Sequencing for Statisticians

Meng Wang
Senior Bioinformatic Scientist
Stanton Lab, Center for Childhood Cancer Resarch
Nationwide Children's Hospital

Outline

- Background
- Sequencing Platforms
- Different Types of Sequencing

Why sequencing?

- Knowledge of our genome
- Transcription differences
- Transcriptional regulations
- Structural Variations
- etc, etc

What can we quantify?

- mRNA (RNA-seq)
- DNA (WGS, ChIP-seq, ATAC-seq, Hi-C)
- Protein (proteinomics)

Sequencing Platforms

- Sequencing consists of two steps:
 - Library prep (generating sequencable fragments)
 - Sequencing
- Illumina (dominant platform)
- Pacbio/Nanopore (long read sequencing)

Overview of Illumina Workflow

Illumina Adapter - Foundation for Cluster Generation

.....

Illumina Adapter - Foundation for Cluster Generation

Illumina Flowcell – Cluster Generation

Illumina Flowcell - Cluster Generation

Illumina Sequencing By Synthesis (SBS) – Read 1

 Initiated by HP10 primer (Rd1 SP)

Sequencing

- Fluorescently labeled and reversibly terminated nucleotides
- Clusters are excited by light, fluorescent signal emitted
- Terminator remove for next round of nucleotide addition

Illumina Sequencing By Synthesis (SBS) – Index(s) and Read 2

NovaSeq 6000 w/ v1 chem, MiniSeq w/ rapid chem, MiSeq, HiSeq 2000/2500

Alternative Splicing

- Genes are not continuous coding.
 - Exons: coding regions
 - Introns: silent.
- Different combinations of exons yields isoforms.
- This phenomenon is called alternative splicing.

Types of Sequencing

- RNA: quantifying transcription
- WGS: sequencing the genome
- Epigenetics (sequencing DNA):
 - ChIP-seq: transcription factors and histone modification
 - ATAC-seq: chromatin accessibility
 - Hi-C: 3D chromatin structure.
 - bisulfite sequencing (DNA methylation).

RNA Sequencing

1 Isolate RNA from samples

2 Fragment RNA into short segments

3 Convert RNA fragments into cDNA

4 Ligate sequencing adapters and amplify

5 Perform NGS sequencing

6 Map sequencing reads to the transcriptome/genome

Whole Genome Sequencing

PacBio HiFi Sequencing

- Illumina platforms are restricted to 300bp reads, and 500bp fragments.
- Great overall, but not that good for isoform or structure variation detection.

PacBio Long Read

- 10k-30kb read length.
- Amazing for:
 - genome assembly,
 - CNV and SV calls,
 - isoform analysis (RNA),
 - Microsatellite repeats,
 - Haplotyping!!!
- Single cell version is being developed.
- Terrible error rate one pass (10%)
- Consensus (10 times or more) reads are very accurate.

Circularized DNA is sequenced in repeated passes

The polymerase reads are trimmed of adapters to yield subreads

> Consensus and methylation status are called from subreads

(99.9% accuracy)

PacBio Mapping of a cancer fusion gene

Transcription Factor

Proteins that modulate gene transcription

Nucleosomes

- Nucleosome: basis of chromatin: 147bp of DNA wrapped around a nucleosome (8 histone).
- Heterochromatin = tightly packed nucleosomes + DNA wrapped around it, usually repressed.
- Euchromatin = "free" chromatin, usually transcriptionally active.

Nucleosomes

- Histones can be modified chemically. Those modifications activate or repress expression.
- For example:
 - H3K9me3 = repressive (3rd histone, 9th lysine, methylated 3 times)
 - H3K27ac = active.
- Histone Modification are protein and therefore can be assessed with ChIP-Seq.

Transcription Regulation

RNA Pol II ChIP-Seq

ChIP-Seq

- <u>Chromatin ImmunoPrecipitation:</u>
 - 1. cross link
 - 2. sonication
 - 3. ChIP
 - 4. Remove protein

1. Cross-link bound proteins to DNA.

Isolate chromatin and shear DNA.

3. Precipitate chromatin with protein-specific antibody.

4. Reverse cross-link and digest protein.

 Ligate P1 and P2 adaptors to construct fragment library.

Cut-and-Tag

- Alternative to ChIP-seq
- Uses Tn5 enzyme instead of sonication
 - Cut where there isn't a nucleosome.

ATAC-seq

- <u>Assay for Transposase Accessible</u> Chromatin
- Sub-nucleosome (<150bp), mononucleosome (~150bp), dinucleosome(300bp) reads.
- Nucleosome positioning, eviction etc is very important in epigenetics.
- cut-and-run: MNase instead of Tn₅.
 - MMase: cut into a single nucleotide and start digesting them, until stopped by a nucleosome.

Hi-C

Variation

- Combine Hi-C + ChIP = Hi-ChIP
 - long-range interactions/loops
- Cut&Tag, Cut&Run
 - Alternative to ChIP and ATAC-seq

And many more...

Single Cell

- sc-RNA-seq
- sc-ChIP (not really)
- sc-ATAC-seq
- sc-Hi-C
- spatial transcriptomics

sc-RNA-seq (Droplet based)

sc-RNA-seq (Droplet based)

Chromium controller

Sequence data

"Run recipe" = 28 + 10 + 10 + 90 This gets sequenced on standard Illumina sequencer (about 150bp per read)

.....

NATIONWIDE CHILDREN'S When your child needs a hospital, everything matters.

@A00498:356:H53CMDRXY:1:2101:28221:1204 2:N:0:CATGCGAT

ATGCCCTAGCCCACTTCTTACCACAAGGCACACCTACACCCATTATCCCCATACTACTATATAATCGAAACCATCAGACTACACATTCAACC

+

+

scATAC-seq

- Droplet based.
- tn5 in oil.

scChIP-seq

- Droplet based
- Uses cut-and-tag (oil contain tn5+antibody)
- Work somewhat decent for K27ac (easiest to ChIP)

sc-Hi-C

Proximity ligation with nuclei intact

Combinatorial Indexing

Spatial Transcriptomics

- Each microscope slide includes ~5000 "spots".
- Each spot is about ~55μm (1-10 cells).
- mRNAs released from cell,
- mRNAs bind to spatially barcoded oligos,
- RT to produce cDNA.
- Not exactly single cell.

sc-PacBio

sc-WGS and sc-RNA have both been done and reported on PacBio HiFi platform.

Costs

- Bulk: ~\$200-\$500 per sample (including reagents but not time cost)
- Hi-C is more expensive due to sequencing depth.
- Pacbio \$3000 per sample for bulk.
- sc-RNA-seq could cost over \$5000 per sample.

In the next 5 years...according to Katie

- Freedom from <expensive> hardware (e.g., Parse and Fluent Biosciences)
- Decreasing sequencing costs
 - ...therefore increase number of cells to be analyzed
- Enhanced/more-sensitive mRNA capture rates
- More user-friendly computational pipelines
- Multi-omics approaches
 - Proteomics
 - CRISPR
 - Non-coding RNA
 - Epigenomics
 - Long-reads
- Clinical applications

Special Thanks to...

Ben Stanton PI, CCCR

Ryan Roberts, PI, CCCR

Matt Cannon bioinformatician

Katherine Miller PI, IGM

Anthony Miller
Director of TechDev, IGM

