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ABSTRACT

For eukaryotic cells, the biological processes in-
volving regulatory DNA elements play an impor-
tant role in cell cycle. Understanding 3D spatial ar-
rangements of chromosomes and revealing long-
range chromatin interactions are critical to decipher
these biological processes. In recent years, chromo-
some conformation capture (3C) related techniques
have been developed to measure the interaction fre-
quencies between long-range genome loci, which
have provided a great opportunity to decode the
3D organization of the genome. In this paper, we
develop a new Bayesian framework to derive the
3D architecture of a chromosome from 3C-based
data. By modeling each chromosome as a polymer
chain, we define the conformational energy based
on our current knowledge on polymer physics and
use it as prior information in the Bayesian frame-
work. We also propose an expectation-maximization
(EM) based algorithm to estimate the unknown pa-
rameters of the Bayesian model and infer an ensem-
ble of chromatin structures based on interaction fre-
quency data. We have validated our Bayesian infer-
ence approach through cross-validation and verified
the computed chromatin conformations using the ge-
ometric constraints derived from fluorescence in situ
hybridization (FISH) experiments. We have further
confirmed the inferred chromatin structures using
the known genetic interactions derived from other
studies in the literature. Our test results have in-
dicated that our Bayesian framework can compute
an accurate ensemble of 3D chromatin conforma-
tions that best interpret the distance constraints de-
rived from 3C-based data and also agree with other
sources of geometric constraints derived from ex-
perimental evidence in the previous studies. The
source code of our approach can be found in https:
//github.com/wangsy11/InfMod3DGen.

INTRODUCTION

The existence of regulatory DNA components in the
genomes of eukaryotic cells has been detected and widely
known for decades, but details of the long-range interac-
tions between these exact genomic loci remain elusive. Ev-
idence has shown that long-range interactions between ge-
nomic regions, such as promoters and enhancers, may cor-
respond to close spatial proximity (1–3). Thus, understand-
ing the 3D structures of chromosomes can provide impor-
tant hints toward decoding the mechanisms of gene regu-
lation and chromatin packing, as well as DNA replication,
repair and modification (4,5).

In the absence of experimental data, early work on chro-
matin structure modeling mainly focused on building up a
theoretical model to describe the physical property of chro-
matins based on known knowledge on polymer physics (6).
In these models, the chromatin fibers were regarded as a
polymer chain and typical features of DNA loops were in-
vestigated using molecular dynamics (MD) simulation or
Brownian simulation (7–10). Different polymer models for
chromatin structures have been proposed, such as random-
walk/giant-loop model (11), multiloop-subcompartment
model (12,13), random loop model (14) and dynamic loop
model (15). These physical models heavily depend on the
correctness of the energy function used in the simulation
(13). Entropy of conformations was also taken into consid-
eration in some occasions (16–18).

In addition to the theoretical derivations of chromatin
structure models, several experimental methods have been
developed to study chromosomal architectures. In the early
stages, such experiments were conducted mainly through
microscopic techniques, typically the 3D fluorescent in-situ
hybridization (FISH) experiments. By taking advantage of
fluorescent DNA probes, the 3D FISH methods can mea-
sure the end-to-end physical distances between certain ge-
nomic loci. Although providing useful distance restraints
for investigating long-range chromatin interactions, the 3D
FISH methods are limited by their low throughput.

In recent years, the advent of the chromosome confor-
mation capture (3C) technique and its derivatives has rev-
olutionized the field of studying spatial organizations of
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chromosomes (19). The 3C-based methods can provide the
genome-wide measurements of interaction frequencies be-
tween genomic loci close in 3D space (19). These high-
throughput 3C-based experimental data provide valuable
information to investigate the high-resolution chromoso-
mal conformations. With the rapid development of the 3C-
based experimental methods, numerous computational ap-
proaches have been proposed to model the 3D chromatin
structures from interaction frequency data (20–22). The
majority of these approaches (23,24) transformed interac-
tion frequency data derived from 3C-based experiments to
local distance constraints, and then formulated the chro-
matin structure modeling problem into a distance geome-
try framework, which aimed to compute the 3D coordinates
of a set of genomic loci subject to these local distance con-
straints. The distance geometry framework has been widely
used to solve many related engineering problems, such as
protein structure determination (25,26) and sensor network
localization (27). In most occasions, the distance geometry
problems are defined as an optimization task, in which the
objective function mainly focuses on minimizing the dis-
crepancy between predicted models and experimental con-
straints. In some approaches (20,21), additional geomet-
ric constraints, such as shape and size of a nucleus, were
also included for modeling the 3D organizations of chro-
mosomes. In general, the 3D chromatin conformations are
constructed through the minimization of the objective func-
tion, which can be performed on many platforms, such as
the Integrative Modeling Platform (IMP) or A Mathemati-
cal Programming Language (AMPL) (20,28).

To consider uncertainty in experimental data, probabilis-
tic frameworks are often used to formulate the chromatin
structure modeling problem (24,29). Among these proba-
bilistic frameworks, the Bayesian approach is probably the
most popular one to model chromatin structures from noisy
experimental data. In (24), a Bayesian approach that re-
garded prior probability as an additional constraint was
developed, and a Markov chain Monte Carlo (MCMC)
method was used to derive the chromatin structures that sat-
isfy the physical distance constraints derived from interac-
tion frequency data. In another Bayesian inference frame-
work (29), a Poisson regression approach was used to de-
rive the contact map constraints of genomic loci from Hi-C
data. In addition, two adjacent genomic regions were con-
nected by a rotatable hinge, which allowed one to formu-
late local structural flexibility into a probabilistic distribu-
tion. Currently, the construction of 3D chromatin struc-
tures from 3C-based data is still under fast development,
and various computational methods from different perspec-
tives have been proposed in the literature (30–35).

In this paper, we aim to integrate other information with
3C-related data to model accurate 3D chromatin structures.
In particular, we introduce the inherent conformational en-
ergy as prior information and combine it with 3C-related
data under a Bayesian inference framework to model 3D
chromatin structures. By regarding chromatin fibers as a
polymer chain, we naturally define different types of confor-
mational energy terms and systematically unify them with
interaction frequency data in a principled way.

As chromosomes exist in a highly dynamical form, espe-
cially during interphase, it is not appropriate to describe

Figure 1. A 2D schematic drawing of the linear segment chain model of a
chromatin structure and its conformational energy model.

a chromosome with one single consensus conformation.
In this study, we model the 3D spatial arrangement of a
chromosome into an ensemble of various candidate struc-
tures, each of which is associated with a weight (or proba-
bility) to define its likelihood. In addition, we propose an
expectation-maximization (EM) based algorithm to esti-
mate the unknown parameters of our Bayesian framework,
and infer an accurate ensemble of chromatin structures that
best interpret the distance constraints derived from exper-
imental data given our current knowledge on the confor-
mational energy of a chromosome. We have validated the
performance of our chromatin structure modeling pipeline
via cross-validation and other types of experimental data,
such as 3D FISH imaging data. We have further verified
the predicted 3D chromatin organizations using the known
genetic interactions derived from other studies in the litera-
ture. These test results on real 3C-related data have demon-
strated that our Bayesian inference approach can provide a
practically useful tool to analyze 3C-related data and derive
accurate chromatin structures, which will be important for
further revealing their genomic features.

MATERIALS AND METHODS

Model representation

In our chromatin structure modeling framework, each chro-
mosome is regarded as a linear polymer, i.e. a consecutive
line consisting of a number of genomic segments (Figure 1).
For example, when modeling the structures of chromosome
1 of yeast, we use a consecutive line of 47 segments, as there
are 46 restriction sites cleaved by the HindIII endonucleases
on the sequence of this chromosome, and each cutting site
acts as an end point of the corresponding segment. Then the
aim of our structure modeling pipeline is to derive the 3D
coordinates of these end points based on the input interac-
tion frequency data, and thus obtain a complete spatial ar-
rangement of the whole chromosome. Although the way of
splitting the whole chromosome into segments is generally
considered a coarse-grained representation, in our frame-
work, as each segment corresponds to a genomic unit be-
tween two enzyme cutting sites adjacent in sequence, such
a representation is probably the most accurate model given
current resolution of 3C-related data.
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Defining the conformational energy of chromatin structures

In the literature, a number of theoretical models have been
proposed to define the ‘conformational energy’ of a chro-
matin structure, which describes the physical or statistical
potential of a chromatin conformation (13–14,36). Here,
we apply several common rules and formulas of a typical
polymer model to derive the conformational energy of a
given chromatin structure. We first introduce some notation
for defining the conformational energy of a chromosome.
Given a chromatin structure S with a linear chain of n seg-
ments, we use li to represent the length of the i-th segment,
where 1 ≤ i ≤ n. We use s j = (

xj , yj , z j
)

to represent the
spatial position of the j-th segment end point, where 1 ≤ j ≤
n + 1. Meanwhile, the length of each segment is calculated
based on the Euclidean distance between two adjacent end
points, that is,

li = |si+1 − si |

=
√

(xi+1 − xi )
2 + (yi+1 − yi )

2 + (zi+1 − zi )
2. (1)

As illustrated in Figure 1 of the paper, the conformation en-
ergy of a chromosome S, denoted by Es, generally consists
of the following three terms:

Es = Estretch + Ebend + Eexclude, (2)

where Estretch, Ebend and Eexclude represent the ‘stretching’,
‘bending’ and ‘excluding’ energies of chromatin segments,
respectively. The details of these three energy terms will be
explained below.

First, the stretching energy of chromatin segments,
Estretch, which describes the potential energy corresponding
to the stretching force of chromatin fibers, is defined by

Estretch =
n∑

i=1

1
2

ks(li − li0)2, (3)

where ks stands for the ‘bond spring constant’, indicating
the stiffness of a chromatin fiber, li stands for the length of
the i-th segment and li0 stands for the length of a chromatin
segment in a state of equilibrium. The bond spring constant
is generally proportional to KBT, where KB and T represent
the ‘Boltzmann constant’ and the absolute temperature, re-
spectively. The packing density of a chromatin fiber is nor-
mally supposed to be 130 bp/nm (37). Thus, the parameter
li0 can be defined by li0 = lis

130 , where lis represents the total
number of base pairs in the chromatin segment.

Second, the bending energy, Ebend, which describes the
twisting potential of a chromatin structure, is mainly de-
fined by the the angle between adjacent segments (38):

Ebend =
n∑

i=2

1
2

kθ 〈si+1 − si , si − si−1〉2 , (4)

where k� stands for the ‘bending constant’, indicating the
bending elasticity of a polymer chain, and 〈·〉 measures the
torsion angle between these two adjacent segments.

Third, the excluding energy, Eexclude, describing the situa-
tion in which two parts of a chromosome cannot be packed
too closely due to the repulsion force, is defined based on
the Lennard–Jones potential (39). In particular, we use the

following formula (34) to define the excluding energy term:

Eexclude =⎧⎨
⎩

∑
2≤i+1≤ j≤n 4ε

[(
δ

di, j

)12
−

(
δ

di, j

)6
+ 1

4

]
, di, j < 2

1
6 δ;

0, otherwise,
(5)

where di, j = ∣∣si − s j
∣∣ is the Euclidean distance between two

segment end points si and sj, and � and � are parameters.
For most of the parameters in this model, we use the same

setting as in (34). The details of these parameter choices are
provided in Table 1.

Bayesian inference of a chromatin structure

In recent years, with the development of the 3C-based tech-
niques for measuring the end-to-end interaction frequen-
cies between genomic loci, numerous computational meth-
ods have been proposed to model the 3D structures of chro-
mosomes (20,24,29). Most of these methods formulated the
structure modeling problem into an optimization frame-
work, in which the objective was to compute the chro-
matin conformations that agree with the experimental data
(20,23,40). Only a small number of existing approaches
(24,29,35) have exploited prior knowledge of chromosomes,
such as geometric constraints of a nucleus, the physical or
conformational energy of a chromosome, during the struc-
ture modeling process. Even when the conformational en-
ergy was used to help determine the chromatin structures,
the weighting parameter between the conformational en-
ergy and the data terms was mainly decided in an ad hoc
manner rather than in a principled framework (24). In addi-
tion, most of the previous chromatin structure modeling ap-
proaches were deterministic (41,42). Due to uncertainty in
experimental data, it is more natural and reasonable to for-
mulate the structure modeling problem into a probabilistic
framework. Furthermore, due to current limitations in the
3C-based experiments, the interaction frequencies between
genomic loci are generally averaged measurements over a
population of heterogeneous cells. Thus, it should be more
accurate to compute an ensemble of chromatin conforma-
tions rather than a single consensus structure from the 3C-
based experimental data.

To address the above issues in chromatin structure mod-
eling, here we propose a Bayesian inference approach to sys-
tematically integrate the conformational energy with exper-
imental data, and compute an ensemble of chromatin struc-
tures that best interpret the distance constraints converted
from interaction frequency data. Our approach employs a
probabilistic framework to model uncertainty in experimen-
tal data, and chooses the parameters in a rational frame-
work. Note that the Bayesian inference approach has been
successfully used in determining protein structures from ex-
perimental data (43,44). In our problem, the basic formula
for chromatin structure modeling according to Bayes’ the-
orem can be expressed as follows:

Pr(S|D) = Pr(S) Pr(D|S)
Pr(D)

, (6)

where S represents a chromatin structure and D stands for
experimental observation derived from 3C-related data. In
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Table 1. The parameter setting of our conformational energy model

Parameter Symbol Reduced unit SI unit

Thermal energy KBT 1.0 4.1 × 10−21J
L–J size parameter � 1.0 30 nm
L–J energy parameter � 1.0KBT 4.1 × 10−21J
Bond spring constant ks 500 KB T

σ2 2.3 × 10−3 J
m2

Bending energy constant k� 4 KB T

rad2 1.7 × 10−20 J
rad2

We choose the same values as in (34) for most of the parameters in the model. L–J stands for Lennard–Jones.

particular, we use the spatial distances converted from 3C-
based data. More details on converting interaction frequen-
cies to spatial distances can be found in Supplementary Ma-
terial S1. In general, Pr(D) can be considered a constant.
The terms Pr(S|D), Pr(D|S) and Pr(S) are also called ‘pos-
terior probability’, ‘likelihood function’ and ‘prior proba-
bility’, respectively. In this section, we mainly focus on the
computation of the maximum a posteriori (MAP), which
finds a conformation that maximizes the Bayesian formula
in Equation (6). In the next sections, we will extend this
framework to compute an ensemble of chromatin structures
that best interpret the converted distance constraints. In our
framework, the likelihood function is defined as

Pr(D|S) =
m∏

i=1

Pr(Di |S), (7)

where Di represents the i-th data record in the interaction
frequency data set and m stands for the total number of
data records from experimental measurements. We follow a
commonly accepted assumption in the literature: the spatial
distance between two genomic loci is inversely proportional
to their interaction frequency (see Supplementary Mate-
rial S1). Here, we assume that different spatial distance re-
straints derived from experimental observation between ge-
nomic loci are independent to each other. In addition, we
apply Gaussian distribution to model experimental noise,
that is,

Pr(Di |S) ∼ 1√
2πσ

exp(− 1
2σ 2

(Ds
i − Di )2), (8)

where Ds
i represents the back-computed distance in con-

formation S and � represents the standard deviation of
Gaussian noise. Here, we assume that experimental data
follows Gaussian distribution. In principle, other distribu-
tions, such as Poisson distribution, may also be used to de-
scribe the interaction frequency data.

The prior probability Pr(S) describes the possibility of
conformation S based on our prior knowledge. Here, we
mainly use the Boltzmann distribution based on the con-
formational energy derived in the previous section to define
the prior probability, that is,

Pr(S) ∼ exp
(

− Es

KBT

)
, (9)

where KB denotes the Boltzmann constant, T denotes the
absolute temperature and Es denotes the conformational
energy of conformation S computed using the model de-
scribed in the previous section.

After substituting Equations (7), (8) and (9) into Equa-
tion (6), we have

Pr(S|D) ∝ 1
σ m

exp
(

− Es

KBT

)
exp

(
− 1

2σ 2

m∑
i=1

∣∣Ds
i − Di

∣∣2

)
.

(10)

Usually we calculate the logarithm of Equation (10)
rather than computing the probabilistic function directly.
After taking the logarithm on both sides of Equation (10),
we have

L(S|D) = − Es

KBT
− 1

2σ 2

m∑
i=1

(
Ds

i − Di
)2 − m log σ. (11)

In Equation (11), we only take the chromatin conforma-
tion S as an unknown variable. We can also consider experi-
mental noise (denoted by �) and the parameter for convert-
ing interaction frequencies into spatial distances (denoted
by �, see Supplementary Material S1) as unknown variables
and apply the Jeffreys prior to describe their prior probabil-
ities, using the same strategy as in (43). Then the logarithm
likelihood of Equation (11) can be rewritten as

L(S|D, σ, α) = − log σ − log α − Es

KBT

− 1
2σ 2

m∑
i=1

(
Ds

i − Di
)2 − m log σ.

(12)

The MAP estimation is equivalent to finding the confor-
mation S∗, and parameters �* and �* that maximize L(S|D,
�, �). In Equation (12), the factor 1

2σ 2 can also be considered
the weighting factor between two terms that represent the
conformational energy and the data restraints, respectively.
When the conformational energy and the data term are in-
tegrated together, it is necessary to ensure that the choice of
the weighting factor is appropriate so that both terms can
be tuned into the proper order of magnitude. On the other
hand, the choice of the weighting factor 1

2σ 2 can also be ex-
plained by the magnitude of experimental noise in observa-
tion data. When experimental data contain more noise (i.e.
with larger �), we should put a smaller weight 1

2σ 2 for the
data term in Equation (12), and vice versa.

Ensemble modeling of chromatin structures

Most of the previous chromatin structure modeling ap-
proaches computed a single unique conformation that best
fits experimental data (20,23,41–42). Unfortunately, com-
puting a single conformation with the maximum likelihood
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(ML) estimation is only an ideal situation without consid-
ering many practical factors. In general, the interaction fre-
quencies from 3C-based experiments are the population-
averaged measurements over multiple cells in a sample (19).
Also, a chromosome generally exists in a highly dynamical
form in a nucleus and its shape usually changes during dif-
ferent phases of cell cycle (45). These factors indicate that it
is relatively inaccurate to model a chromosome as a single
unique structure. In addition, uncertainty in 3C-based ex-
perimental data usually makes it more difficult to obtain a
single accurate chromatin structure from current 3C-based
techniques.

To address the above problems, we compute an ensemble
of chromatin structures rather than a single consensus con-
formation under our Bayesian inference framework. The
idea of ensemble structure modeling has been widely used
in protein structure modeling, e.g. structure modeling of
intrinsically disordered proteins (46) and protein structure
determination from nuclear magnetic resonance data (43).
A structure ensemble can be regarded as a set of different
conformations, each of which is associated with a probabil-
ity (or weight) that describes its existence possibility. More
specifically, a structure ensemble S of a chromosome can be
defined as

S = {(S1, w1) , (S2, w2) , · · · , (Sk, wk)} . (13)

In additional, all weights wi should satisfy

k∑
i=1

wi = 1, and 0 ≤ wi ≤ 1, for all 1 ≤ i ≤ k, (14)

where Si represents individual conformations, wi represents
the corresponding probability (or weight) and k represents
the total number of conformations in the ensemble. Cur-
rently we choose the value of k empirically. Basically, the
value of k should be chosen appropriately so that the diver-
sity of conformational space can be fully explored within
the available computational resources. In our tests on the
yeast chromosome, the value of k is set to be 200.

An EM based approach for chromatin structure modeling

In our Bayesian inference framework, although our pri-
mary goal is to compute individual chromatin conforma-
tions and their corresponding weights in the ensemble, there
are also several other unknown parameters that need to be
estimated, such as experimental noise � and the exponen-
tial factor � for converting interaction frequencies to spa-
tial distances. These additional unknown variables make it
more difficult to address the structure modeling problem.
In our paper, we apply an EM like algorithm to solve this
Bayesian inference problem. EM is an inference algorithm
that has been widely used in machine and statistical learn-
ing to find the ML or MAP estimate of latent variables (47).
In particular, the EM algorithm iteratively and alternately
performs two steps, namely the Expectation (E) step and the
Maximization (M) step. The E step calculates the expecta-
tion of a probabilistic function using the current estimates
of unknown parameters and the M step performs the ML
or MAP estimates of these parameters using the expected
likelihood derived in the proceeding E step (47).

The details of our EM-based method for inferring chro-
matin structures are provided in Algorithm 1. Initially the
algorithm assigns random values to parameters � and �,
which represent experimental noise and the exponential fac-
tor for converting interaction frequencies to local distance
restraints, respectively. Then the algorithm randomly gen-
erates an initial pool of k conformations using Brownian
simulation. The size of the chromosome (see Supplemen-
tary Material S1) is also used as a geometric constraint dur-
ing the simulation. Note that the Brownian simulation ap-
proach has been widely used to produce an ensemble of
molecular structures in the literature (46,48–49). In the E
step, we first improve the qualities of individual structures
in the ensemble by optimizing every structure with the esti-
mated parameters derived in the proceeding steps. The op-
timization is realized using a gradient ascend approach, in
which the corresponding likelihood of each structure (i.e.
Equation (12)) is maximized. We then compute the expec-
tation of the likelihood function, which is the conditioned
distribution of the structure ensemble {(Si, wi)} given the
current estimates of unknown parameters � and �. For
each structure, the corresponding likelihood function is de-
fined in Equation (12). The corresponding weights (or prob-
abilities) of individual conformations are then calculated
based on the derived likelihood functions after normaliza-
tion (Line 9 in Algorithm 1). In the M step, we use a grid
search method to find the best estimates of parameters �
and � that alternately maximize the following formula:

L =
∑

i

L(Si |α, σ, D)wi . (15)

We call this function the ‘ensemble likelihood’. In the grid
search for estimating the values of parameters � and �, we
divide the possible ranges of parameters into grid points
and choose a pair of grid points for parameters � and �
that maximize Equation (15). The ranges and step lengths
of the grid search are determined empirically. In particular,
a method similar to coarse-grained sampling is used to es-
timate the possible ranges of the parameters � and �, that
is, we first probe the possible intervals of the parameters us-
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ing large step lengths, and then use small step lengths to
narrow down the ranges. As the relationships of the objec-
tive function versus individual parameters show a clear one-
peak trend (see Figure 3), the aforementioned process can
be done easily. Using the above procedure, we can compute
an ensemble of chromatin structures that best interpret the
geometric constraints derived from experimental data based
on our prior knowledge on the conformational energy of a
chromosome.

RESULTS AND DISCUSSION

Data acquisition

The chromosome conformation capture (3C) based meth-
ods have become a powerful tool for investigating the 3D
genome architecture (50–52). In general, the raw data (in the
form of sequencing data) can be converted to a heat map of
interaction frequencies, which is comprehensible and usu-
ally taken as input for chromatin structure modeling (53–
55).

Using the genome-wide 3C-based data, we are able to
model the 3D architecture of the whole chromosome. Cur-
rently, a large amount of raw 3C-based data can be ac-
cessible to the public and downloaded from the Gene Ex-
pression Omnibus (GEO) repository on the National Cen-
ter for Biotechnology Information (NCBI) website (http:
//www.ncbi.nlm.nih.gov/geo/). In particular, we use the data
of yeast (41) to study the spatial organizations of its chro-
mosomes. Note that the yeast genome is relatively small
(12.1 Mb in total), and thus can be relatively easily and ef-
fectively used to validate a chromatin structure construc-
tion method on the chromosome scale. In the next sections,
we will mainly use the 3C-based data of different chromo-
somes of yeast as an example to demonstrate our chromatin
structure modeling pipeline. There are also other necessary
procedures required to preprocess the raw data, such as the
correction based on coverage or other information (53) and
the mapping from the raw sequence to the genome (55). As
these steps are not the main focus of our work, here we di-
rectly use the preprocessed interaction frequency heat map
as input data to our algorithm.

The convergence of the EM-based algorithm

We first checked the convergence of our EM-based algo-
rithm for solving the structure inference problem. We tested
the algorithm on the 3C-based data of different chromo-
somes of yeast. We examined the ensemble likelihood (as
defined in Equation (15)) and the correlation between back-
computed and experimental restraints (i.e. local distance re-
straints derived from predicted models and interaction fre-
quencies in experimental data, respectively). As shown in
Figure 2, the ensemble likelihood converged to a relatively
stable value within a small number of iteration steps. After
10–15 iteration steps, the correlation between spatial dis-
tance restraints back-computed from the predicted mod-
els and converted from experimental data also converged
to a stable state. It may appear that our algorithm converge
quickly. For example, after 10–15 iteration steps, the corre-
lation can converge to a stable state. But in fact, each it-
eration step may require a large number of optimization

sub-steps (see the pseudocode of Algorithm 1). In partic-
ular, it may take the gradient ascend approach (Line 6 in
Algorithm 1) thousands of optimization sub-steps to com-
pute the maximum value in the E-step. Also, the grid search
(Lines 11–12 in Algorithm 1) may run for a while to find
the optimum in the M-step, depending on the ranges and
step lengths used in the search. In our tests on the yeast
chromosomes, it took our algorithm 30–50 h to converge.
Note that tests on the 3C-based data of different chromo-
somes usually achieved different convergence states. This
was expected, as different chromosomes typically have dif-
ferent parameter settings of parameters (e.g. various ge-
nomic lengths).

Parameter selection

In our Bayesian inference framework for modeling chro-
matin structures, the parameters, including experimental
noise � and the exponential component � for converting in-
teraction frequencies to spatial distances, can be estimated
in a rational way, as described in Algorithm 1. Here, we used
the test on chromosome 1 of yeast as an example to demon-
strate how our algorithm chooses the best estimates of these
parameters. We plotted a distribution of the ensemble like-
lihood (which was calculated using Equation (15)) versus
different choices of the parameters, as shown in Figure 3.
The plotted histograms show how different choices of the
parameters can affect the overall ensemble likelihood. For
both � and 1

2σ 2 parameters, we observed a clear peak, where
the ensemble likelihood was maximized. This observation
indicated that the optimal values of the parameters in our
Bayesian model can be estimated reasonably.

Based on the estimated values of the parameters � and
1

2σ 2 , we further investigated the relationship between se-
quential and spatial distances, which is an important feature
for studying the spatial organization of the genome (19,56).
In particular, we plotted all pairs of spatial versus sequential
distances, and performed curve fitting to find the trend that
describes how spatial distances change according to sequen-
tial distances. As shown in Figure 4, the spatial distances in-
crease as the corresponding genomic loci are further apart
in sequence, but the fitted curves seem to be saturated or
increase slowly when the sequential distance is larger than
a certain threshold (Figure 4). This observation is consis-
tent with other studies in the literature (19,56). Probably
this trend is caused by the size limitation of the nuclei. In
Figure 4B, different chromosomes displayed distinct trend
curves. This is expected, as the packing of individual chro-
mosomes can be influenced by different settings, such as ge-
nomic sizes and interaction densities.

Validation through cross-validation

To examine the reliability of the modeled structures and val-
idate the performance of our chromatin structure modeling
pipeline, we performed cross-validation to assess the qual-
ity of the structure modeling results. We used the test on
chromosome 1 of yeast as an example here. The result of
10-fold cross-validation is shown in Figure 5. In the 10-fold
cross-validation, we first divided the whole set of the dis-
tance constraints converted from the original 3C-based data

http://www.ncbi.nlm.nih.gov/geo/
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Figure 2. The convergence of our EM-based algorithm. (A) The convergence results on the ensemble likelihood. (B) The convergence results on the
correlation between back-computed and experimental spatial distances. The ensemble likelihood (as defined in Equation (15)) of individual chromosomes
may converge to different values because different chromosomes usually have different parameters (e.g. genomic lengths). When computing the correlation
between back-computed and experimental spatial distances, the ensemble-averaged values were used.

Figure 3. The estimations of parameters � and � in our Bayesian inferential framework for chromosome 1 of yeast, corresponding to different choices
of the parameters. Histograms stand for different values of the ensemble likelihood computed using Equation (15) with respect to different values of the
parameter. (A) The plot of the ensemble likelihood versus parameters �. The value of 1/2�2 used here was 2.25. (B) The plot of the ensemble likelihood
versus parameter 1/2�2. The value of � used here was 0.4.

Figure 4. The relationship between spatial and sequential distances. We performed curve fitting for all pairs of genomic loci in the 3C-based data. (A)
Curve fitting for chromosome 1. (B) Fitted curves for different chromosomes to describe how spatial distances change according to sequential distances.
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Figure 5. The 10-fold cross-validation results for chromosome 1 of yeast, in
which scatter plots of predicted spatial distances derived from the modeled
structures versus expected distances converted from interaction frequency
data are shown. The correlation is above 0.862. The 5-fold cross-validation
shows similar results.

into 10 subsets, each of approximately equal size. Then we
alternatively picked one subset as test data and used the re-
maining nine subsets as training data.The combined results
of the 10-fold process was then used to evaluate the struc-
ture modeling results. When evaluating the performance of
our algorithm on test data during cross-validation, we used
the correlations between the predicted spatial distances de-
rived from the modeled structures (which were computed
based on the training data) and the expected distances de-
rived from the data in the test data to measure how well the
inferred structures satisfy the experimental data.

As shown in Figure 5, the modeled structures in our en-
semble agreed well with the distance constraints converted
from 3C-based data, with the scatter plots distributed near
the diagonal line and the correlation above 0.86. We per-
formed the same cross-validation procedure for other chro-
mosomes (i.e. chromosomes 3, 6 and 14) of yeast and ob-
served similar results. We also conducted a 5-fold cross-
validation which showed similar results. These validation
results indicate that our structure modeling approach is able
to derive an accurate chromatin structure ensemble that
agrees well with the distance restraints converted from 3C-
based data.

Examination of the computed structure ensemble

In this section, we examined the chromatin structure en-
semble modeled from our Bayesian framework. We looked
into both individual conformations and their correspond-
ing weights in the ensemble. The quality of the structure
ensemble inferred by our Bayesian framework was investi-
gated from different perspectives. We first checked the diver-
sity of the structures in the ensemble. Supplementary Figure
S1 gives an example of the weight distribution of individ-
ual structures in the ensemble, which shows that the weight
of different structures in the ensemble was quite close to
each other, but not exactly the same. Figure 6 shows the top
five structures with the largest weights in the ensemble for

chromosomes 1, 3 and 6, in which all structures had been
aligned using the singular value decomposition (SVD) algo-
rithm (57) and the visualization was conducted using UCSF
Chimera (58). The structure superimposition showed that
individual conformations of the same chromosome were
structurally similar. On the other hand, the chromosomes
of larger size displayed more structural diversity. For exam-
ple, chromosomes 3 and 6, which have a larger genome size
than chromosome 1, exhibited more structure variation. As
shown in Figure 6, a noticeable geometric feature of the 3D
structures of chromosomes 3 and 6 is that, two ends of the
chromosome interacted with each other in 3D space, thus
the whole chromosome formed a loop-like structure, which
was consistent with other studies in the literature (59).

We then examined how well the structures in the ensem-
ble fitted the distance restraints converted from experimen-
tal data. More specifically, we compared the predicted lo-
cal distances back-computed from the structures in the en-
semble with the spatial distances converted from experi-
mental data. Supplementary Figure S2 shows two exam-
ples of the plots of the predicted versus expected spatial
distances. In addition, the correlations between predicted
and expected spatial distances are shown in Supplementary
Figure S3. The comparison results show that the computed
structures in the ensemble agreed well with the spatial dis-
tances converted from experimental data, with scatter plots
distributed near the diagonal line and the Pearson’s corre-
lation larger than 0.8.

Comparisons with other biological observations

In addition to the cross-validation method, we verified the
structure modeling results using the known distance con-
straints derived from other experimental evidence available
in the literature. By doing so, we can further rigorously in-
spect the accuracy of the structure ensemble modeled by our
algorithm. We were particularly interested in those pairs of
genomic loci which were not observed in the original 3C-
based data, and wanted to check whether they can be fur-
ther validated using other sources of experimental data.

We first performed the validation using the FISH imag-
ing data available from the previous studies (56,60). FISH,
developed several decades ago, is a traditional method to in-
vestigate the spatial arrangements of chromosomes. By us-
ing the fluorescent probes bound to certain parts of chro-
mosomes and then imaging them with fluorescence mi-
croscopy, the FISH technique is able to detect the relative
spatial positions of a specific pair of genomic loci on the
chromosomes (61). Despite its low throughput, the sparse
set of spatial distance constraints derived from FISH data
can still be used to validate our structure modeling re-
sults. In particular, we selected four pairs of genomic loci
for our validation, in which the spatial distances were de-
rived from the FISH data in (56,60). These pairs of ge-
nomic loci included HMLa–HMRa on chromosome 3, and
ARS603-ARS606, ARS606-ARS607, ARS607-ARS609 on
chromosome 6. Their relative positions along the sequence
are shown in Figure 7A. As shown in Figure 7B, the com-
parison results demonstrate that the corresponding spatial
distances in our predicted models agreed well with the FISH
observation, with deviation less than 60 nm. Considering
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Figure 6. Top five structures with the largest weights in the ensemble inferred from our Bayesian framework. (A) Chromosome 1. (B) Chromosome 3.
(C) Chromosome 6. For each chromosome, all structures in the ensemble were aligned using the singular value decomposition (SVD) algorithm (57). The
visualization was conducted using UCSF Chimera (58).

Figure 7. Validation through known spatial distance constraints derived
from FISH imaging data. (A) Schematic illustration of the locations of the
tested genomic loci on chromosomes 3 and 6. (B) Comparison between
spatial distances derived from our modeled structures and FISH imaging
data for four pairs of genomic loci on chromosome 3 and 6. The FISH
imaging data were obtained from (56).

that FISH is a fluorescence microscopy-based method with
certain experimental noise and uncertainty, the discrepancy
with such a small distance range is reasonable and accept-
able.

Although HMLa and HMRa are located near two ends
of chromosome 3 and far away from each other along the

sequence, they were found to have specific long-range inter-
actions (60). Thus, it is expected that they are close to each
other in 3D space. The analysis of the 3D FISH imaging
data has confirmed this hypothesis and indicated that their
spatial distance is less than 500 nm in most occasions (60).
Our structure modeling results further confirmed this find-
ing.

We further checked the predicted spatial distances of our
modeled chromatin structures using known genetic interac-
tions that have been studied in the literature. The interac-
tions between genes with various functions have been pre-
viously observed among the whole genome (62–66). Based
on our structure modeling pipeline, we can examine the spa-
tial distances corresponding to these known genetic inter-
actions, and perhaps predict unknown genetic interactions.
Here, we selected a list of the most interactive genes (i.e.
most frequently interacting with other genes) and checked
the spatial distances between corresponding genomic loci
in our predicted structures. Noted that although these se-
lected pairs of genomic loci are quite interactive according
to the Saccharomyces Genome Database (SGD), their inter-
actions were not directly measured in the original 3C-based
data. As listed in Table 2, for the most interactive genes, they
had spatial distances within 137–715 nm from their interact-
ing genomic locus partners in our modeled structures. We
think this range of spatial distances is reasonably small be-
tween the evaluated pairs of genomic loci. Our reasoning is
mainly based on the following facts. First, the range of spa-
tial distances 137–715 nm shown in Table 2 is comparable
to the relatively reliable measurements from the FISH ex-
periments. Our previous FISH observations show that two
genomic loci can have spatial distance near 500 nm, and
the best resolution of FISH imaging is 50–100 nm. Thus,
a margin of 100–200 nm around 500 nm should be tolera-
ble. Second, the spatial size of the yeast genome is generally
beyond 2000 nm (67), which is much larger than the range
of the spatial distances between interacting genes listed in
Table 2. Third, the gene pairs selected from the SGD func-
tionally interact with each other (68,69). Although a pair of
functionally interacting genes is often correlated with phys-
ical contact or spatial proximity (70,71), a functional inter-
action can also be caused by indirect interactions (e.g. reg-
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Table 2. Validation of the predicted spatial distances using known genetic interactions in the literature

Gene 1 (ORF) Chromosome location of gene 1 Gene 2 (ORF) Chromosome location of gene 2 Predicted spatial distance (nm) Reference

UBI4 chrXII:64062-65207 HRD3 chrXII:556788-559289 582.8 (63)
UBI4 chrXII:64062-65207 HRT3 chrXII:337265-336231 492.6 (62)
UBI4 chrXII:64062-65207 HSP104 chrXII:88623-91349 137.6 (64)
UBI4 chrXII:64062-65207 HSP60 chrXII:665002-663284 595.0 (62)
UBI4 chrXII:64062-65207 NAM2 chrXII:884751-882067 624.0 (65)
UBI4 chrXII:64062-65207 RPN13 chrXII:965560-965090 714.7 (62)
UBI4 chrXII:64062-65207 SKI2 chrXII:919019-915156 660.0 (65)
UBI4 chrXII:64062-65207 SMD2 chrXII:694378-694800 579.1 (65)
UBI4 chrXII:64062-65207 STP3 chrXII:871697-872728 614.4 (65)
UBI4 chrXII:64062-65207 TOS4 chrXII:522012-520543 559.1 (62)
GIS2 chrXIV:167790-167329 BRE5 chrXIV:718327-716780 565.1 (62)
GIS2 chrXIV:167790-167329 CNM67 chrXIV:224469-222724 309.5 (65)
GIS2 chrXIV:167790-167329 PET8 chrXIV:625829-624975 488.0 (62)
GIS2 chrXIV:167790-167329 POP1 chrXIV:233695-231068 315.8 (65)
GIS2 chrXIV:167790-167329 RIO2 chrXIV:255353-256630 374.0 (65)
GIS2 chrXIV:167790-167329 WHI3 chrXIV:269593-267608 395.0 (65)
HEK2 chrII:160184-161329 PDR3 chrII:217470-220400 274.0 (66)

Information of the interacting genes was acquired from the Saccharomyces Genome Database (SGD). We selected a list of genes (labeled with ‘Gene 1’ in the first column) which
interact most frequently with others (labeled with ‘Gene 2’ in the third column) according to the records in the SGD database (3363 interactions recorded in the SGD for UBI4,
1215 for GIS2 and 1130 for HEK2). In addition, the interactions between the selected genomic loci were not directly observed in the original 3C-based data. ORF stands for
open reading frame.

ulation through another protein). Thus, it is reasonable to
use a slightly larger range of spatial distances indicated from
functional interactions between genes as criteria to examine
the spatial arrangements of chromosomes.

Overall, the result in Table 2 indicates that our com-
puted chromatin structures displayed good agreement with
the previous studies on genetic interactions. It is true that
most of the observed spatial distances indicated in Table 2
are much larger than those in the bead-chain model stud-
ies in (34), which is equivalent to 1.5× the Lennard–Jones
size parameter. This may be because those pairs of inter-
acting genes with small distances (i.e. near 45 nm) are not
detected by the list of functionally interacting ones, or those
functionally interacting genes (listed in Table 2) have larger
spatial distances. If it is the latter case, one may question
whether our original choice (i.e. 30 nm) of the Lennard–
Jones size parameter is suitable. However, given our cur-
rent knowledge about the energy model of a polymer chain
model, we still think that 30 nm is an appropriate choice.
In our model, although it may be true that the contact dis-
tances in the computed structures are much larger than our
choice of the Lennard–Jones size parameter, this parameter
can be still useful for excluding a large fraction of confor-
mations with spatial collision during the structural model-
ing process.

We also checked the number of pairs of genomic loci
whose expected spatial distance (i.e. the weighted value over
all conformations in the ensemble) is less than 100 nm,
which is comparable to the contact distance 45 nm sug-
gested in (34). We only focused on those pairs of genomic
loci which are at least five segments away from each other
along the sequence. Indeed, we found a number of pairs
of genomic loci with close distances in our final modeled
structures of the yeast chromosomes. For example, we ob-
served 111 and 57 pairs of non-adjacent genomic loci with
spatial distances 45–100 nm for chromosomes 2 and 14, re-
spectively. This indicates that the choice of the Lennard–
Jones parameter has probably attributed to the final struc-

ture modeling results, whereas most of these pairs were not
detected by those genetic interactions listed in Table 2.

CONCLUSION

In this study, we have developed a novel method for chro-
matin spatial structure modeling based on 3C-based data.
We took advantage of the Bayesian inference framework,
which allowed us to integrate different types of informa-
tion with experimental data to determine 3D architectures
of chromosomes. With more information, we can achieve
more accurate and reliable modeling of chromatin struc-
tures. The conformational energy of a polymer chain de-
rived from a polymer model was used as prior information
in our Bayesian inference framework. We also proposed
an EM-based algorithm to estimate unknown parameters
of Bayesian inference model and derive 3D coordinates of
chromatin structure. In addition, considering the dynami-
cal feature of chromatin shape, we used a structure ensem-
ble to describe possible states of chromatin organization.
We have tested our structure modeling pipeline on real 3C-
based data of yeast genome and examined the performance
of our structure inference framework. The modeling results
were validated through cross-validation and comparisons
with previous fluorescent imaging studies. Furthermore, we
verified the modeled chromatin structures using known ge-
netic interactions derived from the SGD. The test and val-
idation results indicated that our approach can provide an
accurate and promising tool for modeling 3D architectures
of chromosomes, which will be useful for further revealing
unknown genomic features and understanding complex bi-
ological processes of the genome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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