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However, continuous monitoring within a cell is not possible, and 
high-resolution scRNA-seq time-series experiments in distinct 
cells are prohibitive given the time required for sample preparation 
and sequencing. Even when scRNA-seq time-series experiments 
become feasible, challenges associated with rate heterogeneity, 
sampling and synchronization will remain. In addition, when tis-
sue samples are studied, synchronization is not possible for most 
oscillatory systems such as cell cycle.

Computational algorithms have been developed to address 
some of these challenges in both microarray5–7 and scRNA-seq 
studies4, but none focuses on identifying oscillating genes. Most 
are based on the recognition that different samples represent dis-
tinct states in a system, such as time points along a continuum  
or progression toward an end point. By obtaining multiple samples 
at a single5–7 or a few4 time points and computationally recon-
structing an appropriate order, temporal or other meaningful  
dynamics can be resolved. A key assumption that enables order-
ing is that genes do not change direction very often and thus 
samples with similar transcriptional profiles should be close in 
order. Oscillating genes pose challenges for these approaches 
because genes following the same oscillatory process need not 
have similar transcriptional profiles. Two genes with an identical  
frequency that are phase shifted, for example, will have little  
similarity (Fig. 1a).

We have developed a statistical approach called Oscope, which 
is freely available, to identify oscillating genes in static, unsyn-
chronized scRNA-seq experiments (Fig. 1 and Supplementary 
Software). Like previous algorithms, Oscope capitalizes on the 
fact that cells from an unsynchronized population represent dis-
tinct states in a system. However, unlike previous approaches, ours 
does not attempt to construct a linear order on the basis of mini-
mizing change among adjacent samples. Rather, Oscope utilizes 
co-regulation information among oscillators to identify groups of 
putative oscillating genes and then reconstructs the cyclic order 
of samples for each group, defined as the order that specifies each 
sample’s position within one cycle of the oscillation (referred to  
as a base cycle). The reconstructed order aims to recover gene- 
specific cyclic profiles defined by the group’s base cycle, allowing 
for phase shifts between different genes (Online Methods). Notably, 
for different groups of genes following independent oscillatory  
processes and/or having distinct frequencies, the cyclic orders of 
cells need not be the same (see Supplementary Fig. 1).

A single cell can be thought to oscillate through cell states 
defined, for simplicity, by oscillations in just two genes (Fig. 1a).  
In a typical scRNA-seq experiment, unsynchronized cells in a 
variety of different states are collected at the same calendar time T 
(Fig. 1b). If it were possible to sort cells by the oscillation times of 
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Oscillatory gene expression is fundamental to development,  
but technologies for monitoring expression oscillations are 
limited. We have developed a statistical approach called  
Oscope to identify and characterize the transcriptional 
dynamics of oscillating genes in single-cell RNA-seq data 
from an unsynchronized cell population. Applying Oscope to 
a number of data sets, we demonstrated its utility and also 
identified a potential artifact in the Fluidigm C1 platform.

Oscillations in gene expression play a critical role in many bio-
logical processes including somitogenesis, limb development and 
progenitor cell maintenance1. However, even for well-known 
oscillatory systems such as the cell cycle, expression character-
istics such as the peak phase of genes have not been thoroughly 
studied in all cell types owing to technological limitations. Recent 
advances in live-cell imaging have improved the sensitivity and 
specificity with which continuous measurements can be made 
within a single cell2, but constraints associated with reporters 
and detection channels limit monitoring to relatively few genes in 
any given experiment. RNA microarray or RNA-seq time-series 
experiments are often conducted in order to study transcriptional 
oscillations on a genome-wide scale3, but heterogeneity in gene-
specific frequency and phase make it difficult to identify an optimal  
sampling rate. These methods also require large quantities of  
synchronized starting material and average expression over  
thousands of cells, which may miss or even misrepresent4 oscilla-
tions. Cell synchronization, when possible, attenuates a number 
of these problems for known oscillatory systems (typically the cell 
cycle) but can dramatically alter the transcriptional dynamics of 
others, and it does not facilitate de novo discovery.

Single-cell RNA-seq (scRNA-seq) has the potential to capture  
a more precise (not averaged) representation of oscillation dynam-
ics genome wide in populations of single cells as well as to unmask 
oscillations that are missed in bulk expression experiments.  
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genes, defined as the amount of calendar 
time the cell has been oscillating before 
collection time T, identifying oscillating 
genes and characterizing their dynam-
ics would be straightforward (Fig. 1c).  
However, oscillation time is unobserved 
in an scRNA-seq experiment. With this 
type of snapshot data, the expression of oscillating genes is indis-
tinguishable from random noise (Fig. 1d); therefore, existing  
methods8,9 for identifying cyclic features do not apply.

Recognizing that a scatter plot of expression values for genes 
oscillating with similar frequency will form an ellipse independ-
ent of order (Fig. 1e), Oscope fits a two-dimensional sinusoidal 
function to all gene pairs and chooses those with the best fits. 
Note that the elliptical shape is preserved when the oscillation 
has varying speed or is partially synchronized between genes (see 
Supplementary Fig. 2). Once candidate genes are identified, the 
K-medoids algorithm is applied to cluster genes into groups with 
similar frequencies but possibly different phases. Then, for each 
group, Oscope recovers the cyclic order that places cells by their 

position within one cycle of the oscillatory process underlying 
the group. Given static data, it is not possible to reconstruct mul-
tiple cycles of an oscillatory process because the dynamics of late 
cycles are identical to those of earlier cycles, by definition. For 
example, the gene expression values in cells 2 and 4 in Figure 1b 
are identical even though cell 2 has passed through a full cycle but 
cell 4 has not. Here we define the base cycle as the minimal cycle 
that is repeated in an oscillatory process (an example is shown in 
Fig. 1c). Oscope uses an extended ‘nearest-insertion’ algorithm 
to order cells with respect to their position in a base cycle without 
specifying a direction of time (Fig. 1f).

The nearest-insertion algorithm10 was developed to address the 
traveling salesman problem: given pairwise distances between cities,  

the algorithm provides a computationally 
efficient way to order travel to all cities 
so that overall distance is minimized. We 
extended the nearest-insertion algorithm 
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gFigure 1 | Overview of Oscope. (a) An 
oscillating gene group with two genes 
and corresponding cell state. (b) In an 
unsynchronized scRNA-seq experiment, mRNA is 
collected at time T from cells in varying states. 
t0,i and ti show cell i  ’s oscillation start time 
and oscillation time, respectively. (c) The same 
genes and cells as in b, where cells are ordered 
by the genes’ oscillation times. (d) Expression 
for 100 unsynchronized cells. (e) Scatter plots 
of gene 1 vs. gene 2 scaled expression, which 
are independent of order. Cells are colored 
from cyan to brown following the x axes of c 
and d, respectively. (f) Results of base-cycle 
reconstruction for the 100 cells shown in d.  
(g) Flow chart of the Oscope pipeline  
(see Online Methods).
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Figure 2 | Oscope uncovers oscillatory signals 
in transcriptional profiles. (a) Four genes in 
the time-series data from Whitfield et al.8 with 
profiles ordered by Oscope; the peak of the base 
cycle is marked in gray. (b) The same four genes 
as in a following the known order over time 
with the peak of the first base cycle (shown in 
yellow) marked in gray. (c) Oscope-recovered 
profiles of four genes from a 29-gene group 
identified by Oscope using scRNA-seq data from 
213 unlabeled hESCs. (d) The same four genes 
as in c ordered using 460 cells (213 unlabeled 
and 247 H1-FUCCI cells are shown as open 
and filled circles, respectively). FUCCI labels 
(ignored before applying Oscope) are shown 
in different colors for the 247 cells. Phase 
boundaries defined by the reconstructed order 
are shown above the plots. (e) The proportion 
of unlabeled cells that fall into each phase 
defined by the boundaries in d.
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to order cells within an oscillatory gene group so that distance 
between each gene’s expression and its gene-specific base-cycle 
profile is minimized on average over all genes in the group. Once 
the order for each group is recovered, subsequent algorithms 
developed for time-course analysis (for example, Fourier trans-
formation, spline fitting, etc.) can be applied to estimate phase or 
further characterize oscillations, if desired.

To evaluate the ability of Oscope to identify oscillating groups of 
genes and reconstruct the cyclic order underlying their base cycles, 
we applied it to a bulk RNA-seq time-series study of oscillating 
genes8 after permuting the sample order. The top group identified 
by Oscope had 151 genes, 116 of which were validated as oscillat-
ing in earlier work8 (see Fig. 2a,b for examples). Oscope success-
fully recovered the base-cycle profile of each gene and correctly 
inferred phase shifts (Supplementary Fig. 3 shows all 151 genes). 
The results of simulation studies and additional case studies  
provide further insights into the operating characteristics of the 
approach (Supplementary Note, Supplementary Figs. 4–10 and 
Supplementary Table 1).

To further evaluate Oscope on scRNA-seq data, we analyzed 
profiles of single undifferentiated human embryonic stem cells 
(hESCs)11. We applied Oscope to three replicate scRNA-seq 
experiments on H1 hESCs (n = 213). One of the top groups 
identified by the K-medoids algorithm in Oscope contained 29 
genes (Supplementary Table 2), 21 of which are annotated as 
belonging to the Gene Ontology “Cell Cycle” biological process  
(GO:0007049). The reconstructed base cycle is characterized by 
peaked expression of genes known to be involved in G2 phase 
progression (for example, NUSAP1 and KPNA2) and M phase 
progression (for example, CCNB1 and TPX2)12 (Fig. 2c and 
Supplementary Fig. 11). To confirm whether the recovered 
profiles were associated with cell-cycle phasing, we performed 
additional scRNA-seq experiments (n = 247) on H1 hESCs har-
boring the fluorescent ubiquitination-based cell-cycle indicators13 
reporter (H1-FUCCI, see Online Methods) in which cells were 
identified as being in G1, S or G2/M phase. We combined the H1 
and H1-FUCCI data sets and applied Oscope. The reconstructed 
order using the same 29 genes largely recapitulates the three 
phases of the cell cycle (Fig. 2d and Supplementary Fig. 12). 
The phase boundaries defined by the reconstructed order clas-
sified 72% of H1-FUCCI hESCs into the correct phase. Because 
the H1-FUCCI data set does not provide an unbiased estimate of 
the number of cells in each phase, we classified the unlabeled H1 
hESCs by the phase boundaries and estimated the proportion in 
each phase. The proportion of unlabeled H1 cells in each phase 

is consistent with the notion of a shortened G1 phase in undif-
ferentiated hESCs14 (Fig. 2e). Out of the eight genes that were not 
annotated as belonging to the cell-cycle pathway, six of them have 
been shown to be associated with cell cycle in a previous publica-
tion12. All eight genes, including the two less well-characterized 
oscillatory genes CALM2 and ZNF165, showed cell cycle–related 
base-cycle profiles (Supplementary Fig. 13).

A second group of top genes identified by Oscope showed an 
oscillatory pattern related to the capture site and output well 
positions on the Fluidigm C1 chip (Supplementary Table 3).  
In particular, these genes all had increased expression in 
cells captured in sites with small or large plate output IDs,  
across all three replicate hESC scRNA-seq experiments. The 
capture sites involving increased gene expression were physi-
cally located close to each other on the chip (Fig. 3a). To exam-
ine this potential artifact, we developed an analysis of variance 
(ANOVA)-based artificial trend detection algorithm (Online 
Methods) and applied the algorithm on the combined data from 
the three H1 experiments. We found that 403 genes showed strong  
artificial trends (Supplementary Fig. 14 and Supplementary 
Table 4) consistently across experiments (Fig. 3b). To further 
investigate the artifact and to rule out biases that may be due 
to sequencing, we estimated expression via real-time quantita-
tive PCR (qPCR) on select genes (Supplementary Fig. 15) and 
found the trend already present in the full-length single-cell 
cDNA libraries. We also saw this trend in publicly available 
data sets from other labs using various cell types (Fig. 3c and 
Supplementary Fig. 16).

The scRNA-seq technology offers an unprecedented ability to 
take snapshots of genome-wide transcription in single cells, but 
it is not amenable to longitudinal studies that monitor changes in 
individual cells in situ. Oscope allows investigators to identify and 
characterize oscillating gene groups and infer a gene’s oscillation 
phase. Applications in a number of settings should improve our 
understanding of known oscillators as well as facilitate the discovery  
of new ones. Furthermore, adjusting for oscillators using the  
characterization provided by Oscope should increase the power 
to investigate other signals associated with differentiation and/or 
subpopulations15.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. NCBI Gene Expression Omnibus: GSE64016.
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Figure 3 | Oscope uncovers dynamic  
signals of technical origin in scRNA-seq  
data sets. (a) Default plate output ID layouts  
of the capture sites on the C1 chip. The  
capture sites’ corresponding plate output IDs 
are labeled following the recommendation by 
the manufacturer user guide. (b) Expression 
of four genes with potential ordering effects. 
Cells are ordered by the C1 plate output ID 
(A01–A12, B01–B12, …, H01–H12). Cells from 
the colored capture sites in a are also shown in 
magenta. Three replicate hESC experiments are 
separated by gray lines. (c) The same four genes 
for a different data set4 (ordered following the cell order listed in supplementary data for ref. 4). The four experiments are separated by gray lines.  
The y axes are limited to the 98th quantile of gene-specific FPKMs (fragments per kilobase of exon per million mapped reads) for better visualization.
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Oscope: paired-sine model. An oscillatory gene group is a group 
of genes having the same frequency with phase shifts that may 
vary among pairs but are preserved across cells. For example, if 
cgi,gj,s denotes the phase shift between genes gi and gj in cell s,  
then cgi,gj,s need not equal cgi,gk,s, but cgi,gj,1 = cgi,gj,2 = cgi,gj,S.  
Oscillation time is the difference between cell collection time T 
and the start of oscillation.

For a pair of genes g1 and g2, denote the matched gene  
expression (rescaled to [−1, 1]) in S cells as (Xg1,1, Xg2,1),  
(Xg1,2, Xg2,2), …, (Xg1,S, Xg2,S). If the two genes follow a sinusoidal 
process with a phase shift, then the following equations hold for 
each cell s in 1, 2, …, S: Xg1,s = sin(ts + ϕg1) and Xg2,s = sin(ts + ϕg1 +  
cg1,g2), where ts indicates oscillation time of cell s, ϕg1 indicates 
the starting phase of gene 1, and cg1,g2 indicates the phase shift 
between the two genes where the subscript s is dropped because 
cg1,g2 is assumed common to all cells.

By trigonometric identities 

X t t
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g s s g g g s g g g
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2 1 1 2 1 1 2
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To search for gene pairs with associated dynamic changes, 
Oscope linearly rescales gene-specific gene expression mea
surements to range between −1 and 1, and estimates the optimal  
cgj,gj for all gene pairs (gene i, gene j) defined as that which 
minimizes e gi gj,

2 . With this metric, gene pairs are rank ordered by 
−log10(e gi gj,

2 ); and candidate oscillatory genes are those genes in 
the top gene pairs (Oscope’s default is the top 5%; this threshold 
may be changed by users on the basis of the empirical distribution 
of the e gi gj,

2  values).

Oscope: K-medoids clustering. To cluster the candidate oscillatory 
genes detected from the paired-sine model into distinct groups, we 
use the K-medoids algorithm with ε2

gi,gj as the dissimilarity met-
ric. With this metric, gene pairs with small ε2

gi,gj values are more 
likely to be clustered together. The optimal K is picked by maxi-
mizing the silhouette distance. Only groups having within-group 
phase differences are further considered in order recovery to avoid 
detecting gene groups with a purely linear relationship. Specifically, 
for any pair of genes gi, gj within a group, we define the phase-
shift residual as νgi,gj = min((π – ηgi,gj), ηgi,gj), in which ηgi,gj =  
(cgi,gj mod π). Oscope’s default takes groups whose 90th quantile 
of νgi,gj values is greater than π/4 for further order recovery.

Oscope: extended nearest insertion. We developed an extended 
nearest-insertion (ENI) algorithm to recover the cyclic order for 
each oscillatory group defined in the K-medoids clustering step. 
Cells are ordered cyclically according to their position within one 
cycle of the oscillation, referred to as a base cycle. The ENI starts 
with three randomly selected cells and forms a loop (undirected 
graph). A fourth cell is chosen at random and inserted into the 
three cell-cell gaps on the loop. This forms three candidate orders. 
We evaluate each order using the aggregated mean squared error 
(MSE) of a sliding polynomial regression (SPR). For a given order, 
SPR is fitted to the expression of each gene. To capture cyclic features  
of the data, SPR fits m polynomial regression models starting 
with m evenly distributed points on the loop. The largest MSE 
among the m models is defined as the MSE of the SPR for this 
gene. For each order, the aggregated MSE of an oscillatory gene 
group is defined as the summation of the MSEs among all genes. 
The optimal order of the first four cells is then selected as the one 
that minimizes the aggregated MSE. This process is repeated to 
insert the fifth cell and so on, until all cells are in the loop. A 2-opt 
algorithm is then applied to avoid finding local maxima.

Whitfield data and statistical analysis. Microarray gene expres-
sion data were downloaded from http://genome-www.stanford.
edu/Human-CellCycle/HeLa/. In total, five experiments were 
available at this site from Whitfield et al.8; experiment 3 was 
used here as it has the largest sample size. For this experiment, 
double thymidine block was used to synchronize HeLa cells, and 
expression was profiled for 9,559 genes at 48 time points following  
synchronization. Gene-specific values above the 95th (and lower 
than the 5th) quantile of expression were imputed to the 95th 
(5th) quantile to minimize the effect of outliers. Oscope was 
applied on the data with permuted sample order (Supplementary 
Table 5). After applying the paired-sine model to all genes, we 
used the top 5% as input for the K-medoids algorithm. Using the 
151 genes in the top cluster (Supplementary Table 6), the ENI 
algorithm was applied with m = 4, and the degree of freedom 
of SPR was set to 3. To obtain the optimal order, we applied the  
2-opt algorithm with 20,000 iterations (Supplementary Table 7). 
874 genes were defined as periodic by the autoregression model 
in Whitfield et al.8. We used these 874 genes as a validation set 
in our evaluation.

H1 hESC cell culture. Undifferentiated H1 human embryonic 
stem cells (hESCs) were cultured in E8 medium16 on Matrigel-
coated tissue culture plates with daily media feeding at 37 °C 
with 5% (vol/vol) CO2. Cells were split every 3–4 d with 0.5 mM 
EDTA in 1× PBS for standard maintenance. Immediately before 
single-cell suspensions for each experiment were prepared, hESCs 
were individualized by Accutase (Life Technologies), washed once 
with E8 medium and resuspended at densities of 5.0 × 105 to  
8.0 × 105 cells/mL in E8 medium for cell capture. The H1 hESC line 
is registered in the NIH Human Embryonic Stem Cell Registry with 
the approval number NIHhESC-10-0043. Details of the H1 cells 
can be found online (http://grants.nih.gov/stem_cells/registry/
current.htm?id=29). All cell cultures performed in our laboratory  
have routinely tested negative for mycoplasma contamination and 
have been authenticated by cytogenetic tests.
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H1 hESC single-cell capture and single-cell cDNA library  
preparation. Single-cell loading, capture and library preparations 
were performed following the Fluidigm user manual “Using the 
C1 Single-Cell Auto Prep System to Generate mRNA from Single 
Cells and Libraries for Sequencing.” Briefly, 5,000–8,000 cells 
were loaded onto a medium-sized (10- to 17-µm) C1 Single-Cell 
Auto Prep IFC (Fluidigm), and the cell-loading script was used 
according to the manufacturer’s instructions. The capture effi-
ciency was inspected using EVOS FL Auto Cell Imaging system 
(Life Technologies) to perform an automated area scanning of the 
96 capture sites on the IFC. Empty capture sites or sites having more 
than one cell captured were first noted, and those samples were later 
excluded from further library processing for RNA-seq. Immediately 
after capture and imaging, reverse transcription and cDNA ampli-
fication were performed in the C1 system using the SMARTer 
PCR cDNA Synthesis kit (Clontech) and the Advantage 2 PCR 
kit (Clontech) according to the instructions in the Fluidigm user 
manual. Full-length, single-cell cDNA libraries were harvested the 
next day from the C1 chip and diluted to a range of 0.1–0.3 ng/µL. 
Diluted single-cell cDNA libraries were fragmented and amplified 
using the Nextera XT DNA Sample Preparation Kit and the Nextera 
XT DNA Sample Preparation Index Kit (Illumina). Libraries were 
multiplexed at 24 libraries per lane, and single-end reads of 67-bp 
were sequenced on an Illumina HiSeq 2500 system.

H1 hESC: read mapping and quality control. Reads were mapped 
against the hg19 RefSeq reference via Bowtie 0.12.8 (ref. 17) allow-
ing up to two mismatches and up to 20 multiple hits. The expected 
counts and TPMs were estimated via RSEM 1.2.3 (ref. 18). Cells 
having fewer than 5,000 genes with TPM >1 were removed in 
quality control. 62, 78 and 73 cells passed the quality control in 
three replicate hESC experiments for a total of 213 H1 hESCs.

H1 hESC: statistical analysis. Expression within each cell was 
normalized following median normalization19 implemented in 
EBSeq 1.5.4 (ref. 20). Gene means and variances were also esti-
mated using EBSeq after adjusting for library sizes. High-mean 
and high-variance genes were selected before applying Oscope. 
Specifically, we took genes with mean expected count greater than 
100 as genes with high mean. To define high-variance genes, we 
fit a linear model on log(variance) ~ log(mean) + c. Genes with 
variance above the fitted line were defined as high-variance genes. 
Genes with mappability scores18 less than 0.8 were further elimi-
nated. Applying these steps to the 213 H1 hESCs gave 2,376 genes 
to which Oscope was applied (Supplementary Table 8). Gene-
specific values above the 95th (and below the 5th) quantile of 
expression were imputed to the 95th (5th) quantile to minimize 
the effect of outliers. After applying the paired-sine model, we 
used the top 5% of genes as input for the K-medoids algorithm. 
Using the 29 genes in the cell-cycle cluster, the ENI module was 
applied with m = 4, and the degree of freedom of SPR was set to 3.  
To obtain the optimal order, we applied the 2-opt algorithm  
with 20,000 iterations (Supplementary Table 9).

H1-FUCCI hESC cell line. Fluorescent ubiquitination-based  
cell-cycle indicator (FUCCI) H1 hESCs were generated by piggyBac  
insertion of a cassette encoding an eef1a promoter–driven  
mCherryCDT1-IRES-EgfpGMNN double transgene (custom 
ordered from GenScript). Individual clones were isolated by sorting 

double-positive single cells by fluorescence activated cell sorting  
(FACS) and maintained as described above. The H1-FUCCI  
cell line provides a two-color fluorescence labeling system allow-
ing single-cell suspensions from G1, S or G2/M cell-cycle phases 
to be isolated by FACS. After this, single-cell suspensions were 
loaded onto the Single-Cell Auto Prep IFC using a medium-sized 
(10- to 17-µm) chip. FACS was performed on the FACSAria IIIu 
instrument and using FACSDiva software version 6.1.3 (both 
from Becton Dickinson). Unlabeled H1 cells or cells stained with 
single fluorochromes served as controls for fluorescence gating. 
Libraries and sequencing reads were processed in the same man-
ner as described above.

H1-FUCCI: read mapping, quality control and statistical  
analysis. Reads were processed in the same way as in the H1 
hESC data. A total of 91, 80, and 76 cells in G1, S and G2/M, 
respectively, passed our quality-control criteria as defined in the 
H1 hESC read-mapping and quality-control section. Statistical 
analysis on H1 and H1-FUCCI combined data was carried out 
as described in H1 hESC statistical analysis. The phase bounda-
ries (Fig. 2d) are defined as the boundaries that give the smallest 
misclassification rate between three cell-cycle phases based on 
the reconstructed order (Supplementary Table 10).

Statistical model to identify genes with ordering effects. We 
used an ANOVA model to identify genes with potential ordering 
effects. Within each H1 hESC experiment, we grouped cells into 
eight groups defined by capture site. Recall that capture sites are 
labeled as A01, …, A12, B01, …, B12, …, H01, …, H12 to match 
their corresponding position in the output wells (Fig. 3a and 
Supplementary Table 11). We grouped cells from sites with the 
same starting letters. For each gene, we applied an ANOVA model 
on the combined data set from all three H1 hESC experiments. 
The model tests for differences in mean expression across the eight 
cell groups. A total of 403 genes were identified (P value < 0.005)  
using this ANOVA approach.

Single-cell real-time quantitative PCR (qPCR). Single-cell 
cDNA harvested from the Fluidigm C1 IFC was transferred to a 
96-well plate and subsequently quantified and diluted according 
to the Fluidigm user manual. Two microliters of the diluted single- 
cell cDNA were subsequently used in replicated qPCR reactions  
with individual 1× TaqMan Gene Expression assays and 1× TaqMan  
Universal PCR Master Mix II (Life Technologies) in a total 
volume of 10.0 µL. qPCR was performed using ViiA 7 System, 
and data analysis was performed using ExpressionSuite (all 
from Life Technologies). TaqMan Gene Expression assays (Life 
Technologies) were used for two genes: PFN1 (Hs00748915_s1) 
and MIF (Hs00236988_g1), with GAPDH (Hs02758991_g1) as an 
internal control. Although the TaqMan Gene Expression assay is 
compliant with the MIQE guidelines for publications, the actual 
sequences of the primers and probes are not released for each assay. 
The amplicon context sequence for each assay can be identified as 
follows: PFN1: 223 bp, 5′- ccaccttcggcgttcccagtactgacctcgtctgtcc 
cttccccttcaccgctccccacagctttgcacccctttcctccccatacacacacaaaccatttt 
attttttgggccattaccccataccccttattgctgccaaaaccacatgggctgggggccagg 
gctggatggacagacacctccccctacccatatccctcccgtgtgtggttggaaaact-3′. 
MIF: 83 bp, 5′-ctgtgcggcctgctggccgagcgcctgcgcatcagcccggacagg 
gtctacatcaactattacgacatgaacgcggccaatgt-3′. GAPDH: 110 bp, 5′-cc 
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ctggccaaggtcatccatgacaactttggtatcgtggaaggactcatgaccacagtcca 
tgccatcactgccacccagaagactgtggatggcccctccgggaaactg-3′.

Code availability. The R package R/Oscope is available at https://
www.biostat.wisc.edu/~kendzior/OSCOPE/.
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