: Supplemental
Experimental Procedures). Also in this case the DMW
frequency was slightly higher among hepatocytes from
the aged mice, with a profound increase in cell-to-cell
variation.
To translate the observed variance (from cell to bulk)

among hepatocytes into epivariation frequency, we then
calculated the ratio between the number of altered CpG
sites and the total number of CpGs overlapping between in-
dividual cells and the bulk (Additional file 1: Supplemental
Experimental Procedures and Figure S3). Epivariation fre-
quency in the hepatocytes appeared to be remarkably high,
i.e., in the order of 3.3 % of all CpG sites analyzed. This is
more than three orders of magnitude higher than the fre-
quency of somatic DNA sequence mutations [11] and very
similar to our previous promoter-based estimates [3].
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Fig. 2 Single-cell WGBS is an accurate and reproducible method for genome-wide 5mC analysis. a 5mC promoter methylation status of 58
liver-specific genes. b Merged single cells have the same methylation pattern as their corresponding bulk. Each comparison is based on
10,000 randomly chosen 3-kb windows indicates the number of single cells sequenced. c Principal component analysis of single cells and bulk
shows separate clustering of fibroblasts and hepatocytes (both panels) and hepatocytes from old and hepatocytes from young mice

Gravina et al. Genome Biology  (2016) 17:150 Page 4 of 8



a

c

b

Fig. 3 5mC heterogeneity. a Global heterogeneity per cell. Variance value was used to quantify the difference between a cell and its bulk across
windows. Raw variance (x-axis) and noise (y-axis) estimated from downsampling bulk to single-cell equivalent were plotted. To test significance of
difference in mean variance among groups, P values were obtained by using permutation tests of randomly resampled samples into the two
groups for comparison. b Number of differentially methylated windows in fibroblasts and hepatocytes from young and old mice. Differentially
methylated window (DMW) frequency was significantly higher in hepatocytes than in fibroblasts (P < 0.001, two-tailed t-test). The slightly higher
DMW frequency in hepatocytes from aged mice was not significant. c 5mC heterogeneity in liver is highly dependent on sequence feature. CGI
CpG island, LINE long interspersed nuclear element, LTR long terminal repeat, SINE short interspersed nuclear element, UTR untranslated region
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Next, we explored whether heterogeneity of 5mC in
mouse liver was dependent on specific genomic features.
First we grouped all the hepatocytes together as we did
not find a significant difference between young and old
(Fig. 3a). To reduce bias due to coverage and sample
size, each bin in each cell was down-sampled to 5 CpG
counts per bin, irrespective of their presence in multiple
reads at the same site or at multiple sites. After down-
sampling, we retained ten cells with the highest coverage
for each bin, making the comparison of variation in
methylation content homogeneous in all bins across the
genome (Additional file 1: Supplemental Experimental
Procedures). Our results indicate that 5mC heterogen-
eity is highly dependent on the genomic context and
mostly a feature of non-functional sites. More specific-
ally, 5mC variance between cells was higher than the
genome average in repeats and transposons, whereas it
was lower in functional sequences, such as CpG islands
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(CGIs) and promoter regions, 5′ untranslated regions
(UTRs), exons, H3k36me3, and H3k4me3 (Fig. 3c),
which is in keeping with previous work suggesting that
hypermethylated regions are more error prone than
hypomethylated ones [1, 2]. The exception appeared to
be in the regions associated with histone H3 methylation
at Lys4 (H3K4me1), the transcription-associated histone
modification. Of note, H3K4me1 has been previously
found to be associated with 5mC loss during aging [12].
Next, we focused on promoter 5mC heterogeneity,

which appeared to depend on whether they were CGI or
non-CGI promoters. Non-CGI promoters were found to
be more variable than the CGI ones (Fig. 3c). In this re-
spect, we can speculate that because non-CGI promoter
genes are destined to change during development and
adult life [13], they might be subjected to higher levels
of fluctuations than the CGI ones.

Conclusions
In recent years, extensive studies on epigenetic processes
have revealed how complex genomes generate different
cell types in a highly dynamic fashion. Once established,
the epigenetic factors, such as DNA methylation and
histone modification, need to be faithfully transmitted in
cells during cell division or DNA damage repair to main-
tain cell identity. The large volume of epigenomic trans-
actions and its continuous need for maintenance suggest
a high chance of errors. However, virtually nothing is
known on the epimosaicism within populations of seem-
ingly identical cells. Herein, by employing a protocol for
WGBS of single cells, we show that epivariation fre-
quency in DNA methylation patterns is at least two or-
ders of magnitude higher than somatic mutation
frequencies [11, 14]. While to our knowledge this has
never been directly analyzed in mammals, it is in accord-
ance with reports suggesting that spontaneous transge-
nerational epigenetic changes in the Arabidopsis
thaliana methylome are three orders of magnitude more
frequent than DNA mutations [15, 16]. The observed
high epivariation frequency in mouse liver is also in
keeping with the previously observed relatively high
levels of transmission infidelity of DNA methylation [1].
Our present data also indicate that 5mC heterogeneity

level is dependent on genomic features, with non-
functional sites, such as repeat elements and introns,
mostly unstable and potentially functional sites, such as
gene promoters, mostly stable. An interesting exception
appeared to be the H3K4me1 epigenetic signature of ac-
tive enhancers, which has been previously found associ-
ated with DNA methylation loss during aging [12].
These results are in accordance with those obtained by
Smallwood et al. [5], who also showed the highest levels
of heterogeneity in H3K4me1 when compared with
other genomic features in single mouse embryonic stem
cells. This result seems suggestive of a common hetero-
geneity signature among different cell types. Of note, we
did not find any striking increase in 5mC heterogeneity
with aging; we speculate that, at least in part, this could
be due to the fact that epivariations are affected by both
genetic and environmental factors, and we studied gen-
etically identical mice reared under controlled condi-
tions. It is also possible that the liver, being a reversible
post-mitotic organ, under normal conditions has very
little proliferative activity and, therefore, a limited
chance of accumulating 5mC maintenance errors over
time [1, 2, 5]. Finally, an age effect may actually be
present, as suggested by a clear trend of a higher vari-
ance in the older animals, but simply obscured by the
very high baseline of cell-to-cell variation.
The possible physiological effects of the high epige-

nome heterogeneity in adult liver remain unknown. It is
conceivable that the observed epimosaicism reflects sub-
tle but physiologically relevant variation within the hep-
atocyte population, similar to what has been postulated
for neurons in the brain [17]. The mammalian liver per-
forms a diverse range of critical functions for maintain-
ing metabolic homeostasis (ranging from glucose
regulation and lipid stores to blood detoxification).
Therefore, a straightforward hypothesis is that the liver
achieves this diversity through the collective behavior of
heterogeneous hepatocytes operating in highly struc-
tured microenvironments. More specifically, hepatocytes
with different epigenomes will have distinct molecular
phenotypes and such heterogeneity, up to a certain ex-
tent, may be beneficial to the maintenance of organ
functionality. However, because the observed epige-
nomic heterogeneity in mouse liver appeared to be fairly
random, and while we did observe enrichment in se-
quences generally assumed to be non-functional, specific
hotspots were not detected, it is probably more likely
that epigenomic heterogeneity truly reflects errors. In
this respect, what remains to be clarified is how much
noise can be tolerated within an organ before its func-
tionality would be impaired. We expect that ongoing de-
velopment of single-cell technologies will allow noise
effects to be tested by measuring cellular information
status at multiple levels, i.e., genome, epigenome and
transcriptome, of the same single cells [18–21]. Ongoing
reduction in sequencing costs is likely to facilitate ana-
lysis of the large numbers of cells necessary for that
purpose.

Methods
Animals
Three 4-month-old and three 26-month-old C57BL/6
male mice were obtained from the National Institute on
Aging (NIA). All surgical procedures and experimental
manipulations were approved by the Ethics Committee
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for Animal Experiments at the Albert Einstein College
of Medicine. Experiments were conducted under the
control of the Guidelines for Animal Experimentation.
Animals were sacrificed by cervical dislocation.

Ethics
The animals were sacrificed and primary cells were
collected under the Institutional Animal Care and Use
Committee (IACUC) of Albert Einstein College of
Medicine protocol #20140308, “DNA Repair, Mutations
and Cellular Aging” (approval 06 June 2014).

Isolation of single mouse embryonic fibroblasts
Mouse embryonic fibroblasts (MEFs) were isolated from
embryonic day 13.5 embryos of C57BL/6 mice as de-
scribed [14]. All cultures were maintained in a 3 % O2

and 5 % CO2 atmosphere. After trypsinization, single
MEFs were collected under an inverted microscope by
hand-held capillaries, deposited in polymerase chain re-
action (PCR) tubes and immediately frozen on dry ice
and stored at −80 °C until needed or immediately
bisulfite-converted.

Isolation of single hepatocytes
Livers in six (three 4-month-old and three 26-month-
old) C57BL/6 mice were perfused with collagenase fol-
lowing the protocol as described [22]. Single hepato-
cytes were stained with Hoechst 33342 and sorted
using a MoFloXDP cell sorter (Beckman Coulter) into
PCR tubes containing 5 μl of PBS, flash-frozen, and
stored at −80 °C or immediately used for DNA methy-
lation analysis.

Genomic DNA extraction
DNA from MEF cultures or mouse liver was isolated by
phenol/chloroform extraction, as described [11].

Genomic DNA WGBS library preparation
DNA (100 ng) from bulk MEFs or hepatocytes was
bisulfite-converted and subjected to library preparation
using the Pico Methyl-Seq™ Library Prep Kit (Zymo) ac-
cording to the instructions of the supplier. Libraries
were assessed for quality using High-Sensitivity DNA
chips on the Agilent Bioanalyzer and quantified with
Qubit fluorometer. Libraries were sequenced on an
Illumina HiSeq2500 (100-bp single-end sequencing).

Single-cell lysis and WGBS library preparation
Single cells were lysed with 10 μl digestion buffer
(Zymo) and 1 μl Proteinase K (Zymo) for 20 min at 50 °C
in a total volume of 20 μl. The bisulfite conversion and li-
brary preparation were performed on cell lysates using the
Pico Methyl-Seq™ Library Prep Kit (Zymo) according to
the instructions of the supplier with some modifications.
More specifically, as the first modification consisted of a
reduction of the primer concentration in the pre-
amplification step (20 μM) in order to avoid primer
dimers in the final library. Subsequently, we introduced
another modification at the amplification step: additional
cycles were added to the amplification step and we there-
fore performed 11 cycles of PCR amplification in total.
Libraries were assessed for quality using High-Sensitivity
DNA chips on the Agilent Bioanalyzer. The quantity of
each sequencing library was measured with a Qubit
fluorometer. Libraries were sequenced on an Illumina
HiSeq2500 (100-bp single-end sequencing).

Sequencing data processing and analysis
Raw sequence data were subjected to quality control by
FastQC v0.10.1 (http://www.bioinformatics.babraham.a
c.uk/projects/fastqc/) and trimmed using trim galore
v0.3.3 (http://www.bioinformatics.babraham.ac.uk/pro
jects/trim_galore/) with default parameters except add-
itional trimming of the first four and last two base pairs
of a read due to abnormal GC content. Trimmed se-
quences were mapped to the mouse reference genome
(mm9) using Bismark 0.10.0 with the alignment tool
Bowtie2 2.1.0. Sequence duplicates were further re-
moved and single CpG methylation was called using
Bismark [23]. A summary of data processing is shown
in Additional file 1: Table S1.
To estimate CpG methylation variations, a sliding win-

dow of 3 kb in size and 600 bp in step size was used to
subdivide the genome, similar to Smallwood et al. [5].
Windows covering at least 5 CpGs were used in the ana-
lysis (Fig. 1c; Additional file 1: Figure S1). The methyla-
tion frequency of a window in one sample was estimated
based on a binomial distribution.
Heterogeneity levels were estimated in two ways”: (1)

global difference between a cell and its bulk; and (2)
local difference between cell–bulk pairs in each window.
In both, heterogeneity level is quantified using a
weighted variance value, for which mean methylation
frequency is approximated using the corresponding bulk.
Multiple downsamplings were performed to access po-
tential noise due to technical artifacts (Fig. 3a). Annota-
tions of genomic features were obtained from multiple
resources (Additional file 1: Table S3).
Of note, our definition of variance in genomic features

is slightly different from Smallwood et al [5]. They plot-
ted the lower bounds of the 95 % confidence interval
and we plotted the estimated mean. Additionally, raw
variance value is biased by sequencing depth. For ex-
ample, if the methylation level of two 5mCs are both 0.5
but the sequencing depths are 3× and 20× separately,
there will be a systematic bias comparing sequencing
depth at 3× (most likely 0.67 or 0.33) of 5mC and 20×
(close to 0.5) of the other. We therefore downsampled

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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the data to reach the same sequencing depth in all gen-
omic regions. The downsampling provides a less biased
comparison at the cost of more noise. Thus, our re-
ported variances are less quantitatively different than
those in Smallwood et al. [5] but more directly
comparable.
Finally, epivariation was defined as methylation differ-

ence between a single cell and its bulk at a single CpG
site. To call an epivariation at a 5mC, we required (1) a
sequencing depth at the 5mC site larger than 5 in both
single cell and bulk; (2) more than 90 % of the reads in
bulk showing the same methylation pattern (either
methylation or unmethylation); and (3) more than three
reads in the cell indicating a different methylation pat-
tern than the bulk. Epivariation frequency is stable even
with slight changes to the above criteria (Additional file 1:
Figure S3). Further details of data analysis are described in
Additional file 1: Supplemental Experimental Procedures.

Additional file

Additional file 1: Supplementary materials. The supplementary
materials include Figures S1–S3, Tables S1–S3, and Supplementary
Experimental Procedures. (PDF 473 kb)
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