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Polygenic prediction via Bayesian regression and
continuous shrinkage priors
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Polygenic risk scores (PRS) have shown promise in predicting human complex traits and

diseases. Here, we present PRS-CS, a polygenic prediction method that infers posterior effect

sizes of single nucleotide polymorphisms (SNPs) using genome-wide association summary

statistics and an external linkage disequilibrium (LD) reference panel. PRS-CS utilizes a high-

dimensional Bayesian regression framework, and is distinct from previous work by placing a

continuous shrinkage (CS) prior on SNP effect sizes, which is robust to varying genetic

architectures, provides substantial computational advantages, and enables multivariate

modeling of local LD patterns. Simulation studies using data from the UK Biobank show that

PRS-CS outperforms existing methods across a wide range of genetic architectures, espe-

cially when the training sample size is large. We apply PRS-CS to predict six common

complex diseases and six quantitative traits in the Partners HealthCare Biobank, and further

demonstrate the improvement of PRS-CS in prediction accuracy over alternative methods.
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Polygenic risk scores (PRS), which summarize the effects of
genome-wide genetic markers to measure the genetic lia-
bility to a trait or a disorder, have shown promise in pre-

dicting human complex traits and diseases, and may facilitate
early detection, risk stratification, and prevention of common
complex diseases in healthcare settings1,2.

To maximize the translational potential of PRS, statistical and
computational methods are needed that can (1) jointly model
genetic markers across the genome to make full use of the
available information while accounting for local linkage dis-
equilibrium (LD) structures; (2) accommodate varying effect size
distributions across complex traits and diseases, from highly
polygenic genetic architectures (e.g., height and schizophrenia), to
a mixture of small effect sizes and clusters of genetic loci that have
moderate to larger magnitudes of effects (e.g., autoimmune dis-
eases and Alzheimer’s disease); (3) produce prediction from
summary statistics of genome-wide association studies (GWAS)
without access to individual-level data; and (4) retain computa-
tional scalability.

To date, most applications calculate PRS from a subset of the
genetic markers after pruning out single nucleotide polymorph-
isms (SNPs) in LD and applying a P-value threshold to GWAS
summary statistics3. Although this approach has advantages in
terms of computational and conceptual simplicity, and has been
used to predict genetic liability across a broad phenotypic spec-
trum, recent studies have shown that this conventional method
for PRS construction discards information and limits prediction
accuracy4. More sophisticated Bayesian polygenic prediction
methods that rely on GWAS summary statistics, including
LDpred4 and the normal-mixture model recently developed5,6,
can incorporate genome-wide markers and accommodate varying
genetic architectures, and thus have enhanced performance and
flexibility. However, the type of prior on SNP effect sizes used in
these methods, known as discrete mixture priors, imposes
daunting computational challenges and may result in inaccurate
adjustment for local LD patterns.

In this work, we present a polygenic prediction method, PRS-
CS, which utilizes a Bayesian regression framework and places a
conceptually different class of priors—the continuous shrinkage
(CS) priors—on SNP effect sizes. Continuous shrinkage priors
allow for marker-specific adaptive shrinkage (i.e., the amount of
shrinkage applied to each genetic marker is adaptive to the
strength of its association signal in GWAS), and thus can
accommodate diverse underlying genetic architectures. In addi-
tion, continuous shrinkage priors enable conjugate block update
of the SNP effect sizes in posterior inference (i.e., effect sizes for
SNPs in each LD block are updated jointly, in a multivariate
fashion, in contrast to updating the effect size for each marker
separately and sequentially), and thus can accurately model local
LD patterns and provide substantial computational improve-
ments. Several special cases of continuous shrinkage priors have
been applied to quantitative trait prediction or gene mapping7–12.
However, all previous work required individual-level data and
was limited to small-scale analyses (both in term of the sample
size and number of genetic markers). PRS-CS only requires
GWAS summary statistics and an external LD reference panel,
and therefore can be applied in a broader range of settings.

We conduct simulation studies using the UK Biobank genetic
data13,14, and demonstrate that PRS-CS dramatically improves
the predictive performance of PRS over existing methods across a
wide range of genetic architectures, especially when the training
sample size is large. We apply PRS-CS to predict six curated
common complex diseases (breast cancer (BRCA), coronary
artery disease (CAD), depression (DEP), inflammatory bowel
disease (IBD), rheumatoid arthritis (RA), and type 2 diabetes
mellitus (T2DM)) and six quantitative traits (height, body mass

index, high-density lipoproteins, low-density lipoproteins, cho-
lesterol, and triglycerides) in the Partners HealthCare Biobank15,
and further demonstrate the potential of PRS-CS for the clinical
translation of polygenic prediction.

Results
Conceptual frameworks. We consider a Bayesian high-
dimensional regression framework for polygenic modeling and
prediction:

yN ´ 1 ¼ XN ´MβM ´ 1 þ εN ´ 1; ð1Þ
where N and M denote the sample size and number of genetic
markers, respectively, y is a vector of traits, X is the genotype
matrix, β is a vector of effect sizes for the genetic markers, and ε is
a vector of residuals. By assigning appropriate priors on the
regression coefficients β to impose regularization, additive PRS
can be calculated using posterior mean effect sizes.

Essentially all widely used prior densities for β can be
represented as scale mixtures of normals:

pðβjÞ ¼
Z

Nð0;ΨjÞdGðΨjÞ; j ¼ 1; 2; � � � ;M; ð2Þ

or equivalently, as the following hierarchical form:

βjjΨj � Nð0;ΨjÞ; Ψj � G; j ¼ 1; 2; � � � ;M; ð3Þ
where N(μ, σ2) is a normal distribution with mean μ and variance
σ2, and G is a mixing distribution. For example, if G places all its
mass at a single point, i.e., GðΨjÞ ¼ δσ2

β
, where δ• is the Dirac

delta measure, then marginally βj � Nð0; σ2βÞ, and we have
recovered the infinitesimal model16. To create a more flexible
model of the genetic architecture, a discrete mixture of two or
more point masses or densities can be used, which allows for a
wider effect size distribution than a normal prior can produce.
For example, GðΨjÞ ¼ ð1� πÞδ0 þ πδτ2 , where π is the mixing
probability (the fraction of causal variants), produces the point-
normal prior on effect sizes, βj ~ (1−π)δ0+ πN(0, τ2), which was
used in LDpred4. Although discrete mixture priors offer a natural
and intuitive approach to model non-infinitesimal genetic
architectures, posterior inference requires a stochastic search
over an exponentially large discrete model space, and does not
allow for multivariate block update of effect sizes, which limits
computational efficiency and may result in inaccurate modeling
of local LD patterns.

In this work, we investigate a conceptually different class of
priors—the continuous shrinkage priors. In particular, we
consider the following prior on SNP effect sizes, which can be
represented as global-local scale mixtures of normals:

βjjψj � Nð0; ϕψjÞ; ψj � g; ð4Þ
where ϕ is a global scaling parameter that shares across genetic
markers and controls the degree of sparseness of the model, and g
is an absolutely continuous density function, in contrast to a
discrete mixture of atoms or densities. By appropriately choosing
the continuous mixing density g, this modeling framework can
produce a variety of shapes of the prior distribution on βj. In
particular, g can be designed to introduce a prior distribution on
the SNP effect sizes that has a sizable amount of mass near zero to
impose strong shrinkage on noise, while at the same time has
heavy tails to avoid over-shrinkage of truly non-zero effects. The
marker-specific local shrinkage parameter ψj can then adaptively
squelch small noisy estimates towards zero, while leaving data-
supported large signals unshrunk. In this work, we investigate a
specific g (known as the Strawderman-Berger prior17,18; see
Methods section), and present two versions of the algorithm,
which differ in the way to learn the global scaling parameter ϕ. In
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PRS-CS, we search a small number of fixed ϕ, select the ϕ value
that produces the best predictive performance in a validation data
set, and evaluate the algorithm in an independent testing set. In
the second version of the algorithm, which we call PRS-CS-auto,
we use a fully Bayesian approach and place a standard half-
Cauchy prior on the global shrinkage parameter19,20: ϕ1/2 ~ C+(0,
1), such that ϕ is automatically learnt from data and no validation
data set is needed.

Individual-level Bayesian regression models (1) with a prior on
SNP effect sizes can often be approximated using an external LD
reference panel and turned into summary statistics based
methods4,6,21,22. Here we enable posterior inference of SNP
effect sizes from GWAS summary statistics under continuous
shrinkage priors using an efficient Gibbs sampler with multi-
variate block update of the effect sizes (see Methods section).

Overview of polygenic prediction methods. We compare PRS-
CS and PRS-CS-auto with four polygenic prediction methods that
rely on GWAS summary statistics in both simulations and real
data analyses: polygenic scoring based on all genetic markers
(unadjusted PRS), informed LD-pruning (also known as LD-
clumping) and P-value thresholding (P+T), LDpred and LDpred-
inf4. Throughout the paper, we use the 1000 Genomes Project (1
KG) European sample (N= 503) as the external LD reference
panel, but also assess the impact of using an in-sample LD
reference panel on prediction accuracy in Supplementary
Information.

Simulations. We first compared the predictive performance
of six polygenic prediction methods across different genetic

architectures and training sample sizes (i.e., GWAS sample sizes)
in simulation studies (Fig. 1 and Supplementary Table 1). SNP
effect sizes were simulated using (1) a point-normal model with
different numbers of causal variants, and (2) a normal mixture
model, as described in the Methods section. Tuning parameters
(P-value threshold in P+T, fraction of causal SNPs in LDpred,
and global shrinkage parameter in PRS-CS) were selected in a
validation data set (N= 3000). Prediction accuracy for all
methods was quantified by R2 between the observed and pre-
dicted traits in an independent testing set (N= 3000).

Figure 1 shows that polygenic prediction methods that do not
account for non-infinitesimal genetic architectures (unadjusted
PRS and LDpred-inf) performed poorly when the number of
causal variants is small, but became more comparable to other
methods when the genetic architectures are highly polygenic. For
all the methods, the prediction accuracy decreased as the number
of causal variants increases with fixed heritability, because as
more causal SNPs are in LD (as a result of more causal SNPs
being randomly sampled across the genome) and their effect sizes
decline, it becomes increasingly difficult to distinguish real signals
from noise. Overall, methods that account for local LD patterns
(LDpred, PRS-CS, and PRS-CS-auto) outperformed P+T, which
discards LD information. However, one unexpected observation
is that, when the genetic architecture is sparse, the prediction
accuracy of LDpred decreased dramatically as the training sample
size grows. This is likely because when the number of causal
variants is small and the training sample size is large, all markers
in LD with the causal variant become highly statistically
significant in association tests, and LDpred does not accurately
adjust for the LD structure, resulting in a decrease in predictive
performance. In contrast, PRS-CS and PRS-CS-auto were
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Fig. 1 Predictive performance of six polygenic prediction methods in simulation studies using a point-normal model and a normal mixture model.
Heritability was fixed at 0.5. The 1000 Genomes Project European sample was used as an external linkage disequilibrium (LD) reference panel. Tuning
parameters (P-value threshold in P+T, fraction of causal markers in LDpred, and global shrinkage parameter in PRS-CS) were selected in a validation data
set. Prediction accuracy was quantified by R2 between the observed and predicted traits in an independent testing set. The upper four panels correspond to
the four genetic architectures (100, 1000, 10,000, and 100,000 causal variants) simulated using the point-normal model. The lower panel corresponds to
the normal mixture model. Within each panel, results for four different training sample sizes (10,000, 20,000, 50,000, and 100,000) are shown. On each
box, the central mark is the mean across 20 simulations, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points that are not considered outliers, and the outliers are plotted individually
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minimally affected in the combination of sparse genetic
architectures and large training sample sizes, which demonstrates
the advantage of multivariate modeling and block update of the
effect sizes for genetic markers in LD. In a few scenarios where
the training sample size is small, PRS-CS produced lower
prediction accuracy than LDpred, but it outperformed LDpred
as the sample size grows across all genetic architectures. PRS-CS-
auto did not perform well when the training sample size is small
and the genetic architecture is sparse (e.g., in the case of 100
causal variants and 10,000 training samples), but approached the
performance of PRS-CS as the sample size increases.

In addition to prediction accuracy, we assessed the calibration
of polygenic prediction methods by regressing the true phenotype
onto the PRS predictor and inspecting the regression slope. A
slope close to one indicates that a predictor is correctly calibrated.
Consistent with predictive performance, as the training sample
size grows, our Bayesian approach provides the best calibration
among all methods examined (Supplementary Table 7). PRS-CS-
auto is particularly well calibrated for large training sample sizes,
because it automatically learns the sparseness of the genetic
architecture from data and adjusts for the LD structure
accordingly.

Secondary simulation studies using (1) the point-normal model
with different total heritability (0.2 and 0.8); (2) a point-t model
with different numbers of causal variants; and (3) a point-gamma
model with different numbers of causal variants produced similar
patterns of prediction accuracy (Supplementary Figs. 1–4;
Supplementary Tables 2–5) and calibration properties (Supple-
mentary Tables 8–11). Using the combined UK Biobank
validation and testing data sets (N= 6000) as an in-sample LD
reference panel in the point-normal simulations produced, in
general, slightly higher prediction accuracy for methods making
use of LD information (Supplementary Fig. 5; Supplementary
Tables 6 and 12), suggesting that using a larger reference panel
that better aligns with the LD structure of the target sample may
increase predictive performance. However, as the improvement
was marginal, it appears that the performance of PRS-CS(-auto)
is not particularly sensitive to the LD reference panel, and

1KG can serve as a valid reference despite its relatively small
sample size.

Polygenic prediction in the Partners Biobank. We applied PRS-
CS, PRS-CS-auto, and alternative methods to predict six curated
common complex diseases (breast cancer, coronary artery disease,
depression, inflammatory bowel disease, rheumatoid arthritis,
and type 2 diabetes mellitus), and six quantitative traits (height,
body mass index, high-density lipoproteins, low-density lipo-
proteins, cholesterol, and triglycerides) in the Partners Health-
Care Biobank. Large-scale GWAS summary statistics for each
disease and trait were downloaded from public domains (Table 1
and Supplementary Data 1). SNP heritability for each disease
(both on the observed scale and the liability scale) and trait
estimated using GWAS summary statistics and LD score regres-
sion23 are presented in Supplementary Table 13.

Predictive performance measured by Nagelkerke’s R2 (for
disease phenotypes) and R2 (for quantitative traits) is summarized
in Fig. 2. Additional prediction accuracy metrics, including area
under the receiver operating characteristic (ROC) curve (known
as AUC), area under the precision-call curve, and the odds ratio
(OR) comparing top 10% of the participants having high
polygenic risk with the remaining 90% of the sample, produced
similar results in terms of the ranked performance of polygenic
prediction methods and are reported in Supplementary Data 2.

Consistent with previous work, unadjusted PRS performed
poorly regardless of the genetic architecture, and LDpred showed
an overall improvement over P+T. Among the six curated disease
phenotypes, PRS-CS produced substantially better predictions for
breast cancer (41.85% relative increase in Nagelkerke’s R2

compared to LDpred) and rheumatoid arthritis (28.62% relative
increase in Nagelkerke’s R2 compared to LDpred). For coronary
artery disease, depression and type 2 diabetes mellitus, LDpred
and PRS-CS had similar predictive performance, and both
performed dramatically better than P+T. PRS-CS was only
inferior to LDpred in the prediction of inflammatory bowel
disease (10.24% relative decrease in Nagelkerke’s R2). However,

Table 1 Information on six common complex diseases and six quantitative traits

Disease/Trait Abbreviation GWAS reference GWAS sample size
(case/control)

1 KG ∩ PBK
SNPs

1 KG ∩ PBK ∩
HM3 SNPs

PBK sample size
(case/control)

Breast cancer BRCA Michailidou et al.59 228,951
(122,977/105,974)

5,022,127 857,616 10,220
(884/9336)

Coronary artery disease CAD Nikpay et al.60 184,305
(60,801/123,504)

4,803,592 849,399 16,251
(2759/13,492)

Depression DEP Wray et al.61 173,005
(59,851/113,154)

4,924,025 850,291 15,276
(2361/12,915)

Inflammatory bowel
disease

IBD Liu et al.62 34,652
(12,882/21,770)

4,823,570 849,749 18,998
(750/18,248)

Rheumatoid arthritis RA Okada et al.63 58,284
(14,361/43,923)

3,872,637 849,680 18,170
(753/17,417)

Type 2 diabetes
mellitus

T2DM Scott et al.64 159,208
(26,676/132,532)

4,901,848 856,912 18,823
(1978/16,845)

Height HGT Yengo et al.65 693,529 1,578,533 750,888 3957
Body mass index BMI Yengo et al.65 681,275 1,579,905 751,676 3954
High-density
lipoproteins

HDL Willer et al.66 188,578 1,604,577 758,036 2491

Low-density
lipoproteins

LDL Willer et al.66 188,578 1,600,625 756,724 1713

Cholesterol CHOL Willer et al.66 188,578 1,604,391 757,970 2561
Triglycerides TRIG Willer et al.66 188,578 1,601,270 756,913 2505

The sample size for each external genome-wide association study (GWAS), and the number of genetic markers included in the polygenic prediction are shown, along with the sample size for each
disease and quantitative phenotype in the Partners HealthCare Biobank (PBK). For unadjusted PRS and P+T, all common genetic markers (minor allele frequency ≥1%) that passed quality control and are
present in the summary statistics and 1000 Genomes Project (1KG) European sample were used in prediction. For LDpred(-inf) and PRS-CS(-auto), genetic markers were further restricted to the
HapMap3 (HM3) panel
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we note that inflammatory bowel disease has the smallest training
sample size among all diseases and traits (Table 1). The lower
prediction accuracy of PRS-CS for this disease is thus consistent
with our simulation studies, where we observed that when the
training sample size is limited, LDpred can outperform PRS-CS.
PRS-CS-auto produced lower prediction accuracy than LDpred
except for breast cancer, indicating that the current GWAS
sample sizes for most diseases may not be large enough to
accurately learn the global shrinkage parameter from GWAS
summary statistics.

For the six quantitative traits, both PRS-CS and PRS-CS-auto
consistently outperformed all alternative methods examined. The
relative improvement in prediction accuracy for PRS-CS
compared to LDpred ranged from 8.01% for LDL and 8.75%
for BMI, to 27.75% for height and 32.05% for cholesterol, with an
average improvement of 18.17%. The average improvement of
PRS-CS-auto relative to LDpred across the six quantitative traits
was 11.41%. The average improvements of PRS-CS and PRS-CS-
auto relative to P+T were 48.16% and 38.62%, respectively. We
note that LDpred was the best method after PRS-CS and PRS-CS-
auto for all quantitative traits except height, for which its
prediction accuracy was lower than LDpred-inf and P+T. This is
theoretically expected and consistent with a recent study, which
also observed that for highly polygenic traits, LDpred-inf often
outperforms LDpred24.

Overall, using the Partners HealthCare Biobank data as an in-
sample LD reference (N= 19,136) instead of the 1KG reference

panel slightly increased the prediction accuracy but the improve-
ment was marginal (Supplementary Fig. 6 and Supplementary
Data 3).

Discussion
Polygenic prediction, which exploits genome-wide genetic mar-
kers to estimate the genetic liability to a complex human disease
or trait, is likely to become useful in clinical care and contribute
to personalized medicine. As a high-dimensional regression
problem that requires regularization, a majority of the existing
methods that jointly model genetic markers across the genome
employ Bayesian approaches and assign a discrete mixture prior
on SNP effect sizes. Although intuitively appealing, this class of
priors generates daunting computational challenges: the model
space grows exponentially with the number of markers, which is
difficult to fully explore, and more importantly, discrete mixture
priors do not allow for block update of effect sizes and thus
hinder accurate LD adjustment in polygenic prediction. LDpred4

partially addressed this issue by making several simplifying
assumptions to the posterior distribution and using marginal
posterior without LD to approximate the true posterior. However,
our simulation studies suggest that this approximation may be
inaccurate.

We have presented a conceptually different class of priors—the
continuous shrinkage priors—which can be represented as global-
local scale mixtures of normals, for polygenic modeling. By using

0.10

0.05

0

0.10

0.05

0

0.10

0.05

0

0.10

0.05

0

0.10

0.05

0

0.10

0.05

0

IBD RA

CADBRCA DEP

T2DM

HGT BMI HDL
0.30

0.20

0.10

0

0.30

0.20

0.10

0

0.30

0.20

0.10

0

0.30

0.20

0.10

0

0.30

0.20

0.10

0

0.30

0.20

0.10

0

LDL CHOL TRIG

PRS-unadj LDpred-inf P+T LDpred PRS-CS-auto PRS-CS

N
ag

el
ke

rk
e’

s 
R

2
N

ag
el

ke
rk

e’
s 
R

2
P

re
di

ct
io

n 
R

2
P

re
di

ct
io

n 
R

2

Fig. 2 Prediction accuracy of six polygenic prediction methods in the Partners HealthCare Biobank. Posterior effect sizes of single nucleotide
polymorphisms (SNPs) were trained with large-scale genome-wide association summary statistics, using the 1000 Genomes Project European sample as
an external linkage disequilibrium (LD) reference panel. Polygenic scores were applied to predict six curated common complex diseases—breast cancer
(BRCA), coronary artery disease (CAD), depression (DEP), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), and type 2 diabetes mellitus
(T2DM), and six quantitative traits—height (HGT), body mass index (BMI), high-density lipoproteins (HDL), low-density lipoproteins (LDL), cholesterol
(CHOL), and triglycerides (TRIG). The Partners HealthCare Biobank sample for each disease and quantitative phenotype was repeatedly and randomly split
into a validation set comprising 1/3 of the data and a testing set comprising 2/3 of the data. Tuning parameters (P-value threshold in P+T, fraction of
causal SNPs in LDpred, and global shrinkage parameter in PRS-CS) were selected in the validation data set, and the predictive performance was assessed in
the testing set. For disease (case–control) phenotypes and quantitive traits, prediction accuracy was measured by the Nagelkerke’s R2 and R2, respectively,
averaged across 100 random splits. The error bar indicates the standard deviation of prediction accuracy across 100 random splits. Prediction accuracy for
each random split is overlaid on the bar plot (black circles)
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a continuous mixing density on the scales of the marker effects,
continuous shrinkage priors enable a simple and efficient Gibbs
sampler with multivariate block update of the effect sizes, and
thus resolve a major technical hurdle of discrete mixture priors. A
second feature of the continuous shrinkage prior is its ability to
shrink adaptively. By constructing a prior density on SNP effect
sizes that is both peaked at zero and heavy-tailed, the method
imposes strong shrinkage on small effects that are likely to be
noise, while applying practically no shrinkage to data-supported
truly non-zero signals. Simulated and real data analyses showed
that PRS-CS consistently outperforms existing methods across a
wide range of genetic architectures, especially when the training
sample size is large. We note that previous work often extra-
polated prediction accuracy for larger effective sample sizes by
restricting the analysis to a subset of the genetic markers4,24.
However, our simulations suggest that this approach may not
fully capture the behavior of a polygenic prediction algorithm
when the training sample size grows, and underscore the need for
actually scaling up the sample size in future studies.

PRS-CS has a tuning parameter, i.e., the global shrinkage
parameter ϕ, which needs to be fixed based on prior beliefs about
the sparseness of the genetic architecture, or selected by testing a
small number of values. If a grid search is used, like other poly-
genic prediction methods that have tuning parameters such as P
+T and LDpred, the optimal value of ϕ should be selected using a
validation data set that is independent of the testing set
where predictive performance is assessed to avoid overfitting. In
this work, we also presented PRS-CS-auto, a fully Bayesian
approach that enables automatic learning of ϕ from GWAS
summary statistics. Although analyses in the Partners Biobank
indicate that, for many disease phenotypes, the current GWAS
sample sizes may not be large enough to accurately learn ϕ and
the prediction accuracy of PRS-CS-auto may be lower than PRS-
CS and LDpred, simulation studies and quantitative trait analyses
suggest that PRS-CS-auto can be useful when the training sample
size is large or when an independent validation set is difficult to
acquire.

Although continuous shrinkage priors enable multivariate
modeling of the LD structure, simultaneous updating of the effect
sizes for genome-wide markers remains computationally infea-
sible. In this work, we used a genome partition computed and
validated by prior work25, which divides the genome into 1703
largely independent genomic regions, and has been successfully
used in local heritability and genetic correlation analyses26,27.
Block update of posterior SNP effect sizes can thus be performed
within each LD block, assuming no LD between blocks. Using a
sliding window approach as implemented in LDpred4 may cap-
ture LD across blocks more accurately, but is more memory
intensive and computationally expensive. By restricting the ana-
lysis to HapMap3 variants, the partition we employed gives a
moderate number of SNPs within each block (on average ~500
SNPs per block), and the Bayesian computation with 1000
MCMC iterations on the longest chromosome can be completed
within an hour using one Intel(R) Xeon(R) CPU core and 2 GB of
memory. Expanding the size of LD blocks may improve predic-
tion accuracy but increases computational cost (as each MCMC
iteration requires inverting an L × L matrix where L is the block
size), while reducing the size of LD blocks has the potential risk of
missing long-range LD. Therefore, the partition we chose repre-
sents a balance between modeling accuracy and computational
burden. Including multi-million SNP predictors may increase
prediction accuracy28 but requires further work.

We note that the prior we investigated in this work, i.e., the
Strawderman-Berger prior on the local marker-specific shrinkage
parameter, is only one of the possible choices within the class of
continuous shrinkage priors, which includes the normal-gamma

prior29,30, the normal-inverse-gaussian prior29, the generalized t
(generalized double Pareto) prior31,32, and the normal-
exponential-gamma prior33,34, among others. In addition, most
frequentist regularization procedures, such as LASSO, elastic net
and bridge regression, have a Bayesian counterpart that can be
represented as global-local scale mixtures priors in combination
with posterior mode inferences. Each of these priors uses a dif-
ferent continuous mixing density to produce a different marginal
prior on the SNP effect sizes. These alternatives may perform
equally well or better than the Strawderman-Berger prior for
certain genetic architectures. However, we found that as long as
the prior on the effect sizes places a sizable amount of mass
around zero and has heavier-than-exponential tails, variation in
the shape of the prior does not seem to have a large impact on
prediction accuracy. Therefore, we believe that the primary gain
of PRS-CS over existing methods lies in its more accurate mul-
tivariate modeling of local LD patterns and its block-updated
Gibbs sampling that can improve the mixing and convergence
rate of the Markov chain. We thus recommend using the
Strawderman-Berger prior as a default choice. A systematic
investigation and comparison of different continuous shrinkage
priors is a direction of future work.

We note several additional directions for further technical
developments that may be useful. First, although this paper is
focused on polygenic prediction methods that only require
GWAS summary statistics, PRS-CS, and PRS-CS-auto can be
straightforwardly applied to individual-level data. Given that a
majority of the existing Bayesian genomic prediction models,
including Bayes alphabetic methods10,35–40, BayesR41,42, BVSR43,
BSLMM44, and DPR45, have used discrete mixture priors on SNP
effect sizes, we expect that PRS-CS can provide substantial
improvements in computational efficiency and prediction accu-
racy for genomic prediction that leverages individual-level data.
Second, jointly modeling multiple genetically correlated traits and
including functional annotations in polygenic modeling are
expected to increase the predictive performance of PRS, as shown
by recent studies24,46,47. Lastly, current research on polygenic
prediction has largely been restricted to European samples.
Heterogeneity between the GWAS, LD reference and testing
samples may reduce prediction accuracy as recently demonstrated
in genetic correlation analysis and fine-mapping48,49. Expanding
genomic prediction methods to handle unknown ancestry of the
target sample (e.g., applications in forensic science) and enable
transethnic risk prediction is critical to maximize the value of PRS
in a diverse population.

Although PRS-CS provides a substantial improvement over
existing methods for polygenic prediction, current prediction
accuracy of PRS is still lower than what can be considered
clinically useful, and much work is needed to further improve the
predictive performance and translational value of PRS. In theory,
the utility of PRS depends on multiple factors, including the
GWAS sample size, and the heritability and genetic architecture
of the disease. For example, among the six complex diseases we
analyzed, depression had the lowest prediction accuracy
(Nagelkerke’s R2 less than 1%), likely due to a combination of its
relatively low heritability, extremely polygenic genetic archi-
tecture, and the heterogeneous nature of the disorder. A recent
study projected that a GWAS with multi-million subjects is
needed to identify genetic variants that explain 80% of the SNP
heritability for major depressive disorder5. In contrast, it may be
easier to produce a clinically useful prediction for some auto-
immune diseases or late-onset chronic diseases (e.g., coronary
artery disease and type 2 diabetes), due to the existence of SNPs
with moderate to larger effect sizes. With these being said, as the
GWAS sample size continues to grow, we believe that the pre-
dictive value of PRS will keep increasing, and PRS-CS(-auto) will
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demonstrate bigger advantages over existing methods with larger
training sample sizes.

Methods
PRS-CS and PRS-CS-auto. We consider the following phenotype model:

y ¼ Zβþ ε; ε � Nð0; σ2IÞ; pðσ2Þ / σ�2; ð5Þ
where y is a vector of standardized phenotypes from N individuals, Z is an N ×M
matrix of standardized genotypes (each column is mean centered and has unit
variance), β is a vector of effect sizes, ε is a vector of independent environmental
effects, and we have assigned a non-informative scale-invariant Jeffreys prior on
the residual variance σ2. In contrast to discrete mixture priors, we consider a
conceptually different class of priors:

βj � N 0;
σ2

N
ϕψj

� �
; ψj � g; ð6Þ

where the variance of βj scales with the residual variance and the sample size, ϕ is a
global scaling parameter that is shared across all effect sizes, ψj is a local, marker-
specific parameter, and g is an absolutely continuous mixing density function. This
type of prior is known as global-local scale mixtures of normals.

We first note that, given variance parameters σ2, ϕ and ψj, j= 1,2,…,M, and the
marginal least squares effect size estimates of the regression coefficients
β̂ ¼ ZTy=N , the posterior mean of β is

E½βjβ̂� ¼ ðDþ T�1Þ�1β̂; ð7Þ
where T= diag{ϕψ1,ϕψ2,…, ϕψM} is a diagonal matrix, and D= ZΤZ/N is the LD
matrix. It can be seen that the posterior mean is a matrix shrinkage version of the
least squares estimate. In the degenerative special case where ψj≡ 1, the model
becomes Ridge regression and all effect sizes are shrunk towards zero at the same
constant rate controlled by the overall shrinkage parameter ϕ. The introduction of
the local shrinkage parameter ψj thus allows heterogeneity in the scales of effect
sizes.

To provide further intuitions, assuming that all genetic markers are unlinked
(i.e., no LD), we have D= I and thus

E½βjjβ̂j� ¼
1

1þ ϕ�1ψ�1
j

β̂j ¼ 1� 1
1þ ϕψj

 !
β̂j :¼ ð1� τjÞβ̂j; ð8Þ

where τj= 1/(1+ ϕψj) is the shrinkage factor for the j-th marker, which relies on
both ϕ and ψj, and describes the amount of shrinkage from the marginal least
squares solution towards zero; τj= 0 indicates no shrinkage while τj= 1 yields total
shrinkage. Therefore, ϕ controls the overall sparsity level of the model and plays a
similar role as the regularization parameter in penalized regression, while ψj
adaptively modifies the amount of shrinkage for each marker. By assigning a prior
on ψj, which can produce a marginal prior density on βj that has both a sharp peak
at zero and heavy tails, the model can pull small effects towards zero, while
asserting little influence on larger effects.

In this work, we investigate a specific continuous shrinkage prior. We assign an
independent gamma-gamma prior on the local shrinkage parameter ψj:

ψj � Gða; δjÞ; δj � Gðb; 1Þ; ð9Þ
where G(α,β) denotes the gamma distribution with shape parameter α and scale
parameter β. By using change of variables, it can be verified that placing a gamma-
gamma prior on ψj is equivalent to placing a three-parameter beta (TPB) prior on
the shrinkage factor τj33:

τj � TPBða; b;ϕÞ; ð10Þ
where the TPB distribution has the following density function:

f ðx; a; b; ϕÞ ¼ Γðaþ bÞ
ΓðaÞΓðbÞ ϕ

bxb�1ð1� xÞa�1f1þ ðϕ� 1Þxg�ðaþbÞ; ð11Þ

with 0 < x < 1, a > 0, b > 0 and ϕ > 0. When ϕ= 1, the TPB distribution becomes a
standard Beta distribution. For a fixed value of ϕ, a controls the behavior of the
TPB prior near one, and thus the behavior of the prior on βj around zero; b
controls the behavior of the TPB prior near zero, and thus affects the tails of the
prior on βj. Figure 3 shows the prior densities on τj (upper panel) and βj (middle
and lower panels) with ϕ= 1, b= 1/2, and three different values of a: a= 1/2, a= 1
and a= 3/2. It can be seen that when a= 1/2 and b= 1/2, the TPB prior has
substantial mass near zero and one (Fig. 3, upper panel), and thus the
corresponding prior density on βj has a very sharp peak around the origin, with
zero being a pole (singular point; Fig. 3, middle panel), along with heavy, Cauchy-
like tails (Fig. 3, lower panel). This prior is known as the horseshoe prior50, due to
the horseshoe-shaped prior density on the shrinkage factor τj. As a increases, the
prior on βj becomes less peaked at zero but the tails remain heavy. Finally, for fixed
a and b, decreasing the global shrinkage parameter ϕ shifts the TPB prior from left
to right, which imposes stronger shrinkage on the regression coefficients βj.

For all continuous shrinkage priors that take the general form in Eq. (6), Gibbs
samplers with block update of the regression coefficients β (i.e., SNP effect sizes)
can be easily derived. By using LD information from an external reference panel,

the method can be applied to GWAS summary statistics and does not require
individual-level data. We describe the Gibbs sampler in Supplementary Note. In
this study, we focus on a specific set of parameter values of the gamma-gamma
prior on ψj (or equivalently, the TPB prior on τj): a= 1 and b= 1/2. This particular
specification is known as the Strawderman-Berger prior17,18 or the quasi-Cauchy
prior51, and appears to work well across a range of simulated and real genetic
architectures.

In practice, we partition the genome into 1703 largely independent genomic
regions estimated using data from the 1KG European sample25–27 [http://bitbucket.
org/nygcresearch/ldetect-data], and conduct multivariate update of the effect sizes
within each LD block (see Supplementary Note). To avoid numerical issues caused
by collinearity between SNPs, we set a lower bound on the amount of
regularization applied to the genetic markers (i.e., restricting ϕ�1ψ�1

j � ρ, where ρ
is a small constant). We use ρ= 1 throughout this paper.

We find that the predictive performance of the model is not sensitive to the
global shrinkage parameter ϕ, and setting ϕ1/2 roughly to the proportion of causal
variants52 works well. If a prior guess of the sparseness of the genetic architecture is
not available, we provide two ways to learn ϕ. In PRS-CS, we search a small
number of ϕ values: ϕ1/2∈ {0.0001, 0.001, 0.01, 0.1, 1}, and select the ϕ that
produces the best predictive performance in a validation data set, which is
independent of the testing set where prediction accuracy of the algorithm is
evaluated. In PRS-CS-auto, we use a fully Bayesian approach and assign a standard
half-Cauchy prior on ϕ1/219,20, such that ϕ is automatically learnt from GWAS
summary statistics and no validation data set is needed. See Supplementary Note
for the Gibbs updates of ϕ.

For both PRS-CS and PRS-CS-auto, the Gibbs sampler usually attains
reasonable convergence after 1000 Markov Chain Monte Carlo (MCMC) iterations
and produces prediction accuracy close to what can be achieved by much longer
MCMC runs. We thus use 1000 MCMC iterations with the first 500 steps as burn-
in in simulation studies to reduce computational cost. In practice, we recommend
using longer MCMC runs when time and computational resources permit. In the
Partners HealthCare Biobank analysis, we report the predictive performance of
PRS-CS and PRS-CS-auto based on 10,000 MCMC iterations in total and 5000
burn-in steps.

0 0.2 0.4 0.6 0.8 1

–3 –2 –1

a = 1/2 (Horseshoe)

Prior density of �j

Prior density of �j: central region

Prior density of �j: tails

a = 1 (Strawderman-Berger)
a = 3/2
Normal

3

0 1 2 3

4 5 6 7

Fig. 3 Densities of the priors. Upper panel: Density of the three-parameter
beta prior on the shrinkage factor τj with ϕ= 1, b= 1/2, and three different
a values. Middle panel: Central region of the marginal prior density on the
effect size βj with ϕ= 1, b= 1/2, and three different a values, in comparison
with the standard normal density. Lower panel: Tails of the marginal prior
density on the effect size βj with ϕ= 1, b= 1/2, and three different a values,
in comparison with the standard normal density
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Unadjusted PRS. The unadjusted PRS is the sum of all genetic markers across the
genome, weighted by their marginal effect size estimates. More specifically, the
unadjusted polygenic score for the i-th individual is PRSi ¼

PM
j¼1 Xijb̂j , where M is

the total number of genetic markers, Xij is the genotype for the i-th individual and
the j-th SNP, and b̂j is the estimated marginal per-allele effect size of the j-th SNP.

P+T. The P+T method refers to the calculation of PRS using informed LD-
pruning (also known as LD-clumping) and P-value thresholding. In this study, we
use the implementation of the P+T method in the software package PRSice-253

[https://choishingwan.github.io/PRSice] and its default parameter settings. Speci-
fically, for any pair of SNPs that have a physical distance smaller than 250 kb and
an R2 greater than 0.1, the less significant SNP is removed. The polygenic score is
then calculated as the sum of the remaining, largely independent SNPs with a
GWAS association P-value below a threshold PT, weighted by their marginal effect
size estimates. We consider PT∈ {1E−8, 1E−7, 1E−6, 1E−5, 3E−5, 1E−4, 3E−4,
0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1} in this paper. The PT value that produces the
highest prediction accuracy in a validation data set is selected, and the predictive
performance is assessed in an independent testing set.

LDpred and LDpred-inf. LDpred [https://github.com/bvilhjal/ldpred] is a method
that infers the posterior mean effect size of each genetic marker from GWAS
summary statistics while accounting for LD, using a point-normal prior on the SNP
effect sizes and LD information from an external reference panel4. Consider the
linear model y= Zβ+ ε, where both the phenotype y and the genotype matrix Z
have been standardized. LDpred places an independent point-normal prior on each
regression coefficient βj:

βj �
N 0;

h2g
πM

� �
; with probability π;

0; with probability 1� π;

(
ð12Þ

where h2g is the heritability explained by genome-wide genetic markers (known as
SNP heritability), and π is the fraction of causal variants. Given π and an estimate
of h2g , which can be obtained, for example, by applying LD score regression23 to the
GWAS summary statistics, LDpred employs an MCMC sampler to approximate
the posterior mean of βj, conditioning on marginal least squares effect size esti-
mates and LD information from a reference panel. In this paper, we consider π∈
{1E−5, 3E−5, 1E−4, 3E−4, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}. The π value with
the highest prediction accuracy in a validation data set is selected, and the pre-
dictive performance is assessed in an independent testing set.

LDpred-inf is a special case of LDpred when all variants are assumed to be
causal (i.e., π= 1). Under this infinitesimal model, the posterior mean effect sizes
in the ‘-th LD window have a closed-form approximation:

E½β‘jβ̂‘;D‘� � D‘ þ
M
Nh2g

I

 !�1

β̂‘; ð13Þ

where β̂‘ is a vector of marginal least squares effect size estimates, D‘ is the LD
matrix that can be estimated from an external reference panel, I is an identity
matrix, and it has been assumed that h2‘ , the heritability explained by SNPs in the
‘-th LD window, is small such that 1� h2‘ � 1. In this work, we use an LD radius
of M/3000 to approximate local LD patterns, as suggested in Vilhjalmsson et al.4

UK Biobank genetic data. UK Biobank [http://www.ukbiobank.ac.uk] is a pro-
spective cohort study of ~500,000 individuals recruited across Great Britain during
2006–201013. The protocol and consent were approved by the UK Biobank’s
Research Ethics Committee. Data for the current analyses were obtained under an
approved data request.

The genetic data for the UK Biobank comprises 488,377 samples and was phased
and imputed to ~96 million variants with the Haplotype Reference Consortium
(HRC) haplotype resource and the UK10K+ 1KG reference panel. We leveraged the
QC metrics provided by the UK Biobank14 and removed samples that had mismatch
between genetically inferred sex and self-reported sex, high genotype missingness or
extreme heterozygosity, sex chromosome aneuploidy, and samples that were
excluded from kinship inference and autosomal phasing. We further restricted the
analysis to unrelated white British participants. We conducted simulation studies
using 819,941 HapMap3 SNPs after removing ambiguous (A/T and C/G) SNPs and
markers with minor allele frequency (MAF) <1%, missing rate >1%, imputation
quality INFO score <0.8, and significant deviation from Hardy-Weinberg
equilibrium (HWE) with P < 1 × 10−10. All genetic analyses in the UK Biobank were
conducted using PLINK 1.954 [https://www.cog-genomics.org/plink/1.9].

Simulations. We performed simulation studies using real genetic data from the UK
Biobank and the 1KG European sample (N= 503) as an external LD reference
panel. SNP effect sizes were simulated using (1) a point-normal model as specified
in Eq. (12) with different numbers of causal variants (100, 1000, 10,000, and
100,000), which represent extremely sparse to highly polygenic genetic archi-
tectures; and (2) a normal mixture model comprised 10 group-one SNPs, 1000
group-two SNPs and 10,000 group-three SNPs, and the three effect size groups

explained 10%, 20%, and 70% of the total heritability, respectively. The simulated
trait was generated by the sum of all genetic markers, weighted by their simulated
effect sizes, and adding a normally distributed noise term which fixed the herit-
ability at 0.5. We then conducted GWAS to produce a marginal least squares effect
size estimate for each SNP, and applied each polygenic prediction method to the
GWAS summary statistics. For P+T, LDpred, and PRS-CS, tuning parameters were
selected in a validation data set of 3000 individuals that are unrelated to the
training sample. The predictive performance of all the six methods was evaluated in
3000 individuals (the testing set) that are unrelated to both the training sample and
the validation set. R2 between the observed and predicted traits was used to
quantify the prediction accuracy. We regressed the true phenotype onto the PRS
predictor, and used the regression slope as a measure of calibration. A slope close
to one indicates that a predictor is well calibrated. For each combination of the
genetic architecture and the training sample size (10,000, 20,000, 50,000, and
100,000), the simulation was repeated 20 times.

In order to systematically compare polygenic prediction methods across a wide
range of settings, we conducted a number of secondary simulation studies: (1)
sampling SNP effect sizes using a point-normal model with heritability fixed at 0.2
or 0.8; (2) sampling SNP effect sizes using a point-t model with heavy tails (a
mixture of a point mass at zero and a Student’s t-distribution with 4 degrees of
freedom); (3) sampling SNP effect sizes using a point-gamma model (a mixture of a
point mass at zero and a gamma distribution with the shape parameter set to 2),
which produces an effect size distribution that is asymmetric about zero and
positively skewed with the right tail being long and thin and the left tail being short
and fat; (4) using the combined UK Biobank validation and testing data sets (N=
6000) as an in-sample LD reference panel in the point-normal simulations. For
each setting and training sample size considered (10,000, 20,000, 50,000, and
100,000), and the simulation was repeated 20 times.

Partners HealthCare Biobank genetic data. The Partners HealthCare Biobank
[https://biobank.partners.org] is a collection of plasma, serum, DNA and buffy
coats samples collected from consented subjects, which are linked to their elec-
tronic health records (EHR) and survey data on lifestyle, environment, and family
history55. To date, Partners Biobank has enrolled more than 96,000 participants,
and released genome-wide genetic data for 25,482 subjects. A study protocol is not
required for Partners investigators to obtain de-identified data sets from Partners
Biobank.

We performed QC on each genotyping batch separately with the following
steps: (1) SNPs with genotype missing rate >0.05 were removed; (2) samples with
genotype missing rate >0.02 or absolute value of heterozygosity >0.2, or samples
that failed sex checks were excluded; (3) SNPs with missing rate >0.02, or HWE test
P < 1 × 10−6 were discarded. We then removed SNPs that showed significant batch
associations with P < 1 × 10−6, and merged genotyping batches for subsequent
processing and analyses.

The Partners HealthCare Biobank included individuals from diverse
populations. We used the 1KG samples as a population reference panel to infer the
ancestry of Partners Biobank participants. Specifically, we computed principal
components (PCs) of the genotype data in all the 1KG samples, and trained a
random forest model using the top 4 PCs on the super population labels (African
[AFR], American [AMR], East Asian [EAS], European [EUR], and South Asian
[SAS]), in which EUR (N= 503) included TSI, IBS, GBR, CEU, and FIN
subpopulations. The random forest model was then applied to the Partners
Biobank participants, and identified 19,136 unrelated subjects (π̂ < 0:2) with
European ancestry.

We used the Eagle2 software56 [https://data.broadinstitute.org/alkesgroup/
Eagle] for pre-phasing and Minimac357 [https://genome.sph.umich.edu/wiki/
Minimac3] for imputation in the Partners Biobank European sample. Lastly, we
removed markers with MAF <1%, missing rate >2%, imputation quality INFO
score <0.8, and significant deviation from HWE with P < 1 × 10−10. All genetic
analyses in the Partners Biobank were conducted using PLINK 1.954.

Partners Biobank curated disease populations and quantitative traits. For a
number of common complex diseases, the Partners Biobank trained and validated a
classification algorithm, which leverages both structured and unstructured EHR
data, and combines natural language processing and statistical methods, in a gold
standard training set created by expert chart review. The algorithm was then
applied to all the participants in the Biobank to identify cases and controls, and
create curated disease populations. We selected six curated diseases—BRCA, CAD,
DEP, IBD (Crohn’s disease or ulcerative colitis), RA, and T2DM—for which there
are more than 500 cases in the Biobank that have been genotyped, and external
large-scale GWAS summary statistics are publicly available. For all the diseases,
cases have an algorithm-based positive predictive value (PPV) of having current or
past history of the disease greater than 0.90, and controls have a negative predictive
value (NPV) of having no history of the disease greater than 0.99.

In addition, we selected six quantitative traits—height (HGT), body mass index
(BMI), high-density lipoproteins (HDL), low-density lipoproteins (LDL),
cholesterol (CHOL), and triglycerides (TRIG)—that have been measured in the
Partners Biobank healthy control population with a Charlson age-comorbidity
index 0–2 and the predicted 10-year survival probability greater than 90%. We
predicted these quantitative traits in a relatively heathy population to avoid
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measurements affected by severe diseases or medications. For participants that
have multiple measurements of a trait of interest, we used the median value.
Table 1 presents the sample size for each curated disease and quantitative trait in
the Partners Biobank.

Summary statistics and polygenic prediction. GWAS summary statistics for all
the diseases and quantitative traits are publicly available (Supplementary Data 1).
We removed ambiguous (A/T and C/G) SNPs and mapped the genetic markers to
the Genome Reference Consortium human genome build 37. SNP heritability for
each disease and trait was estimated using GWAS summary statistics and LD score
regression23. Heritability estimates for diseases on the observed scale were trans-
formed to the liability scale as described in Lee et al.58 using the assumed popu-
lation and sample prevalences shown in Supplementary Table 13. For unadjusted
PRS and P+T, we used all the genetic markers that are present in the summary
statistics, LD reference panel and the Partners Biobank genetic data. For LDpred
(-inf) and PRS-CS(-auto), we further restricted the genetic markers to the Hap-
Map3 panel to reduce memory and computational cost. Table 1 shows the total
number of markers included in the analysis for each disease and quantitative
phenotype. We note that the GWAS samples and the Partners Biobank sample may
have overlap. However, by carefully examining the sample composition of each
GWAS study, we believe that sample overlap is minimal (if any) and does not
impact the comparison among polygenic prediction methods.

For each curated disease and quantitative trait, the Partners HealthCare Biobank
sample was repeatedly and randomly split into a validation set comprising 1/3 of the
data and a testing set comprising 2/3 of the data. Tuning parameters (P-value
threshold in P+T, fraction of causal SNPs in LDpred, and global shrinkage parameter
in PRS-CS) were selected in the validation set, and the predictive performance was
evaluated in the testing set. We use the average R2 between the observed and
predicted phenotypes across 100 random splits to assess the predictive performance
for the quantitative traits, and report the average Nagelkerke’s R2 metric across 100
random splits for disease (case–control) phenotypes. Nagelkerke’s R2 is defined as

R2
nag ¼ R2=R2

max, where R
2 ¼ 1� ðLres=LfullÞ2=N , R2

max ¼ 1� L2=N
res , Lres is the

likelihood of a restricted logistic regression model with covariates only (an intercept,
current age, sex and top 10 PCs of the genotype data), Lfull is the likelihood of the full
logistic regression model (covariates and the PRS predictor), and N is the sample size.
We define the relative increase or decrease in R2 of a polygenic prediction method A
compared to method B as ðR2

A � R2
BÞ=R2

B. In addition to R2 or Nagelkerke’s R2, we
also report area under the ROC curve (known as AUC), area under the precision-call
curve, and the odds ratio (OR) comparing top 10% of the participants having high
polygenic risk with the remaining 90% of the sample. We adjusted for current age, sex
and top 10 PCs of the genotype data in the calculation of all predictive performance
metrics.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
UK Biobank data are available to registered investigators under approved applications
[http://www.ukbiobank.ac.uk]. All genome-wide association summary statistics used in
this study are publicly available. Download links are included in Supplementary Data 1.
Other relevant data are available from the corresponding author upon request.

Code availability
A Python package for PRS-CS is available on github repository [https://github.com/
getian107/PRScs].
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