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Abstract

Polygenic risk score (PRS) is a quantity that aggregates the effects of variants across the

genome and estimates an individual’s genetic predisposition for a given trait. PRS analysis

typically contains two input data sets: base data for effect size estimation and target data for

individual-level prediction. Given the availability of large-scale base data, it becomes more

common that the ancestral background of base and target data do not perfectly match. In

this paper, we treat the GWAS summary information obtained in the base data as knowl-

edge learned from a pre-trained model, and adopt a transfer learning framework to effec-

tively leverage the knowledge learned from the base data that may or may not have similar

ancestral background as the target samples to build prediction models for target individuals.

Our proposed transfer learning framework consists of two main steps: (1) conducting false

negative control (FNC) marginal screening to extract useful knowledge from the base data;

and (2) performing joint model training to integrate the knowledge extracted from base data

with the target training data for accurate trans-data prediction. This new approach can signif-

icantly enhance the computational and statistical efficiency of joint-model training, alleviate

over-fitting, and facilitate more accurate trans-data prediction when heterogeneity level

between target and base data sets is small or high.

Author summary

Polygenic risk score (PRS) can quantify the genetic predisposition for a trait. PRS con-

struction typically contains two input datasets: base data for variant-effect estimation and

target data for individual-level prediction. Given the availability of large-scale base data, it

becomes common that the ancestral background of base and target data do not perfectly

match. In this paper, we introduce a PRS method under a transfer learning framework to

effectively leverage the knowledge learned from the base data that may or may not have

similar background as the target samples to build prediction models for target individuals.

Our method first utilizes a unique false-negative control strategy to extract useful
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information from base data while ensuring to retain a high proportion of true signals; it

then applies the extracted information to re-train PRS models in a statistically and compu-

tationally efficient fashion. We use numerical studies based on simulated and real data to

show that the proposed method can increase the accuracy and robustness of polygenic

prediction across different ranges of heterogeneities between base and target data and

sample sizes, reduce computational cost in model re-training, and result in more parsimo-

nious models that can facilitate PRS interpretation and/or exploration of complex, non-

additive PRS models.

Introduction

Polygenic risk score (PRS), first proposed in [1], is a quantity that aggregates the effects of vari-

ants across the genome and estimates an individual’s genetic predisposition for a given trait.

PRS can be used to explore the polygenetic architecture of a trait, to predict disease risk, to

identify groups of individuals with substantially increased risks, and to study shared polygenic

signals between different traits.

PRS is typically calculated as a weighted sum of trait-associated alleles, where the weights

are the estimated effect sizes of the alleles on the trait. PRS analysis usually contains two input

data sets: (i) base data, containing summary statistics of association tests from GWAS such as

the estimated regression coefficients with the traits and their corresponding p-values, and (ii)

target data, consisting of individual-level genome-wide genotypes data and traits used for pre-

diction. Accumulating evidence suggests that for a variety of complex traits, variants selected

based on a large ancestry-diversified base data are expected to harbor high fractions of causal

variants carried by the target data, yet their effect sizes may not be the same across base and

target data sets [2–4].

Because not all genetic variants influence the trait and because SNPs are correlated due to

linkage disequilibrium (LD), two types of selection approaches have been adopted to construct

PRS using GWAS summary statistics from the base data. The first type constructs PRS purely

based on GWAS summary statistics from marginal model, i.e., removing correlated redundant

SNPs via linkage disequilibrium (LD) pruning/clumping and computing the weighted allele

sums only on those SNPs whose GWAS p-values are lower than a certain threshold (e.g., prun-

ing/clumping + thresholding (C+T) [5], PRSice [6], and PRSice2 [7]). In these approaches, p-

value threshold is usually set as a tuning parameter and optimized by data. The second type

considers a joint additive model of all SNPs to estimate the effect sizes and to account for SNP

LD, either by imposing Lasso regularization (e.g., lassosum [8]) or prior distributions (e.g.,

LDpred [9], PRS-CS [10] and LDpred2 [11]). PRS based on joint modeling tend to have higher

prediction accuracy [12] due to the increased accuracy in estimated SNP effects.

Given the utility of large-scale base data, it becomes more and more common to encounter

the scenarios where the ancestral background of the base sample and target sample may or

may not be perfectly matched. For example, in the CoLaus/PsyCoLaus study [13, 14], the target

sample is composed of Switzerland Caucasians while the base sample is composed of general

European descents from US, central Europe, southern Europe and northern Europe. In multi-

ethnic PRS prediction, the base sample tend to comprise European descents in large sample

size as well as descents from other populations including the target population in moderate

sample size. Consequently, although causal variants in the target data are expected to be

included in a larger set of causal variants carried by the base data, the same variant may have

different effect sizes in the base and target data sets.
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To accommodate the potential ancestral heterogeneities between base sample and target

sample, in this work, we treat the GWAS summary information obtained in the base data as

knowledge learned from a pre-trained model, and adopt a transfer learning framework to

leverage the knowledge learned from the relatively ancestry-diversified base data to build the

PRS of target individuals. Our proposed trans-learning framework consists of two main steps:

(1) conducting false-negative control (FNC) screening to extract useful knowledge from the

base data; (2) conducting joint-model training to integrate the extracted knowledge with the

target training data for accurate trans-data prediction. In (1), as SNP effects may differ across

base and target datasets, marginal screening for promising SNPs should not just focus on

strong base signals, but should have good capacity for weak base signals as well. Therefore, we

use FNC to ensure the retention of a high proportion of strong and weak base signals and, at

the same time, effectively exclude noise variants that are distinguishable from base signals.

This is crucial for the second step of joint-model training. To ensure computational efficiency

and numerical stability, it is essential to only include a reduced set of SNPs when training the

joint PRS model; however, if the majority of signals were not included in this reduced set, the

prediction accuracy of the PRS model would be compromised. In (2), we use joint regression

to train the target PRS model with individual-level target data on the reduced promising-SNP

set, so as to ensure accurate SNP effect estimates that better reflect the underlying causal SNP

architecture of the target sample.

We use simulation to illustrate the performance of the proposed transfer learning proce-

dure. In settings with various overlapping proportions of signals between base and target data

sets, the new procedure leads to a better PRS model in terms of achieving a higher predictive

R2 with a more parsimonious model. Application to the CoLaus/PsyCoLaus GWAS of lipid

plasma indicates that besides being substantially faster than C+T, lassosum, and LDped meth-

ods, the new procedure can achieve the highest predictive R2 while retaining the least number

of SNPs in the PRS model. A parsimonious PRS model that includes fewer SNPs whilst main-

taining the same or higher predictive R2 can facilitate PRS interpretation and enable down-

stream analyses with more complex modeling techniques, such as incorporating SNP-SNP

interactions in polygenic prediction models as discussed in [15, 16]. We also explore interac-

tive models with the lipid prediction in the CoLaus/PsyCoLaus study.

Materials and methods

Formulation of trans-data signals

Let S be the set of causal variants carried by the target data and Sþ be the set of signal variants

carried by the base data. Signal variants in Sþ are defined as variants whose true effect sizes in

the GWAS marginal model are not zero. In this paper, we use “causal variants” to refer to vari-

ants truly affecting the phenotype, and use “signal variants” to refer to those variants that have

non-zero true effect sizes in a certain statistical model. While causal variants are considered

signal variants, the reverse is not always true. For example, a non-causal SNP that is in high LD

with some causal variants would be a signal variant in the GWAS marginal model, but would

not be a signal variant in a joint model that accounts for the causal variants. We consider het-

erogeneities between base data and target data from two sources: (a) the nested ethnicity rela-

tionship between base and target samples, and (b) the possible distortion of signal variants

information from the pre-trained GWAS marginal model. A general assumption on the trans-

data information sharing can be

S � Sþ:

That is, the causal variants in the target data are included in the set of signal variants in the
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more ancestry-diverse base data. Sþ could also include non-causal variants, which have non-

zero marginal effects because of their dependence with the causal variants in LD.

The nested assumption of S � Sþ could be satisfied by using multi-ancestry base data,

which can be obtained by conducting meta-analyses on multiple GWAS of different ancestral

groups, such as the multi-ancestry GWAS base data considered in [17]. The multi-ancestry

base samples may be predominantly from a specific ancestral group; hence it is possible that

the effect of a causal variant in S gets diluted in the ancestrally diverse base data and becomes

fairly weak in Sþ. In addition, the effect sizes of a variant can differ between base and target

data due to the use of marginal association models in base data. An ideal PRS method should

address these issues, incorporate both strong and weak base signals and re-train PRS model

with target data.

Trans-data polygenic risk prediction

We propose a transfer learning polygenic prediction procedure which performs FNC marginal

screening to effectively retain both strong and weak signals in Sþ and applies the learned infor-

mation from base data to identify causal variants in S and improve PRS for target individuals.

Different from the classical power analysis in hypothesis testing, FNC screening does not

hinge on a pre-fixed control level of type I error (or some form of cumulative type I errors in

multiple testing). Instead, FNC screening adapts to a user-specified level of false negative pro-

portion (FNP) to facilitate more powerful discovery of weak signals while keeping out noise

variants (i.e., non-signal variants) that are distinguishable from weak signals.

Fig 1 shows a flow chart of the transfer-learning procedure with FNC marginal screening

and joint model training. In Step 1, we apply FNC marginal screening to the base data to

extract useful knowledge as follows. First, we pre-fix a sequence of control levels, �1, . . ., �K, on

FNP, which is the number of false negatives divided by the total number of signals jSþj. In this

paper, we set �k’s in grid values of {0.02, 0.04, . . ., 0.4}. Second, for a given �k, we apply the

Fig 1. Overview of the PRS transfer learning procedure. Step 1: Given a pre-specified grid of control level for false

negative proportion, {�1, � � �, �K} (e.g., {0.02, 0.04, � � �, 0.4}), apply false negative control (FNC) marginal screening to

the base summary statistics and obtain K candidates of reduced SNP sets D1; � � � ;DK , each of which retains a specific

high proportion (i.e., 1 − �1, � � �, 1 − �K, respectively) of base signals. Step 2: For each reduced SNP set Dk, train the

joint prediction model using the target training sample. The joint model that yields the largest R2 is selected as the final

model and the corresponding SNP effect estimates are denoted as b̂∗. Step 3: Apply the estimated effects b̂∗ from the

final model of Step 2 to the target testing sample to calculate individual PRS.

https://doi.org/10.1371/journal.pgen.1010597.g001
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FNC screening procedure of [18] on p-values of the base summary statistics and obtain a

reduced SNP set Dk, which is expected to contain a (1 − �k) proportion of base signals in Sþ as

well as some noise SNPs. However, because FNC screening excludes noise SNPs that are dis-

tinguishable from the (1 − �k) proportion of signals in Sþ, each Dk can be much smaller than

the full set of SNPs. More detailed descriptions of FNC screening is provided in the next

subsection.

In Step 2, we equally and randomly divide the individual-level target sample into training

and testing samples, and use the training sample and Lasso regression to build the PRS model.

Specifically, given a reduced SNP set Dk, k = 1, . . ., K, we fit a joint prediction model using reg-

ularized regressions, select the regularization parameter using cross-validation or information

criterion, and obtain the regularized estimates of SNP effects and compute the model R2 value.

Among the K PRS models, the model yields the largest R2 value is selected as the final model,

and the corresponding effect size estimates (denoted by b̂∗) are used to construct PRS. In Step

2, working with the FNC reduced SNP set Dk instead of the entire SNP set enhances prediction

accuracy and computational efficiency of the joint-model training. In Step 3, we apply the esti-

mated effects from the final model b̂∗ to the target testing sample and calculate PRS for each

testing individual.

The proposed transfer learning procedure is general and can accommodate a spectrum of

prediction models such as linear mixed effects models (LMM) [19] and penalized linear regres-

sion [20, 21] in Step 2. In this paper, we adopt the popular Lasso regression to obtain sparse

effect estimates and utilize cross-validation to determine the hyper-parameters. We denote the

whole procedure as FNC+Lasso and show the complete algorithm of FNC+Lasso in Algorithm

1 of S1A Appendix. The computer code for FNC+Lasso, together with complete documenta-

tion is publicly available at Github: https://github.com/JessieJeng/FNC-Lasso.

We note that the default implementation of FNC+Lasso at Github does not use LD infor-

mation. When LD is not accounted for, the total number of base signal variants, denoted as

|S+|, could be overestimated, but the computational time required for estimating |S+| can be

substantially reduced. An overestimated |S+| would result in more conservative screening

results, i.e., more variants would be selected to enter the joint-modeling step. Given the

computational gain and the screening results, we opt not to incorporate LD information

among SNPs in the screening step.

FNC marginal screening

The original FNC screening procedure was designed to preserve a high proportion of signals

via effectively controlling false negatives [18]. In comparison to other existing false negative

control methods [22–24], FNC screening exhibits the capacity to accommodate arbitrary

covariance dependencies [18]. FNC screening can be applied as follows. Given a sequence of

p-values for all the SNPs in the base data: p1, . . ., pm, rank the SNPs by their p-values such at

p(1)� p(2)� . . .� p(m). For each j 2 {1, . . ., m}, calculate

dFNPj ¼ maxf1 � j=ŝ þ ðm � ŝÞpðjÞÞ=ŝ; 0g; ð1Þ

where ŝ is an estimate for jSþj, the number signal variants in the base data. Now, for a control

level �k, derive

j∗k ¼ minfj : dFNPj < �kg: ð2Þ

Then, construct the SNP set Dk as the collection of SNPs whose p-values are less than or equal

to pðj∗kÞ. Repeat the above for each of �1, . . ., �K, and obtain the reduced SNP sets D1, . . ., DK.
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The FNC screening procedure is based on direct estimation for the true FNP if only the top

j ranked SNPs are selected. Rationale of the estimator in (1) is as follows. When the top j vari-

ants are selected, the total number of signal variants equals to the sum of true positives (TPj)

and false negatives (FNj), i.e. jSþj ¼ s ¼ TPj þ FNj. Then we have FNPj = FNj/s = 1 − TPj/s,
and we would need to estimate s and TPj for each j.

FNC screening uses ŝ from [25] as recommended in [18] to estimate s, whose consistency

has been proved under arbitrary covariance dependence. For TPj, note that selecting the top j
variants incurs true positives and false positives with j = TPj + FPj. Then TPj = j − FPj. It is rea-

sonable to use EðFPjÞ ¼ ðm � ŝÞpðjÞ to approximate FPj based on the null distribution of the p-

values. Then TPj can be approximated by j � ðm � ŝÞpðjÞ and, consequently, FNPj can be

approximated by 1 � j=ŝ þ ðm � ŝÞpðjÞ=ŝ as in Eq (1).

Moreover, because the true FNPj is non-increasing with respect to j, stopping at the first

time dFNPj is less than �k can result in the smallest subset of variants with FNP controlled at �k

with high probability. This step, as stated in Eq (2), can effectively exclude noise variants that

are distinguishable from the (1 − �k) signals. More detailed justifications in theory and simula-

tion of FNC screening can be found in [18].

We note that one can consider all possible p-value thresholds to search for the optimal

reduced SNP subset Dk∗ for joint-model training. However, considering all possible thresholds

will result in an extremely large number of candidate models, K, to be trained in the joint

modeling step using the target data. Thus the practical and conceptual benefits of FNC screen-

ing are to provide a moderate K (e.g., K = 20 in our default setting) based on the principle of

FN control and to obtain the K candidate reduced SNP sets, each of which retains a high pro-

portion of signal variants while minimizes the false positives by selecting the smallest subset of

promising variants with respect to a specific FN proportion �k.

Results

Simulation design

For the target data in simulation, we obtain the genotype data of Chromosome 21 from the

CoLaus/PsyCoLaus study [13, 14]. After data pre-process described in S1C Appendix, the

genotype data for Chromosome 21 has m = 5053 SNPs. We randomly select n individuals to

form the target sample, resulting in a genotype matrix X consisting of m columns and n rows.

Let β be a m-dimensional vector of the allelic effects. We assume that β is a sparse vector with

βj 6¼ 0 for j 2 S, where S is the set of causal variants for the target sample. The trait vector Y
are simulated from Y = Xβ + W, where W* Nn(0, I), I is an identity matrix. The simulated

target sample is randomly split into training set and testing set with a 1 : 1 ratio. The training

set is used to build PRS models using different methods. The testing set is used to evaluate the

predictive performances of these methods.

In our main simulations, we assume that S � Sþ. The base summary data are generated by

Z* Nm(μ+, S/n0), where μ+ is the mean vector of Z, n0 represents the base sample size, S is

the correlation matrix of all the m = 5053 SNPs, which is estimated from the CoLaus/PsyCo-

Laus samples. Such marginal effect model has been used in GWAS analysis in e.g. [26]. The

mean vector μ+ has mþj 6¼ 0 for j 2 Sþ and 0 otherwise, where Sþ is the set of base signal vari-

ants. In the simulation studies, we consider 3 sets of (n0, n), which are (4000, 2000), (4000,

1000) and (2000, 1000). We control the overlap between base signal variants (Sþ) and target

causal variants (S) using a proportion parameter d ¼ jSj=jSþj, where |�| represents the cardi-

nality of a set. It is expected that the more diverse the base samples are, the smaller the δ would

be. In the simulation examples, we randomly select 50 SNPs as signal variants in the base
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sample (i.e., jSþj ¼ 50) and set the number of target causal variants as |S| = 50 × δ. We con-

sider δ = 0.3, 0.5 and 0.7, representing low, median, and high overlaps between S and Sþ,

respectively. The non-zero effect sizes of mþj and βj are generated independently from Uniform

(0.05, 0.15) and separately for base and target data. The range of the uniform distribution is

calibrated so that R2 roughly range from 5% to 30% for different methods across different sce-

narios. The heritability h2, quantified by V(Xβ)/V(Y), is about 0.14, 0.21 and 0.28 for δ = 0.3,

0.5 and 0.7, respectively.

We also conduct additional simulations where the nested assumption is not satisfied (i.e.,

S ⊈ Sþ) and the effect sizes of the causal/signal variants are generated from more conventional

settings, e.g., allowing the true effect sizes of base and target causal variants (denoted by β+ and

β, respectively) in the joint-SNP models to be correlated and to be positive or negative, as well

as incorporating SNP LD in both mean and variance of the base summary statistics Z when gen-

erating Z. Specifically, we control the overlap proportion between the target causal variants (S)

and the base causal variants (denoted by Sþ
bþ

) using parameter d
∗
¼

�
�
�S \ Sþ

bþ

�
�
�=jSj: We con-

sider jSj ¼ jSþ
bþ
j ¼ 50, δ* = 0.3, 0.5, and 0.7, (n0, n) = (4000, 1000), and h2� 0.33. We provide

the detailed designs of the additional simulations in S1B Appendix and summarize the data

generation schemes in Table 1 for the simulation study.

Performance assessment and baseline methods

We simulate 100 replicates under each simulation scenario, and evaluate the predictive perfor-

mance, model fitting and model parsimony for the final PRS model. Specifically, we examine

two metrics: (1) R2, which quantifies the outcome variation explained by the PRS on the target

testing set; and (2)Akaike Information Criterion (AIC), which evaluates how well the PRS

model fits the outcome data and has been used to evaluate polygenic prediction in [27] and

[28]. AIC is calculated by AIC = 2q + ntest � log(RSS/ntest)), where q is the number of SNPs

retained in the PRS model, ntest is the sample size of the target testing set, and RSS is the resid-

ual sum of square (RSS) calculated on the target testing set. As an ancillary metric, we also

report the number of SNPs included in the final PRS model.

We benchmark the proposed FNC+Lasso transfer learning method against five representa-

tive methods for PRS analysis, which are Clumping+Thresholding (CT; [5]), lassosum [8],

LDpred [9, 11], Lasso [29], and SIS+Lasso. The first three methods use the LD information

obtained from Chromosome 21 of the CoLaus/PsyCoLaus data, estimate the effect sizes using

base summary data, and are implemented using R package bingsnpr [30] in our numerical

studies. In contrast, Lasso only uses the individual-level target data, see for example [21]. The

Table 1. Summary of data generation schemes in the simulations. β+ and β are the true effect size of base and target data, respectively, from the joint models; μ+ is the

mean of the summary statistics, typically obtained from marginal models; S is the correlation matrix of the m = 5, 053 SNPs; n0 and n are the sample size of base and target

data, respectively.

Main Simulations S � Sþ Additional Simulations S ⊈ Sþ

Causal Variant Effect ðbþj ;bjÞ

or Signal Variant Effect ðmþj Þ

mþj � Unif ð0:05; 0:15Þ

bj � Unif ð0:05; 0:15Þ

b
þ

j

bj

" #

� N2

0

0

" #

; t2
1 r

r 1

" # !

r 6¼ 0 if j shared between base and target;

r ¼ 0 otherwise
Base Summary Data Z Z* Nm(μ+, S/n0) Z* Nm(μ+ = Sβ+, S/n0)

Target Data Y Y* Nn(Xβ, 1) Y* Nn(Xβ, 1)

Results Fig 2 and Table 2 S1 Fig and S1 Table

https://doi.org/10.1371/journal.pgen.1010597.t001
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last method, SIS+Lasso, can be viewed as a naive transfer learning procedure that also includes

dimension reduction and joint-model training. Instead of using FNC screening and searching

adaptively for the optimal reduced SNP set, SIS+Lasso applies sure independence screening

(SIS) [31] to the base summary statistics to select the top ntrain − 1 SNPs, with ntrain being the

target training sample size, and then performs Lasso regression on the selected SNPs with the

target training data. It is well-known that SIS can be applied to marginal summary statistics to

quickly reduce data dimension. We include SIS+Lasso in the baseline methods to evaluate

potential advantages of using FNC screening in the transfer learning framework.

Simulation results

Fig 2 shows the boxplots of R2 from 100 replications under the scenario of S � Sþ, for (n0, n)

= (4000, 2000) (top row), (4000, 1000) (middle row) and (2000, 1000) (bottom row). In each

replication, the target sample is randomly and equally divided into training and testing sets. In

all scenarios, we observe that FNC+Lasso tend to give the highest R2 among all methods. We

also observe that methods using a trans-learning framework (i.e., FNC+Lasso and SIS+Lasso)

generally outperform other baseline methods. The only exception is when the target training

sample size is relatively small (e.g., n = 1000 and hence ntraining = 500) and the overlap between

base signals and target causal variants is high (e.g., δ = 0.7), where CT, lassosum and LDpred

can perform comparable to or better than SIS+Lasso. Nevertheless, FNC+Lasso, which aims to

reserve an optimal high proportion of signals during screening, consistently yield better R2

than SIS+Lasso and other baseline methods.

The relative performances of the non-trans-learning baseline methods are sensitive to the

target sample size n and the overlap proportion δ. Specifically, when target sample size is rela-

tively large (e.g., n = 2000; top row of Fig 2), Lasso tends to have higher R2 than those methods

Fig 2. Results of R2 for prediction accuracy of different PRS methods in the main simulations assuming S � Sþ.

The results are based on 100 simulation replicates under different sample-size combinations of base data (n0) and

target data (n), and under different overlap proportion between base signal variants (Sþ) and target causal variants (S),

i.e., d � jSj=jSþj with jSþj ¼ 50. From the top to bottom rows are for (n0, n) = (4000, 2000), (4000, 1000) and (2000,

1000), respectively. In each replication, the target sample is randomly and equally divided into training and testing sets.

From the left to right columns are for δ = 0.3, 0.5, and 0.7, respectively. Methods considered include Clumping

+Thresholding (CT), lassosum, LDpred, Lasso, SIS+Lasso (SIS), and FNC+Lasso (FNC).

https://doi.org/10.1371/journal.pgen.1010597.g002
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relying on the effect sizes estimated from base data, i.e., CT, lassosum, and LDpred. The gap is

more obvious when the overlap proportion δ is small. The results suggest that re-estimating

SNP effects using target training data (i.e., Lasso) can improve predictive performance when

the target sample size is sufficiently large, and that the gain is more substantial when the base

signals and target causal variants are less homogeneous (i.e., smaller δ).

In contrast, when target sample size is relatively small (e.g., n = 1000; middle and bottom

rows of Fig 2), CT, lassosum, and LDpred generally outperform Lasso. The gap is more obvi-

ous when the overlap proportion δ becomes larger. The results suggest that when target sample

size n (and hence the target training sample size ntrain) is not sufficiently large, it becomes inef-

ficient to re-estimate SNP effects using target training data, even when the base signals and tar-

get causal variants become heterogeneous (e.g., overlap proportion δ = 0.3 or 0.5). When the

overlap between the base signal set and the target causal set increases, relying on the base effect

estimates, which are obtained on a larger sample size n0, can enhance predictive R2 (e.g., in the

middle and bottom rows, the gap between Lasso and CT/lassosum/LDpred becomes larger as

δ increases from 0.3 to 0.7). We also observe that the results of (n0, n) = (4000, 1000) and

(2000, 1000) are very similar, implying that the base sample size n0 has less impact on relative

performance of the baseline methods.

Table 2 shows AIC and the number of SNPs included in the final PRS model under the sce-

nario of S � Sþ. A smaller AIC value indicates a better model fitting in simplicity and accu-

racy. When the overlap proportion is not high (e.g., δ = 0.3 and 0.5), FNC+Lasso tends to have

the lowest AIC and select the least number of SNPs, closely followed by SIS+Lasso. When δ is

Table 2. Results of Akaike Information Criterion (AIC) and number of SNPs in the final PRS model of different methods for assessing model fit and parsimony

under the main simulations assuming S � Sþ.

Overlap (δ) Method (n0, n) = (4000, 2000) (n0, n) = (4000, 1000) (n0, n) = (2000, 1000)

Selected SNPs AIC Selected SNPs AIC Selected SNPs AIC

0.3 CT 62 (50) 239 (102) 77 (130) 214 (267) 53 (41) 168 (96)

lassosum 222 (182) 564 (361) 248 (287) 558 (567) 232 (258) 529 (513)

LDpred 2732 (207) 5583 (419) 2634 (233) 5329 (463) 2454 (283) 4972 (570)

Lasso 62 (32) 212 (87) 37 (35) 143 (83) 37 (35) 143 (83)

SIS+Lasso 55 (23) 178 (77) 33 (17) 119 (50) 33 (18) 119 (51)

FNC+Lasso 40 (20) 131 (65) 37 (28) 117 (77) 35 (29) 119 (79)

0.5 CT 54 (13) 274 (63) 59 (54) 198 (114) 51 (21) 188 (58)

lassosum 187 (97) 551 (205) 173 (114) 430 (234) 151 (91) 391 (188)

LDpred 2701 (179) 5582 (363) 2753 (219) 5592 (441) 2548 (276) 5187 (554)

Lasso 107 (38) 356 (101) 57 (41) 215 (85) 57 (41) 215 (85)

SIS+Lasso 83 (24) 273 (62) 55 (27) 186 (60) 54 (26) 185 (56)

FNC+Lasso 62 (39) 214 (109) 47 (23) 155 (64) 43 (25) 155 (63)

0.7 CT 51 (9) 271 (57) 50 (7) 187 (39) 44 (12) 193 (42)

lassosum 174 (73) 539 (155) 146 (71) 392 (151) 140 (63) 392 (136)

LDpred 2719 (163) 5637 (339) 2734 (200) 5572 (399) 2576 (279) 5270 (552)

Lasso 148 (47) 479 (108) 77 (50) 294 (100) 77 (50) 294 (100)

SIS+Lasso 115 (27) 357 (64) 69 (24) 240 (55) 67 (23) 238 (55)

FNC+Lasso 79 (54) 257 (139) 61 (35) 199 (95) 59 (38) 208 (93)

The reported values are the mean (and standard deviation) based on 100 simulation replicates under different sample-size combinations of base data (n0) and target data

(n), and under different overlap proportion between base signal variants (Sþ) and target causal variants (S), i.e., d � jSj=jSþj with jSþj ¼ 50. Methods considered

include Clumping+Thresholding (CT), lassosum, LDpred, Lasso, SIS+Lasso (SIS+Lasso), and FNC+Lasso (FNC+Lasso). Models with the smallest AIC as shown in bold.

https://doi.org/10.1371/journal.pgen.1010597.t002
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high (e.g., 0.7), CT tends to have the lowest AIC and select the least number of SNPs, closely

followed by FNC+Lasso.

The results of the additional simulations considering the non-nested scenario (i.e., S � Sþ)

are summarized in S1 Fig and S1 Table. For R2 (S1 Fig), we see that across different δ*’s (i.e.,

overlap proportions between the base and target causal variants) and different ρ’s (i.e., effect

correlations between the overlapping base and target causal variants), the methods utilizing a

trans-learning framework (i.e., FNC+Lasso and SIS+Lasso) generally perform better than or

comparable to CT, lassosum, and LDpred; however, the trans-learning methods tend to per-

form worse than Lasso, especially when there is limited overlap between the base signals and

target causal variants. These outcomes are not surprising because leveraging information from

the base data cannot enhance the prediction accuracy for the target individuals when a fair

proportion of the causal variants are unique to the target population. Between the two trans-

fer-learning methods, FNC+Lasso and SIS+Lasso have similar R2 across all scenarios, which is

perhaps because SIS always selects a fixed large number of SNPs into the joint-model training

regardless of the informativeness of base data and consequently, retains some robustness

against the base uninformativeness. As the overlap proportion δ* increases from 0.3 to 0.7, the

performance of Lasso remains stable, whereas all the other methods exhibit improvement with

higher R2 values; when δ* = 0.7 (i.e., the third column of S1 Fig), FNC+Lasso and SIS+Lasso

yield R2 comparable to Lasso. Finally, the effect correlation ρ does not seem to have much

impact on the relative performance between FNC+Lasso and the baseline methods, except that

when the effect sizes of the base and target causal variants are highly correlated (i.e., ρ = 0.9)

and the overlap proportion is high (δ* = 0.7), all methods have similar R2. For model fit and

parsimony (S1 Table), SIS+Lasso yields the most parsimonious results with the smallest AIC

measures in all settings, closely followed by FNC+Lasso and then Lasso..

Real data applications

We applied the proposed FNC+Lasso method and the baseline methods to construct the PRSs

for plasma lipids, including total cholesterol (CHOL), triglycerides (TRIG), high-density lipo-

protein (HDL) and low-density lipoprotein (LDL). Plasma lipids are risk factors for cardiovas-

cular diseases, a leading cause of death worldwide [32], and CHOL, TRIG, HDL and LDL are

effective biomarkers and risk factors for heart attack and heart diseases. At present, over 1,900

common SNPs have been shown to be associated with CHOL with different significant levels

and the corresponding number for TRIG is 4,002 [33]. However, majority of these variants

confer small risk individually and have limited predictive accuracy for lipid traits [34],

although the variance proportions explained by PRS for Whites and Hispanics tend to be

higher than other populations [35].

Our target data is obtained from the CoLaus/PsyCoLaus GWAS study of the Cohort Lau-

sanne, Switzerland [13, 14], consisting of 5,247 Switzerland Caucasians individuals. We

acquired the base data from [36] and [37], which includes samples of general European

descents from US, central Europe (i.e., Australia, Denmark, France Germany, Netherlands,

Switzerland, UK), southern Europe (Italy) and northern Europe (i.e., Iceland, Finland, and

Sweden). The base sample has broader ancestral background and larger sample sizes (i.e.,

94,595, 100,184, 99,900 and 95,454 for CHOL, TRIG, LDL and HDL, respectively). We pre-

process the genotype data by conducting quality control (QC) and imputation as detailed in

S1C Appendix and matched SNPs between the base and target data. The number of matched

SNPs for CHOL, TRIG, LDL and HDL are 1,833,233, 1,756,492, 1,833,283 and 1,833,233,

respectively.
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To construct PRSs, we randomly split the target sample into training and testing sets, each

containing half of the target sample. We apply the six methods, i.e., the 5 baseline methods

(CT, lassosum, LDpred, Lasso and SIS+Lasso) and the proposed FNC+Lasso. For CT, lasso-

sum and LDpred, the LD information is obtained from the CoLaus/PsyCoLaus samples, and

the effect sizes in the PRS model are estimated using the base summary data. In all real data

analyses, we include the top 10 principal components for population substructure, sex and age

as covariates. We optimize the tuning parameters and obtain the effect size estimates for the

final PRS model in training set, and calculate the prediction R2 of the final PRS model in test-

ing set. To account for the variations involved in the random data splits, we repeat the process

using 50 different splitting of training and testing sets. In this part, we use the R package

bigsnpr for Lasso to ensure computational efficiency with whole genome SNPs.

Table 3 shows the R2, AIC and number of selected SNPs of different methods. Across all

four traits, the proposed FNC+Lasso yields more robust performance in R2 and AIC by yield-

ing the best or comparable values to the best-performing methods, while the best-performing

methods vary depending on traits, R2 and AIC. For example, for CHOL and TRIG, FNC

+Lasso has the highest R2 and lowest AIC. For HDL and LDL, FNC+Lasso and SIS+Lasso have

the highest R2 while lassosum has the smallest AIC. We also observe that although giving rea-

sonable AICs, the classical Lasso has the lowest R2 for all four traits, suggesting that re-training

Table 3. Prediction R2, number of selected SNPs, AIC, and computing time of different PRS methods for the CoLaus/PsyCoLaus analysis of four lipid traits.

Trait Method Predictive R2 Selected SNPs AIC Computing Time (sec)

CHOL CT 4.6% (0.6%) 50729 (122314) 101572 (244630) 1143 (101)

lassosum 4.7% (0.5%) 957 (6514) 2032 (13023) 7320 (1)

LDPred 4.6% (0.5%) 928258 (17319) 1856637 (34651) 7200 (1)

Lasso 3.2% (0.2%) 315 (276) 782 (54) 326 (69)

SIS + Lasso 7% (0.6%) 344 (47) 735 (88) 15 (1)

FNC + Lasso 7.2% (0.7%) 229 (28) 499 (79) 616 (36)

TRIG CT 5.9% (0.6%) 118645 (194875) 238203 (389599) 763 (272)

lassosum 5.4% (0.5%) 832732 (54187) 1666391 (108373) 6900 (1)

LDPred 5.4% (0.5%) 1183748 (59460) 2368424 (118933) 6781 (1)

Lasso 3.4% (0.4%) 260 (257) 1503 (694) 143 (21)

SIS + Lasso 7% (0.7%) 239 (44) 1359 (413) 13 (1)

FNC + Lasso 7.4% (0.8%) 170 (21) 1211 (402) 533 (39)

HDL CT 19% (1%) 15 (16) -4865 (70) 1826 (310)

lassosum 20.6% (1%) 9 (0) -4929 (62) 7200 (1)

LDPred 20.3% (1%) 865651 (3866) 1726365 (7729) 7800 (1)

Lasso 18.9% (0.6%) 699 (361) -3494 (732) 110 (27)

SIS + Lasso 23.8% (0.9%) 365 (51) -4326 (106) 18 (5)

FNC + Lasso 23.7% (0.9%) 205 (38) -4642 (96) 596 (76)

LDL CT 4.2% (0.6%) 125 (302) -258 (624) 961 (39)

lassosum 4.2% (0.6%) 109 (0) -289 (64) 8280 (1)

LDPred 4.2% (0.6%) 893486 (27412) 1786465 (54829) 8881 (1)

Lasso 1.8% (0.2%) 356 (290) 270 (587) 508 (151)

SIS + Lasso 5.6% (0.5%) 331 (49) 117 (122) 17 (3)

FNC + Lasso 5.9% (0.6%) 171 (26) -211 (88) 579 (59)

The reported values are the mean (and standard deviation) from 50 random splits for each of the four lipid traits, including total cholesterol (CHOL), triglycerides

(TRIG), high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Methods considered include Clumping+Thresholding (CT), lassosum, LDpred, Lasso, SIS

+Lasso (SIS+Lasso), and FNC+Lasso (FNC+Lasso). Best performing results across different methods are shown in bold.

https://doi.org/10.1371/journal.pgen.1010597.t003
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a PRS model using Lasso on all SNPs with target training sample does not yield ideal predictive

accuracy. Incorporating a screening procedure using base data (i.e., trans-learning-based SIS

+Lasso and FNC+Lasso) can substantially enhance the predictive R2 of Lasso. Similar to what

is observed in the main simulations, Fig 3 shows that the trans-learning based methods consis-

tently yield higher R2 than other baseline methods for all four traits, and FNC+Lasso tends to

have higher R2 than SIS+Lasso. We also observe that FNC+Lasso tends to use the less number

of SNPs while achieving a higher predictive R2.

Table 3 also shows that the proposed FNC+Lasso is computationally efficient. It is slower

than SIS+Lasso and Lasso because FNC+Lasso involves a grid search to determine two hyper-

parameters (FN proportion �k and the shrinkage parameter of Lasso). However, the required

computing time is still less than CT, lassosum and LDpred, e.g., FNC+Lasso can be 1.4*15

times faster than these baseline methods.

The parsimonious modeling of FNC+Lasso could foster interpretability and facilitate more

complex modeling in downstream analyses, such as incorporating SNP-SNP interactions in

polygenic prediction models. Here we explore pairwise interactions of the SNPs selected in

FNC+Lasso on the lipid traits. To avoid potential overestimation of the interaction effects, we

fit an linear regression model that satisfies strong hierarchy (i.e., whenever a SNP-SNP interac-

tion is estimated to be non-zero by Lasso, the main effects of both SNPs are also included in

the model) so that the interaction effects are not identified due to their collinearity with the

omitted main effects. This procedure utilizes hierarchical group-Lasso regulation introduced

in [38] and can be applied using the R package glinternet. We investigate the predictive R2

Fig 3. R2 values for prediction accuracy of different PRS methods. Methods considered include Clumping+Thresholding (CT), lassosum, LDpred,

Lasso, SIS+Lasso (SIS), FNC+Lasso (FNC), and interaction model based on FNC+Lasso identified SNPs (FNC-INT) for four lipid traits.

https://doi.org/10.1371/journal.pgen.1010597.g003
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performance of the interaction PRS model based on FNC-Lasso selected SNPs (denoted as

FNC-INT) for the four traits. The results in Fig 3 show that incorporating SNP-SNP interac-

tion terms can further increase the predictive performance for CHOL and LDL, although

interactions do not help in TRIG and HDL. Recent studies have gain valuable insights into the

functional consequences of some gene-gene interactions on LDL through systematic experi-

ments that simultaneously knockdown candidate gene pairs in cultured HeLa cells [39]. Fur-

ther follow-up studies could relate our identified SNP-SNP pairs to candidate genes and gene

pairs through eQTL analysis and evaluate their roles in biological pathways of lipid traits.

Conclusion and discussion

Inspired by the idea of transfer learning, the proposed FNC+Lasso procedure aims to leverage

the base data information for target data prediction modeling, where the target data may or

may not have similar ancestral background as the base data. FNC+Lasso utilizes a unique false

negative control strategy to extract useful information from the base data, and applies the

extracted information to re-train the PRS models using target data in a statistically and compu-

tationally efficient fashion. The benefits are multi-fold: (1) FNC screening leverages the base

information to effectively retain a high proportion of base signal variants and yields a moder-

ate number of candidate joint models, which reduces the cost in model re-training. (2) Only

the identities of SNPs, not their effect sizes, are carried over to joint modeling, which encour-

ages accurate PRS estimation and prediction for the target samples. (3) Through the efficient

exclusion of noise variants by FNC screening, dimensions of the candidate joint models are

largely reduced, which helps to alleviate the challenges associated with the “large p small n”

joint modeling and leads to enhanced prediction accuracy. (4) The resulting PRS model of

FNC+Lasso are parsimonious with better fit, which facilitates model interpretation and com-

plex modeling in follow-up analyses.

The proposed PRS transfer learning framework can accommodate continuous and categor-

ical traits by applying linear or logistic models in the joint modeling step. It is also applicable

to target data with only summary statistics available. In that case, the Lasso step on individual-

level target data can be replaced by using the lassosum algorithm with GWAS summary statis-

tics from target data. Just like lassosum, the specific summary statistics needed would include:

(1) the LD matrix from reference panel with similar ancestral background as the target sam-

ples, and (2) the SNP-phenotype correlation from target summary statistics.

FNC+Lasso adopts a transfer learning framework and relies on the nested assumption of

S � Sþ, i.e., the target causal variants S are nested within the base signal variants Sþ. In real

practice, such nested assumption could be satisfied by adopting multi-ancestry GWAS base

data, e.g., using the large-scale meta-analysis from Global Biobank Meta-analysis Initiative as

discussed in Wang et al. [17]. Using simulations, we explore the impact of overlapping propor-

tion d � jSj=jSþj under the scenario of S � Sþ. We observed that when δ is low (i.e., hetero-

geneous effect patterns between base and target data), re-training PRS models with sufficient

target samples can achieve better predictive performance. When δ is high (i.e., similar effect

patterns between base and target data), utilizing effect estimates from base data can ensure

higher predictive accuracy, especially when target samples are of limited size. Our numerical

studies also show that FNC+Lasso adapts to overlap level—FNC+Lasso ensures effective PRS

joint-model training even with limited target samples, and results in a more robust and better

predictive performance than the baseline methods across a range of δ values and different

base/target sample sizes.

We also conduct additional simulations where the nested assumption is not satisfied. The

results show that FNC+Lasso could still outperform existing PRS methods (e.g., C+T, lassosum
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and LDpred), has similar R2 as SIS+Lasso, but has smaller R2 than Lasso. However, Lasso

exhibits unstable performance across different nested and non-nested scenarios in our numer-

ical studies. Given that the actual informativeness level of base data on the target causal vari-

ants is unknown and can vary from trait to trait in real applications, we would recommend to

use methods utilizing a transfer learning framework (i.e., FNC+Lasso and SIS+Lasso) for PRS

analysis. If multi-ancestry GWAS base data could be used, FNC+Lasso may provide further

improvement upon SIS+Lasso.

The PRS models of FNC+Lasso tend to be more parsimonious compared to baseline mod-

els while maintaining a comparable or higher R2. A parsimonious PRS model that consists of

key SNPs and excludes noise SNPs could aid the interpretablity of PRS and help to inform

underlying molecular and functional basis, such as by examining the SNPs involved in the PRS

model as well as those SNPs in LD with them to identify biologically important variants or to

identify hub genes that capture larger polygenicity [40]. By focusing on the SNPs in a parsimo-

nious PRS model, it also allows further exploration of non-additive PRS models, such as the

SNP-SNP interaction PRS model considered in the CoLaus/PsyCoLaus data analysis. PRS

models incorporating epistasis have been challenging because existing PRS models tend to be

comprised of a large number of SNPs, and the corresponding interactions quickly leads to a

prohibitive number of predictors in the model. While machine-learning PRS methods such as

random forest have been proposed to account for unknown epistasis [41], it remains an open

question how the base data information can be incorporated into these learning approaches.

Complex models based on FNC+Lasso SNPs may offer an alternative for constructing non-

additive PRS.
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5. Privé F, Vilhjálmsson BJ, Aschard H, Blum MG. Making the most of Clumping and Thresholding for

polygenic scores. The American Journal of Human Genetics. 2019; 105(6):1213–1221. https://doi.org/

10.1016/j.ajhg.2019.11.001 PMID: 31761295

6. Euesden J, Lewis CM, O’Reilly PF. PRSice: polygenic risk score software. Bioinformatics. 2015; 31

(9):1466–1468. https://doi.org/10.1093/bioinformatics/btu848 PMID: 25550326

7. Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience.

2019; 8(7):giz082. https://doi.org/10.1093/gigascience/giz082 PMID: 31307061

8. Mak TSH, Porsch RM, Choi SW, Zhou X, Sham PC. Polygenic scores via penalized regression on sum-

mary statistics. Genetic epidemiology. 2017; 41(6):469–480. https://doi.org/10.1002/gepi.22050 PMID:

28480976
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28. Zhang Q, Privé F, Vilhjálmsson B, Speed D. Improved genetic prediction of complex traits from individ-

ual-level data or summary statistics. Nature Communications. 2021; 12:4192. https://doi.org/10.1038/

s41467-021-24485-y PMID: 34234142

29. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:

Series B (Methodological). 1996; 58(1):267–288.
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