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Abstract

With the emergence of large-scale sequencing datal-2, methods for improving power in rare variant
analyses (RVAT)3-5 are needed. Here, we show that adjusting for common variant polygenic
scores (PGS) improves the yield in gene-based RVAT across 65 quantitative traits in the UK
Biobank (up to 20% increase at a.=2.6x1076), without marked increases in false-positive rates or
genomic inflation. Benefits were seen for various models, with the largest improvements seen for
efficient sparse mixed-effects models. Our results illustrate how PGS-adjustment can efficiently
improve power in rare variant association discovery.

In recent years, large-scale biorepositories have seen an explosion in available high-depth
sequencing datal-2, and investigators have increasingly leveraged gene-based tests to identify
rare variants contributing to human phenotypic variability3->. An important direction in the
genetics field is to identify methods for improved power in rare variant association analyses
(RVAT). Many quantitative traits have considerable heritability from common variants.®
Given known power benefits for inclusion of known covariates in linear models’2, we
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hypothesized that adjusting for polygenic scores (PGS), which summarize common variant
effects, would efficiently improve power in RVAT.

We leveraged the UK Biobank dataset, which contains imputed data on nearly 500,000
individualsi® as well as exome sequencing for over 200,000 individuals?. We first

performed genome-wide association analyses (GWAS) for common variants (MAF=1%)
across 65 quantitative traits (Supplementary Table 1). We performed three types of GWAS,
namely an out-of-sample GWAS within European samples who were not included in the
exome sequencing subset (N=230k), an in-sample GWAS within European samples who
were also exome sequenced (N=190k), and a ‘total” GWAS within all European UK
Biobank participants (N=460k) (Figure 1). All traits had multiple independent genome-wide
significant (P<5x1078) common variant hits (Extended Data Figure 1a, Supplementary Table
2).

Using the GWAS summary statistics, we then constructed PGS based on two methods,
namely ‘lead-SNP’ PGS (P<5x1078 and r2<0.001), and genome-wide PGS using PRScs-
auto!® (Methods, Figure 1). Thus, we analyzed six PGS per trait: PGSjead-snp (out-sample).
PGScs (out-sample)s PGSiead-SNP (in-sample)s PGScs (in-sample)s PGSiead-SNp (totat) and PGScs
(total)- All types of PGS explained variance for their respective traits (Extended Data Figure
1b, Supplementary Table 2).

We then performed exome-wide gene-based collapsing RVAT within the exome sequenced
samples, focusing on ultra-rare loss-of-function (LOF) and missense variants with MAC<40
(Methods, Figure 1). We ran RVAT models with no PGS included, as well as RVAT models
adjusting for each type of PGS. We used an efficient sparse mixed-effects model to account
for relatedness.

All six PGS-adjusted models showed higher numbers of RVAT gene-phenotype associations
at various significance cutoffs, compared to the model without a PGS (Figure 2a,
Supplementary Figure 1, Supplementary Tables 3-4). PGScs (out-sample) generally yielded
more total associations than PGSiead-snp (out-sample)- The PGScs (out-sample) Mmodel yielded
13.3% and 19.7% more significant associations at Bonferroni-corrected significance
(a=7.2x1078; 170 vs 150 associations), and conventional exome-wide significance
(a=2.6x1075; 261 vs 218 associations), respectively.

PGSjead-sNP (in-sample) Performed similarly to PGSjeaq-snp (out-sample), While PGScs (in-sample)
generally performed the least well (Figure 2a).

At various significance thresholds, PGS-adjusted models significantly improved the ~-
values for top gene-phenotype associations, as compared to the model without PGS
(Supplementary Figure 2 and Supplementary Table 5). For example, the PGScs (out-sample)
adjusted model was associated with significantly higher -log10(A) values, for associations
reaching conventional exome-wide significance (P=6x1073%, paired Wilcoxon signed-rank
test) (Figure 2B; Supplementary Table 5).

Many of the gene-phenotype associations that became significant after PGS-adjustment
were biologically-plausible findings (Supplementary Note, Supplementary Table 6). As

Nat Genet. Author manuscript; available in PMC 2024 May 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Jurgens et al.

Page 3

an example, for the phenotype height such associations included NPR3, LTBPZ, P4HAI,
FLNB, SEC24Dand TTN (Figure 2c, Supplementary Note, Supplementary Figure 3). We
further confirmed power improvements for positive control associations® (Supplementary
Note, Extended Data Figure 2). We found that h?snp and PGS R2 were both significantly
associated with the per-trait improvement in number of significant associations after PGS-
adjustment, particularly for PGScg models (Extended Data Figure 3 and Supplementary
Figure 4).

To assess genomic inflation and false-positive rates, we then performed exome-wide RVAT
analyzing synonymous variants with MAC<40. At liberal a cutoffs, we observed association
rates that were marginally higher or equivalent to the expectation under the null (Figure

3a, Supplementary Figure 1, Supplementary Table 7). At Bonferroni-corrected significance
(a=4.3x1078), we observed more hits than expected under the null (Supplementary Tables
8-9). We found that all these associations involved /GL L5 and white blood cell traits
(Supplementary Table 10), possibly reflecting true associationl2. After removing /GLL5
from the analysis, synonymous association rates were well controlled at stringent a. values
(Supplementary Table 7).

Importantly we did not observe a clear pattern where synonymous association rates were
strongly increased after PGS adjustment. Using paired Wilcoxon signed-rank tests, we found
no significant increase in -log10(A) values for the synonymous RVAT at various a levels,
across the different types of PGS adjusted models (~>0.05 for all tests by paired Wilcoxon
rank test; Supplementary Figure 2 and Supplementary Table 11). For example, at the a=0.05
level, estimated differences between models with PGS vs without PGS centered around

0 (Figure 3c, Supplementary Table 11). Furthermore, in synonymous RVAT, per-trait Agc
values did not increase after PGS adjustment across PGS types (Supplementary Figure 5,
Supplementary Tables 12-13). All per-trait synonymous Agc values were within acceptable
limits at Agc<1.05 (Figure 3b), and test statistics were not inflated visually (Supplementary
Figure 6).

In secondary analyses, we found that RVAT at more lenient frequency thresholds
(MAF<0.1%) also benefitted strongly from PGS adjustment (Supplementary Note, Extended
Data Figure 4). We further found that leave-one-chromosome-out PGS performed similarly
to all-chromosome-PGS (Supplementary Note, Extended Data Figure 5). In an analysis

of 7 binary traits, we found minimal to no benefit for PGS-adjustment in logistic mixed-
models (Supplementary Note, Supplementary Tables 14-15). When assessing other RVAT
software, we found that PGS-adjustment improved power in standard linear regression
models, and in burden testing using fastGWA (refs.1314) (Supplementary Note, Extended
Data Figure 6, Supplementary Table 16). PGS adjustment also had power benefit in BOLT-
LMM (ref.15), where it also sped up model convergence (Supplementary Note, Extended
Data Figure 7). PGS adjustment further showed power benefits for SKAT-O testing in
speed-optimized SAIGE-GENE+ models (ref.16) (Extended Data Figure 8, Supplementary
Table 16), although no power benefit was noted for whole-genome ridge regression models
from REGENIE (ref.17) (Supplementary Note, Extended Data Figure 9).
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In conclusion, we find that adjustment for common variant PGS can improve the yield

in gene-based RVAT of quantitative traits, without markedly increasing false-positive rates
and genomic inflation, consistent with recent findings for common variant analysis®17.
While our approach benefitted various RVAT models, our data show that PGS-adjustment is
particularly useful when utilizing efficient sparse mixed-models (as implemented in STAAR,
SAIGE-GENE+ and fastGWA) or when using simple linear models. Sparse mixed-models
paired with PGS-adjustment may therefore offer an efficient and powerful alternative to
computationally-intensive dense mixed-model approaches. Furthermore, PGSs derived from
large external data may improve power in small sequencing studies, where polygenic effects
may not be accurately derived internally.

The observed power increase likely reflects true biological variance being absorbed by
PGS. Indeed, the genome-wide PGScg performed better than PGSga4-snp for out-of-sample
GWAS data, with SNP-heritability and PGS R? being strong positive predictors of yield
improvement. We note that for in-sample GWAS, PGScg did not perform as well as other
PGS, likely owing to overfitting of this genome-wide model. We therefore recommend
using lead-SNP scores or large out-of-sample GWAS data when available, or using cross-
validation approaches such as those used in REGENIE (ref.17). Finally, our analysis was
focused on testing of rare variants (MAF<0.1%). For gene-based analyses that include
low-frequency variants (0.1<MAF<1%), leave-one-chromosome-out PGS may be useful
(Supplementary Note) if investigators want to avoid linkage disequilibrium between PGS
variants and tested variants.

In sum, we show how adjusting for common variant effects can aid in rare variant
association discovery. Our approach can be applied to efficiently enhance discovery yield in
future rare variant analyses.

Study population

Phenotypes

The UK Biobank is a large population-based prospective cohort study from the United
Kingdom with rich phenotypic and genetic data on 500,000 individuals aged 40-69 at
enrollment18, Available genetic data currently includes genome-wide imputed data for
almost all participants?, as well as whole exome sequencing data on approximately 200,000
individuals2. The UK Biobank resource was approved by the UK Biobank Research Ethics
Committee and all participants provided written informed consent to participate. Use of UK
Biobank data was performed under application number 17488 and was approved by the local
Massachusetts General Hospital Institutional Review Board.

In the present study, we analyzed 65 quantitative traits, including anthropometric traits,
metabolic blood markers, blood pressure traits, and a variety of blood count traits. Details
and the number of samples for each trait per analysis are presented in Supplementary Table
1. All raw phenotypes were adjusted for lipid-lowering medication use (Supplementary
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Note), and were subsequently rank-based inverse normalized to ensure normality before
analyses.

Genetic datasets

We utilized both genome-wide imputed data and whole exome sequencing data in the
present study. Specifically, all common variant analyses were performed using genome-
wide imputed datal0. Briefly, genotyping was performed using Affymetrix UK Biobank
Axiom (450,000 samples) and Affymetrix UK BiLEVE axiom (50,000 samples) arrays.
Subsequently, the genetic data were imputed to the Haplotype Reference Consortium

panel and UK10K + 1000 Genomes panels. We removed any samples that had withdrawn
their consent, samples that were outliers for heterozygosity or missingness, individuals

with putative sex chromosome aneuploidy, and individuals with a mismatch between self-
reported and genetically inferred sex. We then removed all individuals who were determined
to not be of homogeneous European ancestry (Supplementary Note). To ensure we analyzed
only high-quality common imputed variants, we removed imputed variants with minor allele
frequency (MAF) <1% and INFO <0.3.

For all rare variant analyses, we utilized the whole exome sequencing data, which were
available for 200,642 individuals?. The revised version of the IDT xGen Exome Research
Panel v1.0 was used to capture exomes with over 20X coverage at 95% of sites. Variants
were subsequently called per-sample using DeepVariant and combined using GLNexus
(ref.19). We utilized the quality-control procedures described previously in Jurgens et

al.# In short, we set low-quality genotypes to missing, after which we removed variants
based on call rate (<90%), Hardy-Weinberg equilibrium test (P< 1x1071%), presence in
low-complexity regions, and minor allele count (=1). Sample-level quality-control consisted
of removal of samples that had withdrawn their consent, were duplicates, had a mismatch
between sequencing and genotyping array data, had a mismatch between genetically inferred
and self-reported sex, had low call rates or were outliers for a number of additional metrics
(Jurgens et al.#). We finally restricted the exome cohort to individuals who also had imputed
data available and were of European ancestry, leaving 188,062 samples.

Common variant association analyses

We first performed three genome-wide association analyses (GWAS) for each included

trait using genome-wide imputed data (Figure 1). These included an out-of-sample GWAS
within European samples who were independent of the exome cohort (not included in the
exome cohort and unrelated to the exome cohort); an in-sample GWAS within the exome
sequenced samples; and a total GWAS including all European individuals with imputed data.
To perform the GWAS, we used linear whole-genome ridge regression models implemented
in REGENIE (ref.17), adjusting for sex, age, age?, genotyping array and ancestral principal
components 1 through 20. REGENIE produces results similar to linear mixed models in the
presence of genetic relatedness?’.

Polygenic score derivation

Using each of the GWAS summary results, we constructed polygenic scores (PGS) for each
trait based on two differing methods20. We first constructed ‘lead SNP’ PGSs based only
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on independent (r2<0.001) genome-wide significant (A<5x10~8) variants. We also used PRS-
CS-auto! to construct genome-wide PGSs including millions of genetic variants (restricting
to ~1.1 million HapMap variants). In brief, PRS-CS-auto applies a Bayesian regression
framework to identify posterior variant effect sizes based on a continuous shrinkage prior,
which is directly learnt from the datall. For both methods, the European ancestry subset

of the UK Biobank dataset was used as a linkage-disequilibrium reference panel. In sum,
two PGS were constructed for each trait based on out-sample GWAS data (PGSjeagsnp
[out-sample] ad PGScs [out-sample]), tWo PGS were constructed based on in-sample GWAS
data (PGSjeadsNP [in-sample] @Md PGScs [in-sample]) @nd two PGS were constructed based on
total GWAS data (PGSieadsnp [total] @nd PGScs [total])-

Variance explained by PGS

We calculated the phenotypic variance explained by each PGS for each trait in the
nullmodel. We did this by running ordinary linear regression for each trait among the
unrelated subset of individuals with exome sequencing data, adjusting for the same fixed
effects as described above for the rare variant analysis. R? values were extracted from the
model without PGS and from models with PGS added as a covariate. The variance explained
by PGS for a given trait was defined as the improvement in R? in the model with PGS as
compared to the model with no PGS.

Rare variant association analyses

We used the whole exome sequencing data to run gene-based rare variant collapsing

tests across the exome for each trait. We grouped and analyzed loss-of-function (LOF)

and predicted-deleterious missense variants per gene (Supplementary Note). To minimize
linkage-disequilibrium between common and rare variants, we only included variants

with minor allele count (MAC) <40, which also had MAF<0.1% in each continental
population in gnomAD version 2 exomes?L. We utilized linear mixed models implemented
in GENESIS22, adjusting for sex, age, age?, genotyping array, sequencing batch, ancestral
principal components 1 through 20, and a sparse kinship matrix?. We subsequently repeated
these analyses for each of the PGS, by adding the PGS to the model as an additional
fixed-effect covariate. In cases where fitting of the mixed model failed, we reran models
within unrelated individuals (Supplementary Table 1). Sample sizes for the rare variant
analyses ranged from N=142,709 to N=187,890 (Supplementary Table 1). Only results for
tests with >20 rare variant carriers were kept.

Assessment of rare variant discovery yield

We then evaluated the rare variant discovery power for models without PGS and those
adjusted for PGS. We calculated the yield in number of gene associations for each

model across all traits at various significance thresholds, including Bonferroni-corrected
significance at a = 0.05/ (65 traits x ~10,743 genes) = 7.2x1078, and at conventional
exome-wide significance at a = 2.6x1075. We then tested whether the addition of the
PGS improved the significance of gene-phenotype associations. We used two-sided paired
Wilcoxon signed rank tests to assess the improvement in -log1o(#) values between two
models, including gene-phenotype associations at various significance cutoffs (7.2x1078,
2.6x1076, 1x107°, 1x1074, 1x1073, 0.05). For a given comparison between two models,
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we included any gene-phenotype pair reaching the cutoff in either model. To quantify the
difference, d, in -logyg(P) values, we repeated this analysis using paired T-tests. For paired
T-tests, we removed any gene-phenotype pair for which the difference between both models
fell outside of 4 standard deviations from the mean of differences. The significance threshold
was determined at a = 0.05 / (6 cutoffs x 6 model comparisons) = 0.0014.

Secondary analyses of discovery power

We further performed analyses where we performed exome-wide gene-based tests including
rare variants at more common frequency thresholds, described in the Supplementary Note.
We also assessed the power change for PGS-adjustment across a range of binary traits
(Supplementary Note). To assess how PGS-adjustment affects discovery power in other
RVAT software, we evaluated adding PGS to collapsing tests in standard linear regression,
as well as adding PGS to burden tests in fastGWA (ref.1314), collapsing tests in BOLT-
LMM (ref.15) and SKAT-O tests in speed-optimized SAIGE-GENE+ models (ref.16:23),
(Supplementary Note). We also assessed how addition of external PGS affected power

in REGENIE, a recently proposed whole-genome ridge regression model that accounts

for the polygenic effect using a fixed-effect variable similar to a PGS’ (Supplementary
Note). Finally, we assessed a Leave-One-Chromosome-Out (LOCO) PGS and compared it
to the full-PGScg for two traits, height and LDL cholesterol, to evaluate whether the power
improvement was due mainly to proximal or distal common variants (Supplementary Note).

Associations between trait heritability and PGS variance explained with yield improvement

We then assessed whether the improvement in RVAT associations after PGS-adjustment
was associated with trait heritability or the variance explained by PGS. We used Linkage-
Disequilibrium Score Regression?# to estimate SNP-heritability (h?snp) for each of the
65 traits, using the total sample GWAS results and using the baselineL D _2.2file from
the LDSC software as the linkage-disequilibrium reference. We then used ordinary linear
regression to regress the change in number of trait RVAT associations on the estimated
h2gnp. Similarly, we used linear regression to regress the change in number of trait RVAT
associations on the R2 of the PGS for its respective traits.

Assessment of false-positive rate using rare synonymous variation

To assess the false-positive error rate of our approach, we analyzed rare synonymous
variation. Synonymous variants are generally not expected to affect the amino acid
sequence encoded by genes, and therefore are strongly depleted of true genetic effects2.
We grouped rare synonymous variants (MAC<40 and MAF<0.1% in each continental
population in gnomAD exomes) and ran exome-wide gene-based collapsing tests using
GENESIS. We only included gene-based results if there were at least, cumulatively, 20
carriers of qualifying rare variants for the gene (e.g. >=20 individuals carrying any of the
qualifying variants of the mask). The significant association rate for synonymous variants
was determined at various significance cutoffs for each model: a = 4.3x1078 (Bonferroni-
corrected), 2.6x107, 1x1075, 1x1074, 1x1073, and 0.05. As described for the deleterious
variants above, we further utilized paired Wilcoxon rank tests and paired T-tests to evaluate
the changes in -log1o(P) values at different significance levels.
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Assessment of exome-wide inflation

Exome-wide test statistics were plotted in quantile-quantile (QQ) plots to visually assess
inflation per trait, per model, per variant mask. Exome-wide inflation was further quantified
using A-values, defined as the empirical Xz statistic at the median divided by the expected
x? statistic at the median under the null. To assess whether A-values differed between
models without PGS and those adjusted for various PGS across the 65 traits, we utilized
two-sided paired Wilcoxon rank tests and paired T-tests.

Data Availability

Summary statistics from the common variant association analyses, the rare

variant association analyses, as well as the common variant weights used for

polygenic score construction, have been made available for download through the
Cardiovascular Disease Knowledge Portal (https://cvd.hugeamp.org/downloads.html).
To download the GWAS summary statistics: https://personal.broadinstitute.org/ryank/
Jurgens_Pirruccello_2022_GWAS_Sumstats.zip. To download the PGS weights:
https://personal.broadinstitute.org/ryank/Jurgens_Pirruccello_2022 PGS Weights.zip. To
download the RVAT summary statistics: https://personal.broadinstitute.org/ryank/
Jurgens_Pirruccello_2022 RVAT_Sumstats.zip. Summary statistics for the tests of the
statistical properties of different RVAT models are included in the Supplementary
Tables. Access to individual level UK Biobank data, both phenotypic and genetic, is
available to bona fide researchers through application on the UK Biobank website
(https://www.ukbiobank.ac.uk). The exome sequencing data can be found in the

UK Biobank showcase portal https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=170.
Additional information about registration for access to the data is available at http://
www.ukbiobank.ac.uk/register-apply/. Use of UK Biobank data was performed under
application number 17488.

Other datasets utilized in this manuscript include: the dbNSFP database version 4.1a
(https://sites.google.com/site/jpopgen/dbNSFP) and gnomAD exomes version 2.1 (https://
gnomad.broadinstitute.org/downloads).

Code Availability

Example scripts of our approach for the UK Biobank Research Analysis Platform
(implementations of PGS-adjustment in SAIGE-GENE+ and BOLT-LMM) have been
made available through the GitHub repository https://github.com/seanjosephjurgens/
RVAT _PGSadjust. Quality-control of individual level data was performed using Hail
version 0.2 (https://hail.is) as well as PLINK version 2.0.a (https://www.cog-genomics.org/
plink/2.0/). Variant annotation was performed using VEP version 95 (https://github.com/
Ensembl/ensembl-vep). Main common variant association analyses (GWAS) were
performed using REGENIE v2.0.2 (https://github.com/rgcgithub/regenie). Genome-wide
polygenic scores were computed using PRS-CS (https://github.com/getian107/PRScs;
githash: 43128be7fc9cal6ad8b85d8754c538bcth7ec7b4). Main rare variant association
analyses were performed using an adaptation of the R package GENESIS version 2.18
(https://rdrr.io/bioc/ GENESIS/man/GENESIS-package.html), which has previously been
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made available by us through the GitHub repository https://github.com/seanjosephjurgens/
UKBB_200KWES_CVD. Analyses were run within R version 4.0 (https://www.r-
project.org).

Other RVAT software used in the present study include fastGWA implemented in GCTA
version 1.94.0 (https://yanglab.westlake.edu.cn/software/gcta/#fastGWA), BOLT-LMM
version 2.4 (https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html)
and SAIGE-GENE+ version 1.0.9 (https://saigegit.github.io/SAIGE-doc/), and REGENIE
v2.0.2 (https://github.com/rgcgithub/regenie).

Extended Data
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Extended Data Figure 1. Number of significant lead variants from common variant GWAS and
variance explained by subsequently derived PGS acrossthe 65 traits.

Part a: Violin plots for the number of significant independent lead variants from common
variant GWAS across 65 phenotypes. Results from out-of-sample GWAS (230k, red), in-
sample GWAS (190k, blue) and total GWAS (460Kk, purple) in the UK Biobank are shown.
Part b: Violin plots for the phenotypic variance explained (R"2) by 6 types of PGS across
the 65 phenotypes. Red shows two PGS derived from out-of-sample GWAS data, blue
shows two PGS derived from completely in-sample GWAS data, while purple shows results
for PGS derived from total GWAS data. All types of PGS explained variance for their
respective traits, although we caution the interpretation of the magnitude of the R2 values
for the in-sample and total PGS, as discovery samples were naturally also included in PGS
testing. Boxplots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers.
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Extended Data Figure 2: Regression of & -log1g(P) values after PGS-adjustment over the
unadjusted -logyo(P) valuesfor positive control associations.

The y-axis represents the delta between PGS-adjusted -logqo(#) and unadjusted -logy1o(A)
values for positive control associations identified from Backman et al. (ref.5; Supplementary
Note), while the x-axis represents the unadjusted -logqq(P) values. Part a shows results for
out-of-sample derived PGS, part b shows results for in-sample PGS, and part ¢ shows results
for the “total’ cohort derived PGS. Regression slopes and A-values from standard linear
regression are added to the figure. The regression trend line is added in each plot. For all
models, there is a trend towards a positive association between unadjusted -log1o(#) and the
subsequent improvement in RVAT power. The trend reached £<0.0083 (=0.05/6) for all PGS
models except PGScs (insample)- NOte: B, regression coefficient; 8, difference.
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Extended Data Figure 3: Correlation between SNP-heritability and the change in the number of
significant rare variant associations after PGS adjustment acrossthe 65 traits.

In each plot, the x-axis represents trait SNP-heritability (h2gnp) estimated using Linkage
Disequilibrium Score Regression. The y-axis represents the change in the number of RVAT
associations reaching exome-wide significance (a=2.6x107%) after adjusting for PGS, across
the studied traits (N=65). RVAT vyield change (defined as the difference in the number of
significant associations after PGS adjustment compared to models without PGS) is regressed
on h2gpp using ordinary linear regression; the regression trend line is added in each plot.
Part a shows results for out-of-sample derived PGS, part b shows results for in-sample PGS,
and part ¢ shows results for the “total” cohort derived PGS. For all models, there is a trend
towards a positive association between trait h2syp and change in RVAT yield (£<0.05 and
B>0). The trend reached ~<0.0083 (=0.05/6) for all PGS models except PGScs (insample)-
Note: B, regression coefficient; a., significance cutoff.
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Extended Data Figure 4: Results for gene-based testing of L OF and missense variants at
MAF<0.1%.

Data are presented in violin plots with overlaid boxplots. The first column shows results
restricting to gene-based associations reaching Bonferroni-corrected significance, while the
second column shows results for gene-based associations reaching conventional exome-wide
significance. Part a shows results for all qualifying gene-based associations. The N gene-
trait pairs for distributions in the left panel equal 206, 217, 206, 213, 207 and 218 (from

left to right), while the N values equal 321, 327, 310, 318, 320 and 335 (from left to right)
in the right panel. Part b is restricted to associations that were identified using MAF<0.1%
but which were not identified in the initial analysis where MAC<40 was applied. The N
gene-trait pairs for distributions in the left panel equal 25, 33, 28, 33, 28 and 31 (from

left to right), while the N values equal 57, 62, 57, 64, 56 and 58 (from left to right) in

the right panel. The P-values from Wilcoxon signed rank tests and d values from paired
T-tests (after removing outliers) are added above each violin. ~-values are two-sided and
unadjusted for multiple testing. Boxplots: center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers. Note: d, estimated paired group
difference; &, difference; a, significance cutoff.
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Extended Data Figure 5: Comparison of P-values between full-PGS-adjusted and LOCO-PGS-
adjusted modelsfrom height and LDL.

In these scatter plots, the y-axis shows -logyo(P) values from gene-based testing with
adjustment for the full out-of-sample PGScs, while the x-axis shows the -log1(P) values
for the leave-one-chromosome-out (LOCO) PGScs. Part a shows results for the trait height,
while part b shows results for the trait LDL cholesterol. The left panels show all gene-trait
pair results, while the right panels all exome-wide significant signals (and are capped at
Y=30 and X=30 for clarity).
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Extended Data Figure 6: Comparison of P-values between PGS-adjusted and unadjusted models
within fasstGWA.

The violin plots (with overlaid boxplots) show the distributions of differences in -logo(P)
values between unadjusted and PGS adjusted models. The left panel results are restricted to
associations reaching Bonferroni corrected significance in either analysis (PGS adjusted or
unadjusted), while the right panel is restricted to association reaching conventional exome-
wide significance in either analysis. Estimated d values (difference values from paired
T-test) and P-values (from paired Wilcoxon signed rank tests) are added above each violin.
In all fastGWA runs, a sparsity cutoff of 0.05 was used, while 239,686 high-quality pruned
common variants were used for computation of the relatedness matrix. In the left panel,

the N gene-trait pairs equal 173, 177, 176 and 175 (from left to right), while in the right
panel N values equal 257, 266, 258, 261 (from left to right). A-values are two-sided and
unadjusted for multiple testing. Boxplots: center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers. Note: d, estimated paired group
difference; §, difference; a, significance cutoff.
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Extended Data Figure 7: Comparison of P-values between PGS-adjusted and unadjusted models
within BOLT-LMM.

The violin plots (with overlaid boxplots) show the distributions of differences in -logyo(P)
values between unadjusted and PGS adjusted models. Panels in a show results for
adjustment of out-of-sample PGS, where red indicates results for BOLT-LMM-Inf models
and gold shows results for BOLT-LMM models. In the left panel, the N gene-trait pairs
equal 176, 180, 175 and 182 (from left to right), while in the right panel the N values
equal 262, 267, 271 and 282 (from left to right). Panels in b shows results for adjustment
for in-sample PGS where blue indicates BOLT-LMM-Inf and gold indicated BOLT-LMM
models. In the left panel, the N gene-trait pairs equal 175, 176, 177 and 174 (from left

to right), while in the right panel the N values equal 256, 257, 269 and 268 (from left

to right). In both aand b, the left panel results are restricted to associations reaching
Bonferroni corrected significance in either analysis (PGS adjusted or unadjusted), while the
right panel is restricted to association reaching conventional exome-wide significance in
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either analysis. Estimated d values (difference values from paired T-test) and P-values (from
paired Wilcoxon signed rank tests) are added above each violin. In all BOLT runs, 240,699
high-quality pruned common variants were used for computation of the genetic relatedness
matrix. P-values are two-sided and unadjusted for multiple testing. Boxplots: center line,
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points,
outliers. Note: d, estimated paired group difference; §, difference; a, significance cutoff.

d=2.47 a=1.68
P=2.0x10% d=1.12 P=6.7¢10% d=0.69
P=1.8x10° P=2.4x10%
a=1.96 . g 47 a=1.28
P=1.3x102 P=3.6x10% . =7 4010% P=6.7x1028
Q. 50
=ty
Do
o2
'8
'<>T: N 25
x3
£
‘ ©
- > __ 0 L

SAIGE-GENE+: no PGS vs PGS, ca4-snp (outsample)
SAIGE-GENE+: no PGS vs PGS¢g (outsample)
| | SAIGE-GENE+: no PGS vs PGS)¢aq-snp (insample)
| | SAIGE-GENE+: no PGS vs PGScg (insample)

Extended Data Figure 8: Comparison of P-values between PGS-adjusted and unadjusted models
for SKAT-O testswithin SAIGE-GENE+.

The violin plots (with overlaid boxplots) show the distributions of differences in -logyo(P)
values between unadjusted and PGS adjusted models. The left panel results are restricted to
associations reaching Bonferroni corrected significance in either analysis (PGS adjusted

or unadjusted), while the right panel is restricted to association reaching conventional
exome-wide significance in either analysis. Estimated d values (difference values from
paired T-test) and ~-values (from paired Wilcoxon signed rank tests) are added above each
violin. In all SAIGE-GENE+ runs, the computationally efficient sparse matrix option was
used with 0.05 cutoff, while ~240k high-quality pruned common variants (numbers differed
slightly per trait) were used for computation of the relatedness matrix. In the left panel, the
N gene-trait pairs equal 185, 186, 186 and 182 (from left to right), while in the right panel
the N values equal 257, 266, 258 and 261 (from left to right). P-values are two-sided and
unadjusted for multiple testing. Boxplots: center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers. Note: d, estimated paired group
difference; §, difference; a, significance cutoff.
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Extended Data Figure 9: Comparison of P-values between PGS-adjusted and unadjusted models
from REGENIE.

The y-axis of this scatter plot shows the -logyo(P) values from gene-based burden testing
using REGENIE with adjustment for out-of-sample PGS, while the x-axis shows the
unadjusted -log1(P) values from REGENIE. Tests are restricted to Bonferroni-correction
significant associations. Part a shows results for PGSjeaq-snp While part b shows results
for PGScs. The left panels show all qualifying results, while the right panels are capped
at X=100 and Y=100 for clarity. Test statistics were very similar between adjusted and
unadjusted models.
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Figure 1: Analysis Flowchart.
For common variant analyses across 65 quantitative traits, we performed GWAS among

UK Biobank samples who were unrelated from individuals with whole-exome sequencing
(WES) data (“out-sample’), GWAS among UK Biobank samples with WES data (“in-
sample’), and GWAS among all UK Biobank samples (‘total’). From each GWAS, we
constructed PGS using clumping-and-thresholding methods and using PRS-CS (described in
Ge et al. 2019; ref.11). We then performed exome-wide testing of rare variants within the
WES samples, using models without PGS and adjusting for various PGS. LOF and missense
variants were used to assess rare variant yields, while synonymous variants were used to
assess inflation and false-positive rates. In the flowchart, blue boxes describe steps revolving
around common variant analyses and PGS construction, while the red boxes highlight steps
involving rare variant analyses. Note: A, inflation factor computed as observed XZ at the
median over the expected under the null hypothesis.
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Figure 2: PGS adjustment improves discovery yield in analysis of rare deleterious variants.
Part a: Bar charts for the improvement in deleterious RVAT yield after PGS-adjustment at

different alpha levels, expressed in percentage relative to the no PGS model. Part b: Violin
plots for the difference (8) in significance of tests from deleterious RVAT, comparing models
with PGS vs models without PGS. Here, the & in ~-values (on the -logyq scale) are displayed
for tests reaching P<2.6x107% (Methods). The A-values and distributions are derived from
two-sided paired Wilcoxon signed rank tests (where N gene-trait pairs equals 263, 270,

258, 260, 265 and 278 from left to right), while the d values plotted above the violins

are derived from two-sided paired T-tests (after removing outliers). The left plot shows all
results, while the right plot is capped at y=10 for clarity. Boxplots: center line, median; box
limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. Part c:
Quantile-quantile plots for PGS-adjusted RVAT of the phenotype height. The left plot shows
expected vs observed P-values for the model with no PGS-adjustment, while the second

and third plots show results for PGSjeadsnp (out-sample) and PGScs (out-sample), respectively.
Exome-wide significant genes are annotated with gene names; genes highlighted in bold
were only identified after PGS-adjustment. Note: d, estimated paired group difference; &,
difference; a, significance cutoff; A, inflation factor computed as observed x 2 at the median
over the expected under the null hypothesis.
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Figure 3: PGS adjustment does not increase false-positiveratesor genomic inflation in the
analysis of rare synonymous variants.

Part a: Boxplots for per-trait association rate from synonymous RVAT at different alpha
levels across the 65 traits. Per trait, a median of 18,060 genes were analyzed. Part b:

Violin plots for genomic inflation factors for exome-wide RVAT of synonymous variants
across the 65 traits. Part c: Violin plots for difference (8) in significance of tests from
synonymous variant RVAT, comparing models with PGS vs models without PGS. Here, the
& in P-values (on the -log10 scale) are displayed for tests reaching £<0.05 (Methods), with
the contributing N gene-trait pairs equaling 75044, 77524, 75838, 89792, 77784 and 85187
(from left to right). Boxplots: center line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; points, outliers. Note: 8, difference; a, significance
cutoff; A, inflation factor computed as observed x 2 at the median over the expected under
the null hypothesis.
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