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Abstract

Background: Replicability analysis which aims to detect replicated signals attracts more and more attentions in
modern scientific applications. For example, in genome-wide association studies (GWAS), it would be of convincing to
detect an association which can be replicated in more than one study. Since the neighboring single nucleotide
polymorphisms (SNPs) often exhibit high correlation, it is desirable to exploit the dependency information among
adjacent SNPs properly in replicability analysis. In this paper, we propose a novel multiple testing procedure based on
the Cartesian hidden Markov model (CHMM), called repLIS procedure, for replicability analysis across two studies,
which can characterize the local dependence structure among adjacent SNPs via a four-state Markov chain.

Results: Theoretical results show that the repLIS procedure can control the false discovery rate (FDR) at the nominal
level α and is shown to be optimal in the sense that it has the smallest false non-discovery rate (FNR) among all
α-level multiple testing procedures. We carry out simulation studies to compare our repLIS procedure with the
existing methods, including the Benjamini-Hochberg (BH) procedure and the empirical Bayes approach, called repfdr.
Finally, we apply our repLIS procedure and repfdr procedure in the replicability analyses of psychiatric disorders data
sets collected by Psychiatric Genomics Consortium (PGC) and Wellcome Trust Case Control Consortium (WTCCC).
Both the simulation studies and real data analysis show that the repLIS procedure is valid and achieves a higher
efficiency compared with its competitors.

Conclusions: In replicability analysis, our repLIS procedure controls the FDR at the pre-specified level α and can
achieve more efficiency by exploiting the dependency information among adjacent SNPs.
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Background
Since the first publication of genome-wide association
studies (GWAS) on age-related macular degeneration in
2005 [1], great progress has been made in the genetic
studies of the human complex diseases. As of September
1st, 2016, more than 24,000 SNPs have been identified
to be associated with complex diseases or traits [2]. It
also has been shown that different diseases or traits usu-
ally share the similar genetic mechanisms and are even
affected by some of the same genetic variants [3, 4].
This phenomenon is known as “pleiotropy". It is desirable
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to make an integrative analysis of several GWAS stud-
ies to improve the power by leveraging the pleiotropy
information.
Meta-analysis is one of the approaches that combines

of multiple scientific studies and has been widely used
in biomedical research. In GWAS, however, the results
obtained from meta-analysis are often in contradiction
with those in single studies. For example, Voight et al. [5]
reported that some of the type 2 diabetes (T2D) related
SNPs detected by meta-analysis were not discovered in
single studies. It is more convincing if the result can be
replicated in at least one study [6]. To this end, repli-
cability analysis was suggested to detect signals that are
discovered in more than one study for GWAS [7, 8].
Instead of examining the association in each single study
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separately, replicability analysis combines results across
different studies and can usually gain additional power
in genetic association studies. Moreover, it has been
reported that the population stratification may affect the
GWAS identifications and lead to a subtle bias [9]. We
also hope that some of the identified SNPs in the study of
one population can be replicated for the studies of other
populations. Fortunately, replicability analysis of multiple
GWAS from different populations can avoid this kind of
bias in some extent.
So far, only a handful of methods have been pro-

posed for replicability analysis. Benjamini et al. [10] uti-
lized the maximum p-value of two studies as the joint
p-value for each test and then carried out the Benjamini-
Hochberg procedure [11] to detect replicated signals
across two studies. Bogomolov and Heller [12] focused
on replicability analysis for two studies, and proposed
an alternative FDR controlling procedure based on p-
values. In 2014, a statistical approach, named GPA, was
proposed by [13], which can extract replicated associ-
ations through joint analysis of multiple GWAS data
sets and annotation information. Heller and Yekutieli
[14] extended the two-group model [15] and suggested
a generalized empirical Bayes approach, called repfdr,
for discovering replicated signals in GWAS. Heller et al.
[16] also presented the R package repfdr that provides
a flexible and efficient implementation of the method
in Heller and Yekutieli [14]. In fact, replicability analy-
sis is a multiple testing problem which involves testing
hundreds of null hypotheses that correspond to SNPs
without replicated associations. The traditional multi-
ple testing procedures for replicability analysis essentially
involve two steps: ranking the hypotheses based on appro-
priate multiple testing statistics (such as p-values) and
then choosing a suitable cutoff along with the rank-
ings to ensure the FDR is controlled at the pre-specified
level.
It should be pointed out that all these existing

approaches assume that the multiple testing statistics
(such as p-values) are independent in each study, which
is obviously unreasonable in practice. For example, in
GWAS, since the adjacent genomic loci tend to co-
segregate in meiosis, the disease-associated SNPs are
always clustered and locally dependent. Wei and Li [17]
pointed out that the efficiency of analysis of large-scale
genomic data can be evidently enhanced by exploiting
genomic dependency information properly. It also has
been shown that ignoring the dependence among the
multiple testing statistics will decrease the statistical accu-
racy and testing efficiency in multiple testing [18–20].
Hence a reasonable multiple testing statistic for a given
SNP should depend on data from neighboring SNPs in
replicability analysis and it is worthy of developing a mul-
tiple testing procedure that can take into account the

dependency information among adjacent SNPs for each
study in replicability analysis.
Recently, the hidden Markov model (HMM) has been

successfully applied to large-scale multiple testing under
dependence [20]. Since the Markov chain is an effec-
tive tool for modelling the clustered and locally depen-
dent structure, it has been successfully applid in GWAS
[21–23]. Inspired by their works, we utilize the Carte-
sian hidden Markov model (CHMM) to characterize the
dependence among adjacent SNPs for each study in repli-
cability analysis. Based on CHMM, we develop a novel
multiple testing procedure which is referred to as repli-
cated local index of significance (repLIS) for replicabil-
ity analysis across two studies. The statistics involved
in repLIS can be calculated highly effectively by using
the forward-backward algorithm. Simulation studies show
that our repLIS procedure can control the FDR at the
nominal level and enjoys a higher efficiency compared
with its competitors. We also successfully apply our
repLIS procedure in replicability analyses of psychiatric
disorders data sets collected by Psychiatric Genomics
Consortium (PGC) and Wellcome Trust Case Control
Consortium (WTCCC).

Results
Application of detecting the pleiotropy effect
So far, accumulating evidence suggests that many different
diseases or traits share the similar genetic architectures
and are usually affected by some of the same genetic vari-
ants [3, 4]. This phenomenon is referred to as “pleiotropy".
It is meaningful to jointly analyze several GWAS data
sets to detect the SNPs with pleiotropy information. The
cross-disorder group of Psychiatric Genomics Consor-
tium (PGC) is aim to investigate the genetic associations
between five psychiatric disorders, including attention
deficit-hyperactivity disorder (ADHD), autism spectrum
disorder (ASD), bipolar disorder (BD), major depressive
disorder (MDD), and schizophrenia (SCZ) [24, 25]. It has
been shown that there exists the pleiotropy effect between
BD and SCZ [13, 26]. We apply our proposed repLIS pro-
cedure to detect the SNPs with pleiotropy effect between
BD and SCZ in the data sets collected by the PGC.
The p-values are available for 2,427,220 SNPs in BD and
1,252,901 SNPs in SCZ, in which 1,064,235 SNPs are used
both in BD and SCZ. In this study, we aim to detect the
SNPs with pleiotropy effect between BD and SCZ.
Since both repfdr and our repLIS procedure are based

on z-values, we first calculate the z-values transformed by
the corresponding p-values. In order to avoid the situation
that the z-value is infinity, we set the p-values to be 0.99
if they are recorded to be 1 in the data sets. We compare
the results given by repfdr and repLIS for detecting the
SNPs with pleiotropy effect. Wei et al. [21] suggested that
combining the testing results from several chromosomes



Wang and Zhu BMC Bioinformatics          (2019) 20:146 Page 3 of 12

is more efficient. Hence we apply the repLIS procedure to
calculate the repLIS statistics on each chromosome sep-
arately, while the ranking of repLIS statistics is based on
all the chromosomes of interest. The Manhattan plots
are shown in Fig. 1, and the horizontal line for each
panel is drawn such that there are 100 SNPs with the
values of − log10

(
̂repLIS

)
or − log10

(
̂repfdr

)
above the

line. In Fig. 1, we can see from panel (b) that the SNPs
above the horizontal line concentrate on chromosome 3
and chromosome 10. This indicates that the SNPs iden-
tified by repfdr procedure with strong pleiotropy effect
are located on chromosomes 3 and 10. Indeed, most of
the Top 100 SNPs discovered by repfdr are clustered in
the genes IHIH1, IHIH3, GNL3, PBRM1, NEK4, GLT8D1
(on chromosome 3) and ANK3 (on chromosome 10). In
addition to these genes identified by repfdr procedure,
our repLIS procedure further discoverd genes SYNE1 on
chromosome 6 and TENM4 on chromosome 11 with
strong pleiotropy effect between BD and SCZ. The find-
ings here support several genetic associations to genes for
BD and/or SCZ. For instance, the gene SYNE1 provides
instructions for making a protein called Syne-1 which
is especially critical in the brain and plays a role in the
maintenance of the part of the brain that coordinates
movement. It has been shown that SYNE1 is one of the
implicated genes in the etiology of BD [25]. Another gene
TENM4 (also named ODZ4) has been identified to be
co-expressed with miR-708. It has been reported that a
single variant located near the miR-708 may have a role in
susceptibility to BD and SCZ [27].

Application of discovering the replicated association
Bipolar disorder (BD) is a manic depressive illness that
causes periods of depression and periods of elevated
mood. In this section, we further apply our repLIS pro-
cedure to the replicability analysis of BD data sets from
PGC and Wellcome Trust Case Control Consortium
(WTCCC). The data sets collected by WTCCC contain
1998 cases and 3004 controls, among which there are 1504
control samples from the 1958 Birth Cohort (58C) and the
other control samples from UK Blood Service (UKBS).
We first conduct a series of procedures for quality con-

trol onWTCCC data sets. We eliminate 130 samples from
the BD cohort, 24 samples from the 58C cohort and 42
samples from the UKBS cohort owing to the high missing
rate, overall heterozygosity, and non-European ancestry.
In addition, we remove the SNPs in accordance with the
exclusion list provided by WTCCC and exclude the SNPs
withminor allele frequency less than 0.05.We fit the logis-
tic regression model for each SNP and obtain the p-value
of testing for the association between the SNP and the dis-
ease of interest. Taking the intersection of SNPs in PGC
and WTCCC yields to 361,665 SNPs that are available for
replicability analysis.
Since it is unfeasible to validate the true FDR level

in real data analysis, we choose an alternative mea-
sure, the efficiency of ranking replicated signals, for
comparisons. Consortium et al. [28] have identified four-
teen BD-susceptibility SNPs that are showing strong or
moderate evidence of associations with BD, among which
eleven SNPs are simultaneously identified by [29]. We

Fig. 1 The Manhattan plots for repLIS procedure and repfdr procedure. The horizontal line for each panel is drawn such that there are 100 SNPs with

the values of − log10
(
̂repLIS

)
or − log10

(
̂repfdr

)
above the line. a The SNPs above the horizontal line concentrate on chromosome 3, 6, 10 and 11

in the Manhattan plots for repLIS procedure. b The SNPs above the horizontal line concentrate on chromosome 3 and 10 in the Manhattan plots for
repfdr procedure
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focused on these fourteen SNPs and treated them as
relevant SNPs. The performance of replicability analysis
procedure is assessed by the ranks of these fourteen rel-
evant SNPs as well as the number of relevant SNPs that
are selected by top k significant SNPs. Table 1 presents
the results of repLIS and repfdr in identifying the relevant
SNPs when top k = 500. repLIS identifies eight of the
fourteen relevant SNPs, whereas repfdr only identifies five
of those SNPs. Four relevant SNPs (rs7570682; rs1375144;
rs2953145; rs10982256) are identified by repLIS only,
whereas one SNP (rs3761218) is identified by repfdr only.
We can observe that there is a significant improvement
of rankings for most of these SNPs with replicated asso-
ciations when conducting repLIS procedure. For instance,
rs420259 that is reported to have a strong association with
BD [28] ranks 255th by repfdr procedure and 115th by
repLIS procedure.
To further illustrate the superiority of repLIS is achieved

by leveraging information from adjacent SNPs via a
Markov chain, we focused on the adjacent SNPs of
rs420259, and selected the five adjacent SNPs on each side
of rs420259 as relevant SNPs. We plotted the sensitivity
curve in Fig. 2 as described in Simulation II, and obtained
very similar results.

Discussion
In this paper, we propose a novel multiple testing pro-
cedure, called repLIS procedure, for replicability analysis
across two studies. The repLIS procedure can character-
ize the local dependence structure among adjacent SNPs
via a four-state Markov chain. Based on the CHMM,
the multiple testing statistics (repLIS statistics) can be
calculated efficiently by using the forward-backward
algorithm. When the parameters of CHMM are known,
the theoretical results showed that our repLIS procedure
is valid and optimal in the sense that repLIS procedure

Table 1 Results of repfdr and repLIS procedure when top
k = 500

SNP ID Chr repfdr ranks repLIS ranks repfdr values repLIS values

rs7570682 2 − 35 1 3.7e-2

rs1375144 2 − 24 1 3.1e-2

rs2953145 2 − 25 1 3.2e-2

rs4276227s 3 105 64 6.4e-3 4.5e-2

rs683395s 3 99 51 6.1e-3 4.3e-2

rs10982256 9 − 305 1 7.9e-2

rs1344484 16 49 15 1.9e-3 2.3e-2

rs420259 16 255 115 1.5e-2 5.4e-2

rs3761218 20 233 − 1.4e-2 9.9e-1

s The SNPs that are only identified by [28] and others are simultaneously identified
by [29]. ’−’ denotes a relevant SNP non-identified by the corresponding procedure.
There is a significant improvement of rankings for most of these SNPs with
replicated associations when conducting repLIS procedure

can control the FDR at the pre-specified level α and has
the smallest FNR among all α-level multiple testing pro-
cedures. In reality, the parameters of CHMM are usually
unknown and hence we further provided the detailed EM
algorithm to estimate the parameters of CHMM.
Both the simulation studies and real data analysis exhibit

that the repLIS procedure is valid and more efficient by
employing the dependency information among adjacent
SNPs. Some of the SNPs identified by repLIS have been
verified by other researchers. For example, a large number
of literatures confirm that rs420259 is really relevant to
BD [29–31]. However, some of the other SNPs identified
by repLIS have not been verified in previous research (e.g.,
rs206731), and further experiments need to be conducted
to verify the research findings.
The repLIS procedure is implemented by using the R

code. We give a brief description of the source code in
Additional file 1, and all core code of repLIS procedure are
available on GitHub (https://github.com/wpf19890429/
large-scale-multiple-testing-via-CHMM).

Conclusions
Our repLIS procedure can also be extended in several
ways. First, it might be a strong assumption that the tran-
sition probability (1) is invariant across the whole two
studies. It would be of interest to generalize our repLIS
from a homogeneous Markov chain to a nonhomoge-
neous Markov chain or even a Markov random field.
Second, the EM algorithm for estimating the parameters
of CHMM is a heuristic algorithm and may lead to a local
optimum in some situations. The Markov Chain Monte
Carlo (MCMC) algorithm which are not relying on the
starting point may give rise to a bright way for estimating
these parameters. Finally, although this paper considered
the repLIS procedure for replicability analysis across two
studies, extensions to more than two studies are straight-
forward by utilizing a multi-dimensional Markov chain to
describe the local dependence structure. However, a new
issue will arise in multiple testing, since the computation
is intractable when the dimension is high. It is desirable to
develop a procedure that can handle replicability analysis
with a multitude of studies.

Methods
Replicability analysis in the framework of multiple testing
In order to express the problem explicitly, we first make a
brief description of the framework for replicability analy-
sis across two studies in GWAS. Suppose there arem SNPs
to be investigated in each study. For the ith study (i = 1, 2),
let
{
Hi,j
}m
j=1 be the underlying states of the hypotheses,

whereHi,j = 1 indicates that the jth SNP is associated with
the phenotype of interest and Hi,j = 0 otherwise. For the
jth SNP, we are interested in examining the following null
hypothesis

https://github.com/wpf19890429/large-scale-multiple-testing-via-CHMM
https://github.com/wpf19890429/large-scale-multiple-testing-via-CHMM
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Fig. 2 The sensitivity curves yielded by repLIS and repfdr in real data analysis. The results are almost coincide with those in Simulation II

H0j
NR :

(
H1,j,H2,j

) ∈ {(0, 0), (1, 0), (0, 1)} ,

and we callH0j
NR the no replicability null hypothesis show-

ing that the SNP is associated with the phenotype in at
most one study. The goal of the replicability analysis in
GWAS is to discover as many SNPs that are associated
with phenotype in both studies as possible [14]. In this
paper, we handle this problem in the framework of multi-
ple testing under dependence since the disease-associated
SNPs are always clustered and dependent. Specifically,
we aim to develop a multiple testing procedure that
can discover the SNPs with replicated associations (i.e.(
H1,j,H2,j

) = (1, 1)) as many as possible, while the FDR is
controlled at the pre-specified level. To this end, we define
the FDR as follows:

FDR = E
[∑m

j=1 I((H1,j ,H2,j)∈{(0,0),(1,0),(0,1)})δj∑m
j=1 δj

]
,

where δj = 1 indicates that the jth SNP is claimed to be
associated with the phenotype in both studies and δj = 0
otherwise. Correspondingly, the marginal false discovery
rate (mFDR) is defined as:

mFDR =
E
[∑m

j=1 I((H1,j ,H2,j)∈{(0,0),(1,0),(0,1)})δj
]

E
[∑m

j=1 δj
] .

Since the mFDR is asymptotically equivalent to the FDR
in the sense that mFDR = FDR + O

(
1/

√
m
)
under some

mild conditions [32], hereafter, we mainly focus on devel-
oping a multiple testing procedure that can control the
mFDR at the pre-specified level for replicability analysis.

The Cartesian hidden Markov model
Let zi,j be the observed z-value of the jth SNP in the ith
association study, which can be obtained by using appro-
priate transformation. Specifically, zi,j can be transformed
from �−1 (1 − pi,j

)
, where �−1 is the inverse of the stan-

dard normal distribution and pi,j is the p-value of the jth
SNP in the ith association study, for i = 1, 2, and j =
1, . . . ,m.
The Markov chain, which is an effective tool for

modelling the clustered and locally dependent structure
among disease-assocaited SNPs, has been widely used in
the literatures [21, 22]. We assume that

{(
H1,j,H2,j

)}m
j=1 is

a four-state stationary, irreducible and aperiodic Markov
chain with the transition probability

Auv = P
((
H1,j+1,H2,j+1

) = v| (H1,j,H2,j
) = u

)
, (1)

where u, v ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. We further
assume that the observed z-values

{(
z1,j, z2,j

)}m
j=1 are

conditionally independent given the hypotheses states{(
H1,j,H2,j

)}m
j=1, namely,

P
({(

z1,j, z2,j
)}m

j=1 | {(H1,j,H2,j
)}m

j=1

)
=

m∏
j=1

P
(
z1,j|H1,j

) m∏
j=1

P
(
z2,j|H2,j

)
.

(2)
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The Markov chain
{(
H1,j,H2,j

)}m
j=1 with the dependence

model (2) is called Cartesian hidden Markov model
(CHMM) [33]. The structure of the CHMM can be intu-
itively understood with a graphical model as follows in
Fig. 3.
Following [20–22], we suppose that the corresponding

random variable Zi,j follows the two-component mixture
model:

Zi,j|Hi,j ∼ (1 − Hi,j
)
fi0 + Hi,jfi1, (3)

where fi0 and fi1 are the conditional probability densities
of Zi,j givenHi,j = 0 and Hi,j = 1, respectively. In practice,
we usually assume that f10 and f20 are the densities of the
standard normal distribution N(0, 1), and f11 and f21 are
the densities of the normal distributions N

(
μ1, σ 2

1
)
and

N
(
μ2, σ 2

2
)
, respectively.

Let π = (π00,π10,π01,π11) be the initial distri-
bution of the four-state Markov chain, where πst =
P
((
H1,1,H2,1

) = (s, t)
)
, for s, t = 0, 1. For convenience,

let ϑ = (π ,A,F) denote the parameters of the CHMM,
whereA = {Auv}4×4 with u, v ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}
and F = (f10, f11, f20, f21

)
.

The repLIS procedure for replicability analysis
In this section, we develop the multiple testing proce-
dure for replicability analysis by studying the connection
between the multiple testing and weighted classification
problems. Consider the loss function of the weighted
classification problem with respect to replicability
analysis as

Lλ

({
H1,j
}m
j=1 ,

{
H2,j
}m
j=1 ,

{
δj
}m
j=1

)
= 1

m

m∑
j=1

{
λ
[(
1 − H1,j

) (
1 − H2,j

)

+H1,j
(
1 − H2,j

)+ (1 − H1,j
)
H2,j
]
δj

+ H1,jH2,j(1 − δj)
}
,

where λ is the relative cost of false positive to false nega-
tive, and δj was defined in the above section and we call
(δ1, . . . , δm) ∈ {0, 1}m the classification rule for replicabil-
ity analysis here. By some simple derivations, the optimal
classification rule, which minimizes the expectation of the
loss function, is obtained as

δj
(
	j, 1/λ

) = I(	j<1/λ), for j = 1, . . . ,m (4)

where

	j =
P
(
H0j

NR is true
∣∣{z1,i}mi=1, {z2,i}mi=1

)

1 − P
(
H0j

NR is true
∣∣{z1,i}mi=1, {z2,i}mi=1

)

is called the optimal classification statistic in the weighted
classification problem, and I(·) is an indicator function.
Following the work of [34], it is not difficult to show

that the optimal classification statistic is also optimal for
replicability analysis in the sense that the multiple test-
ing procedure based on the optimal classification statistics
with a suitable cutoff can control the mFDR at the pre-
specified level α and has the smallest mFNR among all
α-level multiple testing procedures. Since 	j is increas-
ing with P

(
H0j

NR is true | {z1,i
}m
i=1 ,

{
z2,i
}m
i=1

)
, we can also

define the optimal multiple testing statistic for replicabil-
ity analysis as

repLISj = P
(
H0j

NR is true
∣∣{z1,i}mi=1,

{
z2,i
}m
i=1

)
, for j = 1, . . . ,m.

(5)

Fig. 3 Graphical representation of the CHMM
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Denote by repLIS(1), repLIS(2), . . . , repLIS(m) the ordered
repLIS values andH0(1)

NR ,H0(2)
NR , . . . ,H0(m)

NR the correspond-
ing no replicability null hypotheses. The repLIS procedure
for replicability analysis is:

let l = max

⎧⎨
⎩t :

1
t

t∑
j=1

repLIS(j) ≤ α

⎫⎬
⎭ ; then reject allH0(j)

NR , j = 1, . . . , l.

(6)

It is necessary to note that, to focus on the main ideas,
we restrict attention to repLIS in testing two GWAS
studies. Extending repLIS to multiple GWAS studies
(≥ 3) is formally straightforward, but requires additional
computations.
The following theorem shows that repLIS procedure

is asymptotically optimal. The proof of the theorem is
outlined in Additional file 2.

Theorem 1 Consider the Cartesian hidden Markov
model (1)-(2) and define the testing statistics repLISj =
P
((
H1,j,H2,j

) ∈ {(0, 0), (1, 0), (0, 1)}|{z1,i}mi=1,
{
z2,i
}m
i=1
)
for

j = 1, . . . ,m. Let repLIS(1), repLIS(2), . . . , repLIS(m) be the
ordered repLIS values and H0(1)

NR , H0(2)
NR , . . . ,H0(m)

NR be the
corresponding no replicability null hypotheses. Then the
repLIS procedure (6) controls FDR at α. Moreover, the FNR
yielded by repLIS procedure is β∗ + o(1), where β∗ is the
smallest FNR level among all α-level FDR multiple testing
procedures.

The forward-backward algorithm for computing repLIS
When the parameters of CHMMare known, repLIS statis-
tics can be calculated by utilizing the forward-backward
algorithm. Specifically, the repLIS statistic for the jth SNP
can be expressed as:

repLISj = 1 − αj(1, 1)βj(1, 1)∑1
p=0
∑1

q=0 αj(p, q)βj(p, q)
,

where the forward variable αj(p, q) = P
( (

H1,j,H2,j
) =

(p, q),
{
z1,i
}j
i=1 ,

{
z2,i
}j
i=1

)
and the backward variable

βj(p, q) = P
({

z1,i
}m
i=j+1 ,

{
z2,i
}m
i=j+1 | (H1,j,H2,j

) = (p, q)
)

can be calculated by using the following recursive
formulas:

αj+1(p, q) =
1∑

s=0

1∑
t=0

αj(s, t)f1p
(
z1,j+1

)
f2q
(
z2,j+1

)
A(s,t)(p,q),

βj(p, q) =
1∑

s=0

1∑
t=0

βj+1(s, t)f1s
(
z1,j+1

)
f2t
(
z2,j+1

)
A(p,q)(s,t).

The EM algorithm for estimating the parameters of CHMM

In reality, the parameters ϑ of the CHMM are not usu-
ally known. We use the plug-in ̂repLIS yielded by uti-
lizing the maximum likelihood estimates to replace the
true parameters for replicated analysis. In this section,
we provide details of the EM algorithm for estimating
the parameters of CHMM. For simplicity, let

∑
H1,∗;H2,∗

=
∑

H1,1,H1,2,...,H1,m

∑
H2,1,H2,2,...,H2,m

, Z =
({

z1,j
}m
j=1 ,

{
z2,j
}m
j=1

)
and

H =
({

H1,j
}m
j=1 ,

{
H2,j
}m
j=1

)
.

The full likelihood can be expressed as:

L(ϑ ;Z ,H) = Pϑ

({
z1,j
}m
j=1 ,

{
z2,j
}m
j=1 ,

{
H1,j
}m
j=1 ,

{
H2,j
}m
j=1

)

= Pϑ

(
H1,1,H2,1

) m∏
j=1

f1H1,j

(
z1,j
) m∏
j=1

f2H2,j

(
z2,j
)

×
m−1∏
j=1

A(H1,j ,H2,j)(H1,j+1,H2,j+1).

We first initialize the parameters ϑ(0) = (π(0),A(0),F (0)).
In the E-step of the tth iteration, we calculate the following
Q
(
ϑ ,ϑ(t)) function:

Q
(
ϑ ,ϑ(t)

)
=

∑
H1,∗ ;H2,∗

logPϑ (Z ,H)Pϑ(t) (Z ,H)

=
∑

H1,∗ ;H2,∗
logPϑ

(
H1,1,H2,1

)
Pϑ(t) (Z ,H)

+
∑

H1,∗ ;H2,∗

⎡
⎣

m∑
j=1

log
(
f1,H1,j

(
z1,j
)
f2,H2,j (z2,j

))
⎤
⎦Pϑ(t) (Z ,H)

+
∑

H1,∗ ;H2,∗

⎡
⎣
m−1∑
j=1

logA(H1,j ,H2,j)(H1,j+1,H2,j+1)

⎤
⎦Pϑ(t) (Z ,H)

In the M-step of the tth iteration, maximizing
Q
(
ϑ ,ϑ(t)) yields to

ϑ(t+1) = argmax
ϑ

Q
(
ϑ ,ϑ(t)

)
.

Specifically, using the Lagrange multiplier method
yields to

π(t+1)
u = Pϑ(t)

(
H1,1,H2,1

) = u|Z),

A(t+1)
uv =

∑m−1
j=1 Pϑ(t)

((
H1,j,H2,j

)=u,
(
H1,j+1,H2,j+1

)=v|Z)
∑m−1

j=1 Pϑ(t)
((
H1,j,H2,j

) = u|Z) ,

μ
(t+1)
i =

∑m
j=1 zi,jPϑ(t)

(
Hi,j = 1|Z)∑m

j=1 Pϑ(t)
(
Hi,j = 1|Z) ,

σ
2(t+1)
i =

∑m
j=1

(
zi,j − μ

(t+1)
i

)2
Pϑ(t)

(
Hi,j = 1|Z)

∑m
j=1 Pϑ(t)

(
Hi,j = 1|Z) ,

for i = 1, 2 and u, v ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.
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Simulation studies
Simulation I
In this section, we explore the numerical performance of
our novel procedures: the oracle repLIS (repLIS.or) and
data-driven repLIS (repLIS) procedures, and two exist-
ing multiple testing procedures for replicability analysis
in testing two GWAS studies, including the Benjamini-
Hochberg procedure (BH) [11] and the repfdr procedure
(repfdr) [14]. We also carried out further simulation stud-
ies for repLIS in testing three GWAS studies. The detailed
simulation results are displayed in Additional file 2 and
they are almost coincide with those for testing two GWAS
studies. We compare these multiple testing procedures in
detecting replicated signals from three aspects. First, we
check whether or not the FDR values yielded by differ-
ent procedures are controlled at the pre-specified level α,
where α is set to be 0.1 and 0.02 in the simulation, and the
results for α = 0.02 are illustrated in Additional file 2. Sec-
ond, we compare the FNR and the average number of true
positives (ATP). In general, a valid procedure (the FDR
value is contronlled at the pre-specified level) is efficient
if it allows for a small FNR value and a large ATP value. In
Simulation I, we consider two scenarios based on whether
or not the tests of all the SNPs are independent in each
study. Third, we investigate the ranking efficiency of these
procedures in Scenario 2 of Simulation I. The simulation
results are based on 200 replications in Simulation I and
the number of tests (i.e. m) in each study is 10000 for all
the simulations.

Scenario 1: independent tests
In this scenario, we set σ1 = σ2 = 1 and μ2 =
4. The joint states of the hypotheses across two stud-
ies
{(
H1,j,H2,j

)}m
j=1 are generated from the Multinomial

distribution Multi(10000, (0.4, 0.2, 0.2, 0.2)). We vary μ1
from 2.0 to 3.0 with an increment 0.5 and exhibit the

simulation results in Fig. 4. In Fig. 4, we can see from
panel (a) that all four procedures can control the FDR level
at the pre-specified level 0.1 approximately. Although the
data-driven repLIS procedure has the largest FDR, it is
still acceptable (FDR = 0.115). We can also observe that
the empirical Bayes procedure repfdr is slightly conser-
vative and the BH procedure leads to a quite small FDR
value. These results indicate that our novel procedures are
still valid for replicated analysis even the tests are inde-
pendent in each study. The results revealed from panel (b)
and (c) in Fig. 4 show that: (1) The FNR yielded by these
procedures are decreasing when μ1 varies from 2.0 to 3.0;
(2) The ATP yielded by these procedures are increasing
when μ1 varies from 2.0 to 3.0; (3) The FNR and ATP
yielded by oracle repLIS procedure, data-driven repLIS
procedure, and repfdr procedure are almost the same. We
can conclude that our proposed procedures (repLIS.or
and repLIS) are as efficient as repfdr when the tests are
independent in each study.

Scenario 2: locally dependent tests
In this scenario, we set σ1 = σ2 = 1, μ2 = 2, and vary
μ1 from 3 to 5 with an increment 1. Consider the CHMM
(1)-(3) and the joint states of the hypotheses across two
studies

{(
H1,j,H2,j

)}m
j=1 are generated with the following

transition matrix

A =

⎛
⎜⎜⎝

0.7 0.1 0.1 0.1
0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.8 − A(1,1)(1,1) A(1,1)(1,1)

⎞
⎟⎟⎠ ,

and the initial distribution π is set to be
(0.25, 0.25, 0.25, 0.25). Since the replicated associations
are more likely to be clustered, the values of the entries in
the diagonal of the transition matrix are set to be large.
Here, A(1,1)(1,1) is set to be 0.7, and the numerical results

(a) (b) (c)

Fig. 4 Simulation results in Scenario 1. a The FDR levels of all four procedures are controlled at 0.1 approximately, and BH procedure is quite
conservative. b The FNR yielded by oracle repLIS procedure, data-driven repLIS procedure and repfdr procedure are almost the same, and all of
them are smaller than that of BH procedure. c The ATP yielded by oracle repLIS procedure, data-driven repLIS procedure and repfdr procedure are
almost the same, and all of them are larger than that of BH procedure



Wang and Zhu BMC Bioinformatics          (2019) 20:146 Page 9 of 12

(a) (b) (c)

Fig. 5 Simulation results in Scenario 2. a The FDR levels of all four procedures are controlled at 0.1, and the FDR yielded by oracle repLIS and
data-driven are almost the same. b The FNR yielded by repfdr procedure and BH procedure are apparently large. c The ATP yielded by repfdr
procedure and BH procedure are apparently small

are displayed in Fig. 5. We further explored the robustness
of repLIS under CHMMs by varying A(1,1)(1,1) from 0.5 to
0.7, and the results are illustrated in Additional file 2.
To investigate the robustness of repLIS when the order

of Markov dependence is incorrectly specified, we added
simulation studies. Without loss of generality, we consider
the case where the order of Markov dependence is set to
be 2. We choose the setup to be consistent with those in
Scenario 2 when possible. The detailed model settings are
depicted in Additional file 2.
From Fig. 5 we can observe that the numerical results

are almost coincide with those in Scenario 1, except that
there is a significant difference in FNR and ATP val-

Table 2 The significance levels suggested by BH, repfdr and
repLIS

SequenceStatesMaximumrepfdr repLIS BH repfdr repLIS

p-values values values procedureprocedureprocedure

1027 • 1.94e-1 5.48e-11.67e-1◦ ◦ •
1028 • 4.19e-3 4.59e-28.78e-3◦ • •
1029 • 3.95e-2 2.28e-15.80e-2◦ • •
1030 • 1.13e-1 3.79e-18.89e-2◦ ◦ •
1031 • 3.51e-3 2.88e-21.89e-2• • •
...

...
...

...
...

...
...

...

7305 • 1.47e-3 2.21e-23.48e-3• • •
7306 • 1.85e-2 2.16e-14.34e-2◦ • •
7307 • 4.56e-2 2.07e-15.88e-2◦ • •
7308 • 1.10e-1 3.73e-19.81e-2◦ ◦ •
7309 • 3.01e-2 3.35e-16.96e-2◦ ◦ •
7310 • 3.04e-4 8.18e-31.04e-2• • •
’◦’ denotes a null hypothesis or an acceptance and ’•’ denotes a non-null
hypothesis or a rejection. By exploiting the dependence information among
adjacent SNPs, repLIS procedure tends to select disease-associated SNPs in clusters

ues between our procedures (repLIS.or and repLIS) and
repfdr procedure. The results reveal that our proposed
procedures enjoy a smaller value of FNR and a larger value
of ATP compared with their competitors. This indicates
that our novel procedures are more efficient in detecting
replicated signals when the tests are locally dependent in
each study.
It is important to point out that the superiority of

repLIS is achieved by characterizing the clustered and
locally dependent structure via the Markov chain. Table 2
presents the outcomes of repLIS, repfdr, and BH in testing
two clusters of replicated signals in Scenario 2 of Sim-
ulation I. It can be clearly seen that BH and repfdr can
only identify the replicated signals with extremely small
p-values, whereas repLIS tends to identify the entire clus-
ter of replicated signals. By leveraging information from
adjacent SNPs, repLIS are more efficient in detecting
replicated signals.

Ranking efficiency
The efficiency of ranking hypotheses is another measure
that was widely used to perform comparison for differ-
ent multiple testing procedures. In general, an efficient
multiple testing procedure enjoys a ranked list where the
non-nulls concentrate on the top of the ranked list. In this
section, we use the ROC curve to compare the efficiency
of ranking non-null hypotheses for different procedures.
Figure 6 shows the results of the comparison for two
cases that the tests of all the SNPs are independent (panel
(a)) and are not independent (panel (b)) in each study,
respectively. We can see that the ROC curves of our pro-
cedures dominate these of repfdr and BH procedures in
panel (b). This implies that our repLIS procedures lead
to a more efficient hypotheses ranking, especially when
the tests of all the SNPs are not independent in each
study.
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(a) (b)

Fig. 6 Comparisons of ranking efficiency. a The ROC curves under themodel settings:μ1 = 2.5,μ2 = 4, σ1 = σ2 = 1 and the tests of all the SNPs are
independent. b The ROC curves under the model settings: μ1 = 3,μ2 = 2, σ1 = σ2 = 1 and the tests of all the SNPs are under Markov dependence

Simulation II
In this section, we perform additional simulations to
evaluate the performance of our repLIS procedure on a
more realistic simulated data. In order to obtain a simu-
lated data for two GWAS studies with more realistic LD
patterns, we generate two genotype pools by randomly
matching 340 haplotypes from the subjects of JPT+CHB

(Japanese in Tokyo, Japan and Han Chinese in Beijing,
China) and 410 haplotypes from the subjects of CEU+TSI
(Utah residents with Northern and Western European
ancestry from the CEPH collection and Toscani in Italia)
collected by HapMap3 [35], respectively. To focus on the
main points, we select six SNPs from a region of the
chromosome 7 (consists of 10000 SNPs) as disease causal

200 400 600 800 1000 1200 1400
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Fig. 7 The sensitivity curves yielded by repLIS and repfdr in Simulation II. The three SNPs, 1200th, 1500th, 1800th, are chosen to be far away and the
others, 6500th, 6504th, 6508th, are chosen to be clustered. The performance of replicability analysis procedure is assessed by the selection rate of
relevant SNPs, which are defined as the three adjacent SNPs on each side of a causal SNP. The sensitivity is defined as the percentages of relevant
SNPs that are selected by top k SNPs
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SNPs. Specifically, the three SNPs, 1200th, 1500th, 1800th,
are chosen to be far away and the others, 6500th, 6504th,
6508th, are chosen to be clustered. The disease status Y is
generated by using a logistic regression model:

logit(P(Y = 1|G)) = β0 +
6∑

i=1
βiGi,

where G = (G1,G2, ...,G6)
T and Gi is the corresponding

genotype of the ith causal SNPs. We set β0 = −8 and
β1 = β2 = ... = β6 = log(2) so that the prevalence of the
disease is controlled at 0.04. The performance of replica-
bility analysis procedure is assessed by the selection rate
of relevant SNPs, and the relevant SNPs are refered to as
the three adjacent SNPs on each side of a causal SNP. The
sensitivity is defined as the percentages of relevant SNPs
that are selected by top k SNPs. The simulation is repeated
for 100 times and the results are displayed in Fig. 7.
From Fig. 7 we can observe that the sensitivities yielded

by our repLIS are uniformly larger than those of repfdr.
This indicates that repLIS achieves a higher ranking effi-
ciency and can discover more replicated signals at the
same number of rejections.

Additional file

Additional file 1: Brief description of some core code of our repLIS
procedure. repLIS is a program to perform replicability analysis in
genome-wide association studies, which is written in R code. Here, repLIS
program is designed for one chromosome or a segment of chromosome.
For the analysis of multiple chromosomes, firstly, the users can make the
parallel computing for them, then complete the global analysis by
combining all results from multiple chromosomes. (PDF 151 kb)

Additional file 2: Proof of Theorem 1 and additional simulations. We give
a brief proof of Theorem 1 in Additional file 2. The asymptotic optimality can
be derived without essential difficulty by extending the proof of Theorem 6
in [20]. We also carried out additional simulation studies to investigate the
numerical performance of repLIS in various model settings. (PDF 249 kb)
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