Comput Stat (2016) 31:513-531 @ CrossMark
DOI 10.1007/500180-015-0642-2

ORIGINAL PAPER

Boosting in Cox regression: a comparison between
the likelihood-based and the model-based approaches
with focus on the R-packages CoxBoost and mboost

Riccardo De Bin!

Received: 21 May 2015 / Accepted: 30 December 2015 / Published online: 13 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Despite the limitations imposed by the proportional hazards assumption,
the Cox model is probably the most popular statistical tool used to analyze survival
data, thanks to its flexibility and ease of interpretation. For this reason, novel statisti-
cal/machine learning techniques are usually adapted to fit its requirements, including
boosting. Boosting is an iterative technique originally developed in the machine learn-
ing community to handle classification problems, and later extended to the statistical
field, where it is used in many situations, including regression and survival analysis.
The popularity of boosting has been further driven by the availability of user-friendly
software such as the R packages mboost and CoxBoost, both of which allow the
implementation of boosting in conjunction with the Cox model. Despite the common
underlying boosting principles, these two packages use different techniques: the for-
mer is an adaptation of model-based boosting, while the latter adapts likelihood-based
boosting. Here we contrast these two boosting techniques as implemented in the R
packages from an analytic point of view; we further examine solutions adopted within
these packages to treat mandatory variables, i.e. variables that—for several reasons—
must be included in the model. We explore the possibility of extending solutions
currently only implemented in one package to the other. A simulation study and a real
data example are added for illustration.

Electronic supplementary material The online version of this article (doi:10.1007/s00180-015-0642-2)
contains supplementary material, which is available to authorized users.

B Riccardo De Bin
debin @ibe.med.uni-muenchen.de

1 Department of Medical Informatics, Biometry and Epidemiology, University of Munich,

Marhioninistra3e 15, 81377 Munich, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-015-0642-2&domain=pdf
http://dx.doi.org/10.1007/s00180-015-0642-2

514 R. De Bin

Keywords Cox model - Gradient descent - Mandatory variables - Partial likelihood -
Survival analysis

1 Introduction

Among the iterative methods exploited during recent years in statistical practice, par-
ticular attention has been focused on boosting: originally developed in the machine
learning community (Schapire 1990; Freund 1995; Freund and Schapire 1996), pri-
marily to handle classification problems, it has been successfully translated into the
statistical field (Breiman 1998; Friedman et al. 2000) and extended to many statis-
tical problems, including regression and survival analysis. Thanks to its resistance
to overfitting, it is particularly useful in the construction of prediction models. Its
iterative nature, moreover, allows straightforward adaptations to cope with high-di-
mensional data (Biihlmann and Yu 2003; Biihlmann 2006; Tutz and Binder 2000;
Binder and Schumacher 2008), through its component-wise version. Applied in a
parametric framework, the basic idea of boosting is to provide estimates of the para-
meters (e.g., the regression coefficients of a Cox model) by updating their values step
by step. At each iteration, a “weak” estimator is fit on a modified version of the data,
with the goal of minimizing a pre-specified loss function. The obtained value provides
a small contribution used to update the estimate of the parameters: the result of all the
contributions is the final estimate. Boosting relies on two tuning parameters. A first
parameter controls the “weakness” of the estimator and is usually called penalty or
boosting step size (hereafter, we use the former term). A second much more influential
tuning parameter is related to the stopping criterion, i.e. specifies how many boosting
iterations are performed. This parameter plays an important role in avoiding overfit-
ting, and, in the case of the component-wise version, it also controls the sparsity of
the model, i.e. it is related to variable selection. In this paper we do not investigate the
possible ways to choose these tuning parameters. This aspect is highly relevant (see,
for example, Mayr et al. 2012), and deserves a dedicated study.

The popularity of the boosting methods benefited from the availability of user-
friendly software. The R (R Development Core Team 2014) package mboost (Hothorn
et al. 2015) provides routines which allow the application of boosting to several sta-
tistical problems (for a complete overview, see Bithlmann and Hothorn 2007; Hofner
et al. 2014), including survival analysis. Another R package which exploits the boost-
ing method in this context is CoxBoost (Binder 2013a). Despite both relying on a
boosting method, these two packages implement different techniques: the former uses
an adaptation of model-based boosting (Biihlmann and Yu 2003), while the latter
adapts the likelihood-based boosting approach (Tutz and Binder 2006).

The goal of this study is to contrast the algorithms used in these two R pack-
ages to implement a linear Cox model (hereafter, for simplicity, only “Cox model” or
“Cox regression”). Boosting is applicable to many situations which do not conform
to the assumptions of the Cox model, offering wide possibilities in survival analy-
sis; however, biomedical applications—especially those involving high-dimensional
data—tend to rely on the Cox model. The case of high-dimensional data is highly

@ Springer

Boosting in Cox regression: likelihood-based versus... 515

relevant for boosting because, in this situation, the traditional statistical tools cease to
be appropriate and the boosting is an attractive alternative.

The paper is organized as follows. In Sect. 2 we introduce the Cox model and briefly
review the two boosting algorithms implemented in mboost and CoxBoost. In Sect. 3
we compare these two algorithms showing their similarities and differences as particu-
lar cases of the general gradient descending boosting algorithm (Friedman 2001). The
comparison continues in Sect. 4, where we focus on the issue of mandatory variables
and show how to increase the potential of one boosting package by implementing the
solution adopted by the other. A small example with simulated data and a real data
application are shown in Sect. 5. Some final considerations are reported in Sect. 6.

2 Methods
2.1 Background

Let us consider the time-to-event data (¢, X, §), where 7 is the n-dimensional vector
of the observed survival times, X the n x p matrix of the data and § an n-dimensional
vector reporting whether the i-th observed survival time ¢ is censored (8¢) = 0) or
not (8(5) =1),i = 1,..., n. Hereafter, we suppose, without loss of generalization,
that the variables are standardized, i.e. E[X;] =0and Var[X;] =1,Vj=1,..., p.

To cope with this kind of data, one usually uses the Cox model (Cox 1972) to
describe the hazard function A(¢|X),

A(t1X) = ro(t) exp(X ' B), (1

where Ag () is the baseline hazard function and 8 the p-dimensional vector of the
regression coefficients. A nice property of the Cox model is that it is not necessary to
consider A (?) to estimate 8, as B is estimated by maximizing the partial log-likelihood

plB) =D 8VxDTB—log | > exp{x"Tp)
i=1

leR®

Here X® denotes the i-th observation, while R® is the set of the observations at risk
at time). More formally, R®) = {j € {1,...,n}: V) <®},

From (1) we note that the hazard function depends multiplicatively on 8, i.e. the haz-
ard ratio between two observations is constant over time. Despite this fairly stringent
assumption (usually called the proportional hazards assumption), the Cox model is by
far the most commonly used tool in biomedical practice, thanks to the relative ease of
the interpretation of the regression coefficients. In particular, many approaches related
to high-dimensional problems rely on the Cox model (Binder and Schumacher 2008).

The Cox model is also the basis of the two boosting algorithms implemented in the R
packages mboost and CoxBoost. Before analyzing these two specific implementations,
we first review the underlying boosting principle, using the concept of the functional
gradient descending technique (Friedman 2001). Let L(y, F (X)) be a generic loss

@ Springer

516 R. De Bin

function, where F(X) is a statistical model. The goal is to estimate F (X) by iteratively
updating its value through a base learner h(y, X). The boosting algorithm can be
described as follows:

1. initialize the estimate, e.g., F (X) = constant;
; ; _ _ LO.FX) .
2. compute the negative gradient vector, u = — TIFD | oo
3. compute the update by:
3.1 fitting the base learner to the negative gradient vector, h(u, X);
3.2 penalizing it, f(X) = vh(u, X);
4. update the estimate, 1:“(X) = 1:"(X) + f(X).

In the algorithm, steps 2 through 4 are repeated m,,) times, where m;,, denotes the
number of boosting iterations. The penalty v is the other tuning parameter and can
take values between 0 and 1.

This algorithm is very general and can be adapted to numerous statistical problems.
As stated earlier, in this paper we focus on applications related to Cox regression that
can handle high-dimensional data, thus we mainly consider component-wise boosting.
In this version of the boosting the algorithm described above is modified in order to
update F(X) using only one dimension of X in each boosting iteration. In particular,
step 3 is applied separately to the different columns of X, generating p possible
updates fj(X). An additional step is then implemented to identify which of the p
possible updates should be used in step 4. Since we restrict our analysis to the Cox
regression case, hereafter we consider only the parametric version of boosting (which,
incidentally, excludes the original version of the method, based on trees), where F'(X)
is a parametrized class of functions, F (X,), and the update process thus involves only
the estimate of the parameter. The parametric component-wise boosting algorithm is:

1. initialize the estimate, e.g., ,3 =(0,...,0);

2. compute the negative gradient vector, u = — %X(f‘})ﬂ)) 5

B=p
3. compute the possible updates by:

3.1 fitting the base learner to the negative gradient vector, hu, X i)
3.2 penalizing it, b; = vh(u, X ;);
4. select the best update j* (usually that minimizing the loss function);
5. update the estimate, ,éj* = ,éj* + l;j*.

Steps 2-5 are repeated my,p times are those between 2 and 5. The quantity b j 1s the
weak estimator.

2.2 mboost for Cox regression

The R package mboost is a general tool to implement boosting. In particular, its
function glmboost allows the implementation of model-based boosting for different
linear models, by selecting the appropriate loss function via the argument family. To
perform Cox regression, the pre-built function CoxPH is available. Its implementation
is based on the work of Ridgeway (1999), who derived the formula for the gradient
vector u. The routine glmboost is a direct implementation of the functional descending

@ Springer

Boosting in Cox regression: likelihood-based versus... 517

gradlent algorithm, in which L(y, F (X)) is the negative partial log-likelihood and
h(u X ;) the least squares estimator (X TX)~'X Tu. In more detail, the model-based
boostlng algorithms can be described as follows for the Cox regression:

1. initialize 8 = (0, ..., 0);
2. compute the negative gradient vector,
DT 3
u® =50 - 3 50 exp{XVTp)
leR®D ZkeR(’) exp{X(k)Tﬁ}
3. compute the possible updates by applymg the least squares estimator to the negative
gradient vector, b; = = (X X))~ 1X T
4. select the best update, j* = argmlnj Zi:l (u(i) — X;i)l;j)z;
5. update the estimate, B+ = B+ + vb

Steps from 2 to 5 are repeated m,p times.

The algorithm computes the gradient vector of pl(f) with respect to F (X, B),
i.e. the direction in which the slope of the partial log-likelihood is locally (in B)
steepest (Ridgeway 1999). Multiple univariate linear regressions are then performed
to regress this vector (1) on each X ;. The value of b j which minimizes the residual
sum of squares, shrunk by v, is then used to update B. Roughly speaking, the boosting
algorithm “climbs” the partial log-likelihood step by step in the direction which is
most correlated with the steepest way to “climb” it. This procedure is iteratively
performed m;,, times. If p < n, ,3 — ,BMPLE as Mgyop — 00, where MPLE stands
for “maximum partial likelihood estimate”. In other words, step by step the boosting
estimate 8 slowly approaches the MPLE, without never reaching it.

2.3 CoxBoost: likelihood-based boosting in the Cox model

The R package CoxBoost implements a likelihood-based boosting approach. For
the loss function, this approach uses the negative L;-norm penalized partial log-
likelihood,

Plpen(B) = pl(B) — 0.518" P,

where P is a p x p matrix usually correspondmg to the identity matrix and A is the
penalty term. An offsetterm) = X | ,3 is incorporated into this log-likelihood to keep
track of the iterative updates of the parameter estimate, resulting in a function of the
form

- &ﬁTP,B.

— @) | 4@ @T A \T
pLis (BIB) Za' A0+ X OTp—log | 3 expln®+x T} || -2

i=1 leR®
2
In each boosting iteration, the maximizer of this function is applied to compute the
possible update(s). To better understand the procedure, let us first consider a non-
component-wise version, applicable only if p < n, and a starting value 8 = (0, ..., 0).

@ Springer

518 R. De Bin

As an effect of the penalty term, the log-likelihood in the parameter space is “shifted”
toward the origin and, as the main consequence, the values of the coordinates of
its maximum (i.e. the possible update of p) are a fraction of the coordinates of the
MPLE. In this sense, the maximizer of (2) is a “weak estimator”, because it provides an
estimate that shrinks the MPLE toward 0. The amount of this shrinkage depends on A.

The new ,3 is added to the offset term, and the procedure is repeated. Through the
penalty term, the partial log-likelihood is now “shifted” toward B and a new value of
the update is computed, moving 3 toward the MPLE. In this case as well, ,é — ,é MPLE
as mgop — 00 . It is worth noting that, since A is constant, the updates to ,3 become
smaller and smaller as we proceed with the boosting iterations. Therefore /§ continually
approaches the MPLE without reaching it.

The component-wise version follows a similar idea, but the procedure is applied
on the p restricted partial log-likelihoods pl(B;). In each boosting iteration, the
restricted partial log-likelihoods are “shifted” toward B 7, obtaining the restricted penal-
ized partial log-likelihoods pi%Z (B;|f). The arguments of the maximums of these
functions are the candidate updates, and that which maximizes the penalized partial
log-likelihoods is added to the offset term. More precisely:

1. initialize B = (0, ..., 0);

2-3. compute the possible updates by a first order approximation around 0 of the
PP OIB)

=Pl OB

4. select the best updateAj* = E}rgmirilsjfppléjB (Olﬁ)z/[—plg/%j 018)1;

5. update the estimate, B, = B+ + bJL*B.

restricted MPLE B;B =

Steps 2-3—4 are repeated my;,p times. Note that we mark the second step as “2-3”
to highlight that it corresponds to steps 2 and 3 of the model-based algorithm. Here
plLB(,B~|/§) = w denotes the score and plLB (ﬂ~|/§) = w the
Bj M 9B, BiBj I p?
observed information. The equation in step 4 is the first order approximation around
0 of plégl (Bl B), implemented in CoxBoost for computational reasons (Binder and

Schumacher 2008). Hereafter, we use the labels “LB” and “MB” to indicate whether the
specific quantities are related to likelihood-based (LB) or model-based (MB) boosting.

3 Comparison

At first sight, the two boosting procedures seem quite different. The updates computed
within the model-based boosting are based on the correlation between the observa-
tions and the negative gradient vector, while for the likelihood-based boosting this
procedure involves the direct maximization of a log-likelihood. Moreover, the penalty
term is applied in two completely different ways, to the updates in the former case,
directly to the partial log-likelihood in the latter. In general, these aspects would render
the two procedures incomparable: for example, the penalty parameters would shrink
the estimates obtained in each boosting iteration very differently depending on the
correlation structure of X; see “Appendix” for further details. In that they involve only
one dimension of X at each iteration, however, the component-wise versions of the

@ Springer

Boosting in Cox regression: likelihood-based versus... 519

boosting procedures implemented in mboost and CoxBoost are not affected by this
issue. Moreover, we will see that the form of the linear predictor of the Cox model
makes the two boosting procedures even more similar.

As afirst step of the comparison, we rewrite the likelihood-based boosting procedure
as a functional gradient descending technique, making explicit the role of the negative
gradient vector in the formula used by CoxBoost to compute the possible updates:

1. initialize B = (0, ..., 0);
2. compute the negative gradient vector,

_pI(F(X, B dplph(F(X;, BIB)

IF (X, B) lp=p IF(Xj, Bj) 8=0
J—
3. compute the possible updates,
AF(X;.6) | T
. IF(X,, B)|" O—54—
bLP :(—(aé P u)/ = —BZ’J utr|: G
J B;=0 J .
: fi=0
4. select the best update,
2 AF(X;.B) T
J* = argmin, _; X, By) ! ul /|- —8 %; ‘ +Al;
= <ji< 9
<j<p aB; 4=0 9B .
=

5. update the estimate, ,éj* = 3J»* + l;]L*B.

As before, steps 2-5 are repeated ng;,) times.

The formula of step 2 shows that, in the case, as that of Cox regression, of linear
F(X, B), the negative gradient vector of the penalized partial log-likelihood corre-
sponds to that of the unpenalized version. The formula of step 3, moreover, clarifies
that the weak estimator used in the likelihood-based approach is a particular form of
base learner, which uses the negative gradient vector computed in the previous step to
propose possible updates for the estimates of the regression coefficients. In particular,
in (3) the score function and the observed information, which are the two terms used
to compute the possible updates in the likelihood-based boosting (see Sect. 2.3), are
derived from the negative gradient vector by applying the chain rule

apl(®) _ Ipl(F(9)) IF(0)
90~ 9F@©) 90

This formulation makes it clear that both procedures rely on the negative gradient
vector to identify the best “direction” in which the estimate can be improved, and
both add this improvement, suitably penalized, to the current value of the estimate.
The likelihood-based boosting uses the negative gradient vector to derive the score
function and the observed information. We saw that these quantities are then used to
compute the first order approximation of the maximum penalized partial likelihood
estimate around 0. Let us focus on this quantity and contrast it with the update derived
from the model-based boosting. The formulas are

@ Springer

520 R. De Bin

IFX;.B) | T ;
~LB Wi 1p;=0 ~MB XJT”
b:" = = and vb " =v———,
J IF(X.8)) J xXTx;
BT u j I
Y Y
36;
Bj=0

respectively. Ignore for the moment the penalty parameters. Again for the linearity of
F(X,B), dF(X;,B;)/9B; = X;, and therefore the two numerators are equal. The
same is not true for the denominators: the observed information for the Cox model,
including the offset term) = X T ,3 , indeed, is

AF(X;.6) T
8—aﬂj u
9B,

Bj=0

N2
I T3 0T 4 o xOT
iam Siero XV2eXV DY piy X7 (ZIER“) Xje ﬁ)
= N2 - N2 J

=1 (ZIGR(U ex(l)Tﬂ) (ZleR(i) eX(l)Tﬂ)

clearly different from the simple XJ.TX j of 13?’1 B Using the negative gradient vec-
tor in the denominator as well, indeed, the likelihood-based boosting weak estimator
takes into account the concavity of the loss function at the current point in the para-
metric space (B), while the model-based boosting estimator uses a sort of parabolic
approximation.

Remark 1 1t is easy to see that in the case of Gaussian linear regression the two
boosting techniques provide the same results (Mayr et al. 2014). In this case, indeed,

. oo . *1(B;
the Gaussian density is used as the loss function and % = XjTX j; thus the two

J
denominators are also equal. In the case of the generalized linear model, instead, the
weak estimator for the likelihood-based boosting has the form

-
pLB — Xju

= —,
J VX[X;

where u = g ' (F(X, B)), with g being the canonical link function, and V (u) the
variance function (for more details, see McCullagh and Nelder 1989, Sect. 2) . Here
again the denominator depends on ,3 and the two algorithms provide different results.
In the case of the generalized linear models, for model-based boosting it is possible
to obtain the same updates as likelihood-based boosting by using a weighted least
squares estimator instead of the simple least squares estimator.

Remark 2 In the previous remark we claimed that the two procedures in the linear
Gaussian regression case provide the same results. This is true for suitable values
of the penalty parameters v and A. With standardized X, simple algebra shows that

@ Springer

Boosting in Cox regression: likelihood-based versus... 521

the two estimators are equal if A = n(1 — v)/v. In the likelihood-based boosting, A
can take values from 0, no penalty, to infinity, while in the model-based boosting, v
takes values between O and 1, where O corresponds to A = oo, and 1 to A = 0. The
recommendations of setting A “sufficiently large” (Binder and Schumacher 2008) and
v “sufficiently small” (Biihlmann and Hothorn 2007), therefore, coincide.

Obviously, one could modify the values of the penalty parameters to force the two
boosting procedures to give the same results in the Cox regression case as well. This
can be done by setting
XJTXj + uplgj%j 0|1)

Vv

A=

“)

Since this equation depends on B, it is clear that different values for the penalty
parameters should be provided in each boosting iteration. Alternatively, the matrix P
should include suitable weights.

Remark 3 The learning paths of the two boosting procedures may also differ due to
non-coinciding choices of which dimension should be updated at each boosting step.
In glmboost the choice is based on the residuals of the regression of # on X ;, while
CoxBoost selects the dimension which results in the largest decrease of the penalized
partial log-likelihood function. The use of a penalized version of the loss function in
this step may also be advantageous in the model-based boosting procedure (Mayr et al.
2014).

4 Allowing for mandatory variables
4.1 Background

In recent years, the importance of combining clinical and molecular data in a pre-
diction model has become clear in the biomedical field, and studies have contrasted
different methods to profitably exploit both kinds of data in the model building process
(Boulesteix and Sauerbrei 2011; De Bin et al. 2014; Truntzer et al. 2014). The main
issue related to the combination of clinical and molecular information is the differ-
ent nature of the data, which belong to the low- and the high-dimensional worlds,
respectively. The consequence is that, if not adequately treated, the risk of “losing”
the clinical information among the high number of molecular variables is high (Binder
and Schumacher 2008; Boulesteix and Sauerbrei 2011). From this point of view, sev-
eral papers (e.g., Binder and Schumacher 2008; Boulesteix and Sauerbrei 2011; De
Bin et al. 2014) show that it is possible to obtain better prediction models by consid-
ering the clinical variables as mandatory than by simply merging them with the omics
data.

Both the R packages under investigation handle this issue by considering the clinical
variables as mandatory: in CoxBoost there is the possibility to exclude some variables
from the penalization (Binder and Schumacher 2008). With mboost, instead, it is possi-
ble to perform a two-step procedure in which the mandatory variables are summarized
in a score (in survival analysis, typically the linear predictor of a Cox model) that is
later used as an offset in the boosting procedure (Boulesteix and Hothorn 2010).

@ Springer

522 R. De Bin

In Boulesteix and Sauerbrei (2011), these two strategies are called “favoring” and
“residuals”, respectively (De Bin et al. 2014 use the more intuitive term “clinical off-
set” for the latter strategy). These two strategies have some theoretical differences
which may influence the model building process; a particular strategy may thus be
more appropriate in some situations. For example, the “clinical offset” strategy imple-
mented in mboost may lead to better results when there is a strong consensus among
the experts on the clinical (mandatory) variables effect: within this strategy, the clinical
regression coefficients are not modified by the boosting procedure, which uses only
the molecular data to explain that part of the outcome variability not already explained
by the clinical model.

In contrast, the “favoring” strategy implemented in CoxBoost allows the coefficients
of the clinical variables to change during the boosting procedure: at each iteration,
the coefficients of the clinical variables are adapted to take into consideration the
information provided by the molecular variables. In this way, it may be possible to
better integrate the clinical and the molecular information. Binder and Schumacher
(2008) defined two ways to perform the stepwise update of the mandatory variables
in the likelihood-based component-wise bootstrap framework. In the first, the py < n
mandatory variables are considered in turn with one of the other p — p variables, with
the matrix P associated with the penalty term containing O for all mandatory variables.
The second, implemented in CoxBoost, instead, consists of updating the regression
coefficients of the mandatory variables as a further step before each boosting iteration.

As stated above, the two strategies to deal with mandatory variables have advantages
that may depend on the structure of the data. Therefore, it would be valuable to have
the chance to apply both strategies in both likelihood- and model-based boosting
approaches, to extend the possibilities offered by the two packages. In the following,
we consider without loss of generality that the first po columns of X contain the
mandatory variables.

4.2 Favoring strategy in mboost

We can allow the regression coefficients of the mandatory variables to vary through

the iterations in the model-based boosting as in the likelihood-based one. In each

boosting iteration, we simultaneously estimate the coefficients of the mandatory and

one of the non-mandatory variables, i.e. for each j = pg + 1, ..., p, we regress the

negative gradient vector on X = (X1,..., Xpy, X;). The choice of the best update

is performed as in the regular algorithm, while the penalization is applied only to the

last component of the update, that corresponding to the non-mandatory variable:

1. initialize 8 = (0,0, ..., 0);

2. compute the negative gradient vector u;

3. for each optional variable, compute the possible updates of the coefficients esti-
mates together with the mandatory variables, b =X ;FTX ;r)_l Xjﬂ—u;

4. select the update which minimizes the residual sum of squares; .

5. update the estimate ,3[1 _____ po.j*] = ,3[1’_._,[,0,/'*] + (bj*[l]a ceey bj*[po]’ vbj*[,,0+1]).

Step 2-5 are repeated mg,p times. The matrix (Xj'TX;F)_1 XTT is common in each

boosting iteration, and therefore it is sufficient to compute it only once for the (p — po)

@ Springer

Boosting in Cox regression: likelihood-based versus... 523

non-mandatory variables. It is worth noting that in our implementation the regression
coefficients of the mandatory variables are not shrunk toward 0. Potentially, one could
shrink these coefficients by applying a penalty v.;, to the relative components of the
update.

4.3 Clinical offset strategy in CoxBoost

To implement the clinical offset strategy within the CoxBoost routine we need a
preliminary step in which we fit a Cox model which includes the mandatory vari-
ables. The linear predictor is then included in 7 before the first boosting iteration, and
the likelihood-based algorithm proceeds as usual. Since no iteration will involve the
mandatory variables, their regression coefficients are not modified by the boosting
procedure. It is worth noting that in this way the boosting works using a penalized
restricted partial log-likelihood as a loss function, where the parameters related to the
mandatory variables are replaced by their maximum partial likelihood estimates.

1. compute the maximum partial likelihood estimate for the coefficients correspond-
ing to the mandatory variables, ,30, ey ;§ Do’
initialize B = (B1, ..., Bpy, 0, ..., 0);
compute, for j = po + 1, ..., p, the potential updates using IQJLB ;

2.
3.
4. determine which l;f B maximizes the penalized partial log-likelihood;
5.

update the parameter estimate f; = B; + b%P using the H+* selected in step 4.

Steps 3-5 are repeated m;,), times. Please note that, from a prediction point of view,
following this approach we also select the predictor with largest added predictive
value.

5 Examples
5.1 Simulated data

In order to illustrate the similarities and differences between the likelihood-based and
the model-based boosting outlined in Sect. 3, we conduct a very simple simulation
study. We focus on the two-variable regression case, in which it is possible to visualize
the likelihood function and show the boosting learning path of the component-wise
boosting for the linear and the Cox regressions. We generate n = 200 observations
(X1, X») from a bivariate Gaussian distribution with mean 0 and covariance matrix

1 0.7
> = [0.7 I } :
For the linear regression simulation, we generate the response yi, ..., y, from a
Gaussian distribution with variance 1 and mean 81 X| + 82 X2, where 81 = 2 and 8, =

3. We center y around its mean and standardize X and X,. We use the recommended
value of 0.1 for the model-based boosting penalty parameter v (Biihlmann and Hothorn

@ Springer

524 R. De Bin

2007) and the corresponding A = (n — 1)(1 — 0.1)/0.1 = 1791 for the likelihood-
based boosting. Please note that the (n — 1) has replaced n due to the standardization
performed with an unbiased estimator of the variance.

For the Cox regression simulation, we generate the survival times ¢ through the
formula

log(a)

t==01 %%
where a is generated from a uniform distribution between 0 and 1. If ¢ is smaller than
arandom draw from an exponential distribution with rate 0.1, it is the observed time,
while if it is larger, the observation is considered censored and the value generated
from the exponential distribution is the observed time. For more details on this simu-
lation model, see Binder and Schumacher (2008). In this case, we deliberately choose
a non-optimal value for the penalty parameter in order to show more efficaciously
the different learning paths. We set v = 0.25 for the model-based boosting and the
corresponding A = (n — 1)(1 — 0.25)/0.25 = 597 for the likelihood-based boosting.
Figure 1 shows that, for the linear regression, the component-wise versions of the
model-based and the likelihood-based boosting procedures provide the same results.
Conversely, in Fig. 2, we clearly see that the equivalence does not hold in the case

Component-wise boosting in linear regression

< -
o -
A N
r
1
1
|
| likelihood—-based boosting
o- | —— model-based boosting
T T T T T
0 1 2 3 4
P

Fig.1 Learning paths of the component-wise versions of the two boosting approaches in the linear regres-
sion simulation. The contour lines represent the levels of the normalized log-likelihood

@ Springer

Boosting in Cox regression: likelihood-based versus... 525

Component-wise boosting in Cox regression

o 7
S
[Ie)
@
o
Q-
-10
& 2 | -20
\-30
o | -40
T -50
\ -60
[Te) =70
S -80
S, -90
&, 7 =100 —]
wo sg\ R likelihood-based boosting
2 BNOONN T N oL a0 1z —— model-based boosting
T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0
B

Fig. 2 Learning paths of the component-wise versions of the boosting approaches in the Cox regression
simulation. The contour lines represent the levels of the normalized partial log-likelihood

of Cox regression. Please note that the magnitude of the difference between the two
learning paths depends on the values of the parameters v and A. Reducing v and,
consequently, increasing A, indeed, leads to learning paths increasingly similar, with
both approaching the learning path of the least angle regression (Efron et al. 2004) for
v — 0and A — oo, respectively.

Table 1 reports the values obtained for A in the first 10 boosting iterations. Start-
ing from B = (0, 0), we obtain the update candidates 1351] = 0.204, l;y] = 0.219
for CoxBoost and vl;E” = 0.178, vlag] = 0.191 for gimboost. As we have seen,
the differences lie in the denominator of the two estimators: the numerators coincide
and are equal to 142.004 and 151.811, for BE” and l;g], respectively. Here the super-
script [m] denotes the m-th boosting iteration. For CoxBoost these values are divided
by the information, 694.845 and 692.533, respectively, while for glmboost they are
divided by X 7 X /v, which, since we are using standardized predictors, corresponds
to (n — 1)/v = 796 for all j. The results are different unless Eq. (4) is satisfied. In
particular, keeping A fixed, this equation requires v to be equal to 0.286 for 1551] and

t0 0.287 for H'!: the value 0.219 in Table 1 is indeed 0.191 x 0.287/0.25. In the first
step, both techniques select the second candidate: the values of the loss function is
—29.021 versus —33.279 in CoxBoost (approximation of the profile penalized partial
log-likelihood) and 67.442 versus 52.961 in glmboost (residual sum of squares). It is

@ Springer

526 R. De Bin

Table 1 Estimates of the Cox

. . . Boosting CoxBoost mboost

regression coefficients in the _— - —

first 10 steps of the boosting Iteration B1 B B1 B

procedures
0 0.000 0.000 0.000 0.000
1 0.000 0.219 0.000 0.191
2 0.192 0.219 0.000 0.359
3 0.192 0.402 0.160 0.359
4 0.192 0.565 0.160 0.503
5 0.344 0.565 0.296 0.503
6 0.344 0.706 0.296 0.627
7 0.473 0.706 0.413 0.627
8 0.473 0.829 0.413 0.738
9 0.585 0.829 0.515 0.738
10 0.585 0.939 0.515 0.836

not always the case that the two boosting procedure select the same dimension, as we
can see in the second step: here, the candidates are b&z] = 0.192, bgz] = 0.192 for

CoxBoost and vb\?! = 0.168, vb}! = 0.168 for glmboost, which lead to the values
of the loss functlons —25.385 versus —25.348 (CoxBost) and 54.349 versus 53 486
(glmboost). In this case, the former technique update f1, while the latter again Bo.

5.2 Real data

Here we show the application of the favoring and the clinical offset strategies in a real
data example. We use the data on colon cancer presented in a study by Marisa et al.
(2013) and publicly available from the ArrayExpress web repository, reference number
E-GEOD-39582 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-39582/).

The dataset contains a training and a test set with 443 and 123 observations, respec-
tively. Of these observations, 10 were discarded due to missing values, reducing the
sample sizes to 439 (training set) and 117 (validation set) observations. In particular,
the effective sample sizes, i.e. the number of observations with an event (§¢) = 1),
are 141 and 36. We have information on 4 clinical variables, namely sex, age, subtype
and stage. The latter two are categorical variables with 6 and 4 modalities, which are
transformed into dummy variables, using the codification (—1; 1) (see “Appendix” for
further details). The molecular data consist of 54675 gene expressions determined on
Affymetrix U133 Plus 2.0 chips.

We standardize the continuous variables, namely the age and the gene expressions,
in order to meet the model-based (centering) and the likelihood-based (homoschedas-
ticity) boosting algorithms requirements. The means and the standard deviations for
the standardization process are computed on the training set only. Regarding the tun-
ing parameter, we set the penalty equal to the default value 0.1 for the model-based
approach and equal to the result of the routine optimCoxBoostPenalty (available in
the package CoxBoost) for the likelihood-based approach. Please note that the choice

@ Springer

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-39582/

Boosting in Cox regression: likelihood-based versus... 527

of this tuning parameter is not much relevant, conversely to that of the number of
boosting iterations mg,p. For both boosting approaches, we select the latter tuning
parameter via 15-time repeated tenfold cross-validation, which consists of merging
the results of 15 separated tenfold cross-validation replications. This approach makes
the choice robust to the specific split of the data in the tenfold (see also Boulesteix
et al. 2013).

Using the Brier score (Graf et al. 1999), a time-dependent quadratic score for sur-
vival data, we evaluate the performance of the models obtained by following different
strategies of combining clinical and molecular data. The results are summarized in the
so-called “prediction error curves” generated using the R packages pec (Gerds 2014).
The curves show the prediction error (Brier score) at each time: the lower the curve,
the better is the prediction ability of the model.

Note that all models are trained on the training set and their performance evaluated
in the test set only. As seen in Fig. 3, in this example there is a small improvement in
performing the favoring strategy (continuous line) rather than the clinical offset strat-
egy (dashed line), for both model-based boosting (left graphic) and likelihood-based
boosting (right graphic). Note that for the latter approach the offset-based strategy
seems to perform slightly better in the very right part of the curves, but this is not
really relevant because the prediction curves for higher values of time are known to
be unstable, due to the scarcity (or even absence) of events. This example, moreover,
shows very clearly the importance of treating the clinical and the molecular variables
differently in the model building process. If we simply merge together the two kinds
of data (naive strategy), thus ignoring their differences, we obtain a decidedly worse
prediction (dot-dashed line) than those obtained with the aforementioned strategies

model-based boosting

20 40 60 80 100 120
survival time

likelihood-based boosting

o | o | e
N mememetes - N L -
=} =}

—_ w0 —_ w0
- -

5 2 s

— —

))

c c

Q9 o Qo o

- -

o = (S

5 © 5 ©

9] 0]

o o

a a
8 8
o null model o null model

--- naive strategy --- naive strategy

o ---- clinical offset strategy o ---- clinical offset strategy
s} —— favoring strategy s} —— favoring strategy
=} =}

20 40 60 80 100 120
survival time

Fig. 3 Prediction error curves—using the Brier score—computed on the test set for the null model (dotted
line) and for the boosting models (left graphic model-based, right graphic likelihood-based) obtained
following a naive strategy (dot-dashed line), a clinical offset strategy (dashed line) and a favoring strategy
(continuous line)

@ Springer

528 R. De Bin

(favoring and clinical offset). Here, the dotted lines show the prediction curve for the
null model, in which no variable is used to predict the outcome.

In this specific example, we note that the two algorithms have similar performance.
If we compare the prediction error curves, we obtain the best result with the model-
based boosting approach within the favoring strategy. Anyway, the differences are
very small and, in any case, a single example is not sufficient to drive any conclusion
on which algorithm/strategy combination is preferable. From a computational point
of view, the algorithm implemented in mboost is faster than that implemented in
CoxBoost. In our analysis, the former needs 6.808 s to compute the model, the latter
83.618; these times are computed following the naive strategy and setting m;op = 24
(which is the tuning parameter obtained for CoxBoost).

The R code necessary to reproduce the results (both for simulated and real data
examples) is available as Electronic Supplementary Material.

6 Discussion

In this paper, we contrasted the model- and likelihood-based boosting algorithms used
by the R packages mboost and CoxBoost to implement the linear Cox model, a simple
(but highly relevant) case in which the effects of the regression parameters are rela-
tively easy to understand. To maintain the ease of interpretability, we did not consider
more sophisticated boosting versions which include non-linear effects (Schmid and
Hothorn 2008; Hofner et al. 2013) or rely on a tree-based approach (Ridgeway 2010).
A different possibility to treat survival data using mboost is provided by Hothorn et al.
(2006): instead of using the partial log-likelihood as the loss function, they modify the
boosting algorithm for the linear regression (Biihlmann and Yu 2003, L, Boosting),
adapting the loss function (Gaussian log-likelihood) and the least squares estimator
by adding weights to take into account the censored nature of the data (Hothorn et al.
2006; Biihlmann and Hothorn 2007). Specifically, the inverse probability of censoring
weights (Van der Laan and Robins 2003) are used.

We also note that in this paper we considered the theoretical similarities and differ-
ences between the two boosting algorithms, without trying to systematically evaluate
their performance. The complexity of the real world renders it impossible to identify
all situations in which one algorithm performs better than the other: from this point
of view, it is of benefit to simply have different solutions to enrich the practitioner’s
toolbox. As such, an important part of this paper is devoted to the extensions of the
solutions available in only one R package to the other. However, it is important to
use these possibilities wisely, without falling into the temptation of trying all and then
reporting only the results for the method which shows the greatest support for the
theory under investigation.

Acknowledgments RDB was financed by Grant BO3139/4-1 from the German Science Foundation
(DFG). Special thanks are devoted to Anne-Laure Boulesteix for her advice and suggestions, to Rory
Wilson for his help with linguistic improvements and to the two anonymous reviewers for their comments
which led to an improved version of the paper.

@ Springer

Boosting in Cox regression: likelihood-based versus... 529

Appendix

In the paper we showed that, in the case of linear Cox model, the algorithms used
by the R packages mboost (through the function glmboost) and CoxBoost follow
different learning paths, conversely to the Gaussian linear regression case in which
the same result is produced, provided A = n(1 — v)/v (Binder 2013b). Note that the
equivalence in the linear regression case only works for the component-wise version
of boosting. In the non-component-wise version, when all the dimensions of ,é are
updated simultaneously, indeed, the two weak estimators have the form

P8 =xX"X+AP)'XTu and vhMB =v(XTX)"'XTu,

for the likelihood- and the model-based boosting, respectively. While the model-based
penalty v affects all dimensions identically, the penalty A penalizes the dimensions
depending on the correlation structure of X. Consider P = [, the identity matrix
used as default in CoxBoost. The weak estimator -5 is then a ridge estimator: in the
regression procedure, when the response is projected onto the orthonormal basis of
the explanatory variables (columns of X), the penalty term shrinks the coordinates
(inversely) proportionally to the variance of the related principal components. This
means, in particular, that the term A penalizes (shrinks) the coefficients related to
principal components with low variance more strongly. If we look at the predictive
values obtained through the two algorithms, denoting with B the orthonormal basis
of the columns of X, we obtain

$MB — B diag(1 — (1 —v)"tHBTy

dj
~LB . J m+1
=Bd 1-1-——- By,
y iag(l — (7 "By

where dj, j = 1,..., p is the j-th eigenvalue of the matrix X Tx (when divided
by n, it is then the variance of the principal component) and m indicates the number
of iterations performed. Replacing m by 0 we obtain the formula for the single step
update. It is worth noting that, due to its stage-wise nature, the algorithm of boosting
ridge regression leads to a different penalization (and, therefore, to different estimates)
than the usual ridge regression (Tutz and Binder 2007).

We can obtain a uniform penalization with the likelihood-based boosting by set-
ting P = (1/n)X "X, provided that the columns of X are centered around 0 and
standardized. In this case, (1/n)X | X represents the correlation matrix of X.

Note that it is possible to use a penalized least squares estimator within the model-
boosting algorithm as well. This solution seems to be gaining popularity (see, e.g.,
Hofner et al. 2014), because it allows the better handling of categorical variables.
Please note that in this case the whole penalization is a combination of the effect of A
and v. Another issue related to categorical variables is with regard to their variance.
In this paper, we considered standardized X, but we saw in the examples that in
practical situations we need a standardization process. The likelihood-based boosting,
in particular, needs all X ; having variance 1. For this reason, in the real data example

@ Springer

530 R. De Bin

we codified the dummy variables as (—1; 1). In the case of completely balanced
observations, the variance of the binary variables is then equal to 1. Unfortunately,
this balance occurs rarely in practice. A possible solution which does not require
the standardization of X is to replace P by the covariance matrix of X or, for the
component-wise version, with diag((1/n) X " X): this standardizes the binary variables
using their observed standard deviations as well.

References

Binder H (2013a) CoxBoost: Cox models by likelihood based boosting for a single survival endpoint or
competing risks. R package version 1.4. http://CRAN.R-project.org/package=CoxBoost

Binder H (2013b) GAMBoost: generalized linear and additive models by likelihood based boosting. R
package version 1.2-3. http://CRAN.R-project.org/package=GAMBoost

Binder H, Schumacher M (2008) Allowing for mandatory covariates in boosting estimation of sparse high-
dimensional survival models. BMC Bioinform 9:14

Boulesteix AL, Hothorn T (2010) Testing the additional predictive value of high-dimensional molecular
data. BMC Bioinform 11:78

Boulesteix AL, Sauerbrei W (2011) Added predictive value of high-throughput molecular data to clinical
data and its validation. Brief Bioinform 12:215-229

Boulesteix AL, Richter A, Bernau C (2013) Complexity selection with cross-validation for lasso and sparse
partial least squares using high-dimensional data. In: Lausen B, Van den Poel D, Ultsch A (eds)
Algorithms from and for nature and life. Springer, Cham, Switzerland, pp 261-268

Breiman L (1998) Arcing classifier. Ann Stat 26:801-849

Biihlmann P (2006) Boosting for high-dimensional linear models. Ann Stat 34:559-583

Biihlmann P, Hothorn T (2007) Boosting algorithms: regularization, prediction and model fitting. Stat Sci
22:477-505

Biihlmann P, Yu B (2003) Boosting with the L loss: regression and classification. J Am Stat Assoc 98:324—
339

Cox D (1972) Regression models and life-tables. J R Stat Soc Ser B (Methodological) 34:187-220

De Bin R, Sauerbrei W, Boulesteix AL (2014) Investigating the prediction ability of survival models based
on both clinical and omics data: two case studies. Stat Med 33:5310-5329

Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32:407—499

Freund Y (1995) Boosting a weak learning algorithm by majority. Inf Comput 121:256-285

Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th
international conference on machine learning. Morgan Kaufmann Publishers Inc., pp 148-156

Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann
Stat 28:337-407

Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189-1232

Gerds T (2014) pec: Prediction error curves for risk prediction models in survival analysis. R package
version 2.4-4. http://CRAN.R-project.org/package=pec

Graf E, Schmoor C, Sauerbrei W, Schumacher M (1999) Assessment and comparison of prognostic classi-
fication schemes for survival data. Stat Med 18:2529-2545

Hofner B, Hothorn T, Kneib T (2013) Variable selection and model choice in structured survival models.
Comput Stat 28:1079-1101

Hofner B, Mayr A, Robinzonov N, Schmid M (2014) Model-based boosting in R: a hands-on tutorial using
the R package mboost. Comput Stat 29:3-35

Hothorn T, Biihlmann P, Dudoit S, Molinaro A, Van Der Laan MJ (2006) Survival ensembles. Biostatistics
7:355-373

Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B, Sobotka F, Scheipl F (2015) mboost: Model-based
boosting. R package version 2.5-0. http://CRAN.R-project.org/package=mboost

Marisa L, de Reyniés A, Duval A, Selves J, Gaub MP, Vescovo L, Etienne-Grimaldi MC, Schiappa R,
Guenot D, Ayadi M, Kirzin S, Chazal M, Fljou JF, Benchimol D, Berger A, Lagarde A, Pencreach E,
Piard F, Elias D, Parc Y, Olschwang S, Milano G, Laurent-Puig P, Boige V (2013) Gene expression
classification of colon cancer into molecular subtypes: characterization, validation, and prognostic
value. PLoS Med 10(e1001):453

@ Springer

http://CRAN.R-project.org/package=CoxBoost
http://CRAN.R-project.org/package=GAMBoost
http://CRAN.R-project.org/package=pec
http://CRAN.R-project.org/package=mboost

Boosting in Cox regression: likelihood-based versus... 531

Mayr A, Hofner B, Schmid M (2012) The importance of knowing when to stop. A sequential stopping rule
for component-wise gradient boosting. Methods Inf Med 51:178-186

Mayr A, Binder H, Gefeller O, Schmid M (2014) The evolution of boosting algorithms. Methods Inf Med
53:419-427

McCullagh P, Nelder J (1989) General linear models. Chapman and Halls, London

R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria

Ridgeway G (1999) Generalization of boosting algorithms and applications of Bayesian inference for
massive datasets. Ph.D. thesis, University of Washington

Ridgeway G (2010) gbm: Generalized boosted regression models. R package version 1.6. http://CRAN.
R-project.org/package=gbm

Schapire RE (1990) The strength of weak learnability. Mach Learn 5:197-227

Schmid M, Hothorn T (2008) Flexible boosting of accelerated failure time models. BMC Bioinform 9:269

Truntzer C, Mostacci E, Jeannin A, Petit JM, Ducoroy P, Cardot H (2014) Comparison of classification
methods that combine clinical data and high-dimensional mass spectrometry data. BMC Bioinform
15:385

Tutz G, Binder H (2006) Generalized additive modeling with implicit variable selection by likelihood-based
boosting. Biometrics 62:961-971

Tutz G, Binder H (2007) Boosting ridge regression. Comput Stat Data Anal 51:6044-6059

Van der Laan MJ, Robins JM (2003) Unified methods for censored longitudinal data and causality. Springer,
New York

@ Springer

http://CRAN.R-project.org/package=gbm
http://CRAN.R-project.org/package=gbm

	Boosting in Cox regression: a comparison between the likelihood-based and the model-based approaches with focus on the R-packages CoxBoost and mboost
	Abstract
	1 Introduction
	2 Methods
	2.1 Background
	2.2 mboost for Cox regression
	2.3 CoxBoost: likelihood-based boosting in the Cox model

	3 Comparison
	4 Allowing for mandatory variables
	4.1 Background
	4.2 Favoring strategy in mboost
	4.3 Clinical offset strategy in CoxBoost

	5 Examples
	5.1 Simulated data
	5.2 Real data

	6 Discussion
	Acknowledgments
	Appendix
	References

