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ABSTRACT
Motivation: With the availability of large-scale, high-density single-
nucleotide polymorphism (SNP) markers and information on haplo-
type structures and frequencies, a great challenge is how to take
advantage of haplotype information in the association mapping of
complex diseases in case-control studies.
Results: We present a novel approach for association mapping
based on directly mining haplotypes (i.e., phased genotype pairs)
produced from case-control data or case-parent data via a density-
based clustering algorithm, which can be applied to whole-genome
screens as well as candidate-gene studies in small genomic regi-
ons. The method directly explores the sharing of haplotype segments
in affected individuals that are rarely present in normal individuals.
The measure of sharing between two haplotypes is defined by a new
similarity metric that combines the length of the shared segments
and the number of common alleles around any marker position of
the haplotypes, which is robust against recent mutations/genotype
errors and recombination events. The effectiveness of the approach
is demonstrated by using both simulated datasets and real datasets.
The results show that the algorithm is accurate for different population
models and for different disease models, even for genes with small
effects, and it outperforms some recently developed methods.
Availability: The software, HapMiner, is available on the authors’
website at http://vorlon.case.edu/˜jxl175/HapMiner.html.
Contact: jingli@eecs.case.edu

1 INTRODUCTION
Disease gene mapping refers to the localization of heritable mutati-
ons that contribute to the risk of diseases and has been the primary
focus in genetic epidemiology for decades. Many statistical methods
have been developed for gene mapping with the aid of molecular
markers and have been successfully applied to the identification
of a substantial number of Mendelian diseases. However, most
common diseases are complex diseases and the power of many
existing methods (e.g., linkage analysis) is low since each gene
may only have a small effect. Risch and colleges (Risch and Meri-
kangas, 1996) proposed that for genes with moderate or small
effect, association studies may provide higher power than linkage
analysis. With the advance of technology, and dramatically decrea-
sing genotyping cost, large scale whole-genome association studies
using single-nucleotide polymorphisms(SNPs) are now feasible.
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However, simple association analysis usingχ2 on each SNP for
case-control data might not be able to give a reliable result. Recent
experimental studies (Daly et al., 2001; Gabriel et al., 2002) over
large genomic regions have shown that the human genome con-
tains long segments with highlinkage disequilibriumand limited
haplotype diversity, suggesting the use of haplotype information
for association studies. As a matter of fact, some new statistical
methods,e.g., McPeek and Strahs (1999); Tzeng et al. (2003) among
others, have already been proposed to take advantage of the haplo-
type information directly. But these model-based methods were
mainly for candidate gene studies. Intensive computational demands
prohibit them from whole-genome association analyses.

Furthermore, for complex disease, the disease mutations only
increase the risk of being affected, but not every individual carrying
the disease mutations will be affected (low or moderate penetran-
ces). Moreover, not every affected individual carries thedisease
susceptibility(DS) genes/alleles (known as phenocopies). For a
case-control study, neither the degree of penetrance nor the rate
of phenocopy is known in advance. While most methods assume
incomplete penetrance, very few existing methods could deal with
data of high phenocopies. We address the problem of gene associa-
tion mapping of complex diseases and develop a novel algorithmic
approach using haplotypes (i.e., phased genotype pair of each indi-
vidual). The key assumption underlying haplotype mapping is the
nonrandom association of alleles in disease haplotypes around the
disease genes. The haplotypes from cases are expected to be more
similar than haplotypes from controls in regions near the disease
genes. Several recent papers have proposed to use clustering techni-
ques for haplotype mapping. Liu et al. (2001) assigned haplotypes
into clusters representing allele heterogeneity (i.e., multiple func-
tional alleles that might be from different ancestral haplotypes)
and employed the Markov chain Monte Carlo method (McMC)
for parameter estimations within a Bayesian framework, but their
method could not incorporate locus heterogeneity. Molitor et al.
(2003) modelled haplotype risks using clusters and employed a
probit model, but their method does not take phenocopies into con-
sideration. Both methods were developed mainly for haplotype fine
mapping and could not scale up for whole-genome screens very
well. Durrant et al. (2004) adopted a logistic-regression model appli-
cable to whole-genome screens using sliding windows, but they had
to assume Hardy-Weinberg equilibrium and a multiplicative disease
model for the convince of the likelihood calculation. The effects of
violations of these assumptions are unpredictable in general. Inspi-
red by data mining techniques, Toivonen et al. (2000) proposed a
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Fig. 1. An illustration of the rationale of linkage disequilibrium mapping by
mining the shared haplotype segments. Suppose that there were four com-
mon haplotypes in a genomic region in the past, represented by different
colors on the left. Assume that a functional mutation occurred on a parti-
cular haplotype (the first haplotype in the figure). After some generations,
the haplotypes of the current population are just a mixture of the common
haplotypes with recombinations and mutations (mutations not shown in the
figure). It is expected that the haplotypes from affected individuals might
share some segments from the common ancestral haplotypes in the area
where the functional mutation occurred, as shown on the right.

nonparametric method for haplotype mapping called HPM (haplo-
type pattern mining). The authors examined the haplotype patterns
in cases and in controls and utilized the pattern frequencies as the
prediction of disease gene locations. As a model-free method, HPM
has the appealing properties that it does not require any assump-
tion on the inheritance patterns and has good localization power,
even when the number of phenocopies is large. However, methods
based on HPM also have some limitations. First, by allowing “don’t
care” symbols in a haplotype pattern, many haplotypes have been
counted multiple times. The effect of this duplicate counting is
unknown. Second, the frequency of identified haplotype patterns is
closely related to the sample size, and the statistical significance of
the predicted gene location using such frequency information can-
not be assessed. Finally, in the experimental results, Toivonen et
al. (2000) showed that the prediction accuracy may deteriorate with
dense (e.g., SNP) markers, which is undesirable and greatly limits
the utility of the method. We reason that disease susceptibility gene
embedded haplotypes, especially mutants of recent origin, tend to be
close to each other due to linkage disequilibrium, while other haplo-
types can be regarded as random noise sampled from the haplotype
space. As illustrated in Figure 1, around the DS gene region, it
is expected that haplotypes from affected individuals should share
segments from the common ancestral haplotype where the mutation
occurred in the past. Based on this logic, a new algorithmic approach
for haplotype mapping is proposed in this paper that utilizes a clu-
stering algorithm. The effectiveness of the approach depends on
the similarity measure of haplotype fragments used in the cluste-
ring algorithm. We propose a new haplotype similarity measure
that is a generalization of several haplotype similarity measures
currently used in the literature. It captures the sharing of haplotype
segments due to historical recombination events as demonstrated
by Figure 1, and also incorporates the recent mutations/genotype
errors. Extensive experimental results on real data as well as on
simulated data show the algorithm is robust with respect to disease

Algorithm HapMiner
Input: Haplotypes with labels,SegLength, weight functions,MinPt, ε

Output: For each marker position, a cluster with the highestZ-score

For each markeri:

- take the haplotype segments with lengthSegLength surroundingi;

- calculate the pairwise distances of haplotype segments;

- find clusters using DBSCAN subroutine with parametersMinPt, ε;

- report the cluster with the highestZ-score;

The marker position with the highestZ-score is the predicted DS gene
location.

Fig. 2. A pseudo-code of the HapMiner algorithm

models and population history, and outperforms some recently deve-
loped methods. The rest of this paper is organized as follows. The
details of the algorithm is presented in the next section, followed
by the test results. We conclude the paper with some discussion of
possible future directions.

2 METHODS
The proposed approach works as follows. The input to the algorithm consists
of phased genotypes (haplotype pairs) for each individual. Such information
can be inferred computationally from genotypes based on information of
family members (Kruglyak and Lander, 1998; Li and Jiang, 2004) for case-
parent data, or some population models (Stephens et al., 2001; Niu et al.,
2002) for case-control data. For case-control data, we use the disease sta-
tus of each individual to label both of its haplotypes. For case-parent data,
transmitted haplotypes can be labelled as case haplotypes and untransmit-
ted haplotypes as controls. The algorithm scans each marker one by one.
For each marker position, a haplotype segment with certain length centered
at the position will be considered. The segment length is an input parame-
ter defined by the user based on marker interval distances, and should not
be determined before hand. Clusters are identified based on some simila-
rity/distance measure via a density-based clustering algorithm. The Pearson
χ2 statistic orZ-score, which are equivalent as shown in Fienberg (1977),
based on a contingency table derived from the numbers of case haplotypes
and control haplotypes in a cluster can be used as an indicator of the degree
of association between the cluster and disease. Both measures can also
be used as association/independence test statistics, properly adjusted (e.g.,
using Bonferroni correction) for multiple tests. A statistical significance
threshold can be chosen independent of the sample size and all findings
that exceed the threshold will be reported. The algorithm is summarized in
Figure 2 with the details to follow shortly.

A general haplotype (dis)similarity measure.The effectiveness of the
algorithm depends on the similarity measure of haplotype fragments used
in the clustering algorithm. We propose a new haplotype similarity mea-
sure that generalizes several haplotype similarity measures in the literature.
The similarity of two haplotype segments (consisting of markers that are not
necessarily SNPs) is defined with respect to a particular marker locus. Sup-
pose that we focus on a marker at locus 0, with loci1, 2, . . . , r on one side
and−1,−2, . . . ,−l on the other side. Assume that the genetic/physical
distance from any locus to locus 0 is known and denoted asxk, where
−l ≤ k ≤ r. A haplotypeh spanning this region is just an(l + 1 + r)-
dimensional vector and thekth dimension ofh, denoted ash(k), is the allele
at locusk. For a pair of haplotypeshi, hj , we define the similarity score of
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hi, hj with respect to locus 0 as:

si,j =
rX

k=−l

w1(xk)I(hi(k), hj(k)) +
r′X

k=−l′
k 6=0

w2(xk), (1)

whereI(a, b) = 1 if allelesa andb are the same, andI(a, b) = 0 otherwise.
The indices−l′ and r′ are two boundary loci such that the two haploty-
peshi, hj are identical between these two loci and different at both locus
−l′−1 and locusr′+1. Whenl = 0/r = 0, the locus under consideration
is the leftmost/rightmost one. The weightsw1 andw2 are two nonincrea-
sing functions so that the measure on each locus is weighted according to
the distance from locus 0. The choices of the weightsw1 andw2 will be
discussed shortly.

The first summation in Equation 1 is a weighted measure of the number of
alleles in common between haplotypeshi andhj in the region, which can be
thought of as Hamming similarity. The remaining summations form a weigh-
ted measure of the longest continuous interval of matching alleles around
locus 0, which has some resemblance to the notion of a longest common
substring (Gusfield, 1997). Our definition is quite flexible and generalizes
several similarity measures used in the literature (Tzeng et al., 2003; Molitor
et al., 2003). For instance, by settingw1 = 1 andw2 = 0, the measure
becomes the counting measure described in Tzeng et al. (2003). The length
measure in the same article can be achieved by settingw1 = 0 andw2 = 1.
This definition of haplotype similarity is more powerful than the above two
specialized measures and can be used for different types of markers by choo-
sing appropriate weighting functions. It has the strengths of both specialized
measures mentioned above. That is, it is robust against recent marker mutati-
ons and genotyping/haplotyping errors, and it also apprehends partial sharing
from a common ancestral haplotype due to historical recombination events.

The requirement for both weighting functionsw1 and w2 is that they
must be nonincreasing functions. It can be exponentially, quadratically, or
linearly decreasing, or constant. It can also be a discrete function with its
values defined only at marker positions. The user has the freedom of choo-
sing the weighting function depending on the marker density of the input
data. Noticing thatsi,i = sj,j , a distance metric between haplotypeshi and
hj at marker locus 0 can be defined as:

di,j =
si,i − si,j

si,i
=

sj,j − si,j

sj,j
. (2)

The distance is normalized to the interval[0, 1] so it will not increase with
the length of haplotypes. An example showed in Table 1 illustrates the con-
cept. The similarities/distances of haplotype pairs (h1 andh2, h3 andh4) of
length 11 centered at position 0 are calculated according to different weight
functions. If we takew1 = 1 andw2 = 1, which means each SNP has the
same weight regardless of its distance from the reference SNP at position 0,
the number of common SNPs from the region is seven for both pairs. But the
number of intervals within the shared marker segments around locus 0 is four
(number of shared markers−1) for the first pair and is two for the second
pair. We believe that the first pair is more similar than the second pair because
we have more confidence that the shared segments may be from a common
ancestor if its length is longer. The Hamming similarity alone can not capture
such difference that may actually corresponds to historical recombination
events. A similarity definition based solely on the longest common segment
length is not robust either. For example, it is possible that for the first pair of
haplotypes (h1 andh2), the segments from position−5 to position 2 were
from the same ancestral haplotype and there was a historical recombination
between position 2 and position 3. The two haplotypes differ at position−3
only because of a point mutation ofh2 at position−3, or it may be due
to a genotyping error. In this case, the “longest common segment length”
definition will underestimate the sharing ofh1 andh2 from their common
ancestral haplotype. The proposed similarity definition captures the notion of
shared ancestral haplotype segments and it is also robust to point mutation,
genotyping errors and historical recombinations. Even if we take constant
value for two weight functions, the proposed definition actually gives more

Table 1. An illustrative example for the definition of haplotype similarity,
wherehi, 1 ≤ i ≤ 4 are haplotypes of length 11,w1 and w2 are the
weighting functions. The similarities (S) and distances (D) are calculated with
respect to marker 0 (the middle marker in this example) andd represents the
marker positions away from position 0. The numbers in parentheses adjacent
to “S” are the similarity scores for two identical haplotype segments (i.e., the
maximum scores w.r.t. the parameters.)

Positions w1 = w2 = 1 w1 = w2 = 1− 0.1d

... -1 0 1 ... S (21) D S (15) D
h1 1 1 1 2 2 1 1 2 2 2 1
h2 1 1 2 2 2 1 1 2 1 1 2

11 0.477 8.9 0.407

h3 1 1 2 1 2 1 1 2 2 2 1
h4 1 1 1 2 2 1 1 1 2 1 1

9 0.572 6.9 0.540

weight towards the region around marker 0, which is a desirable property
since the measure is with respect to locus 0. The similarities/distances of
one haplotype pair are different if we are talking about different reference
markers. This feature enables us to provide a score for each marker posi-
tion even though we are using haplotype information. The weight functions
provides further flexibility that enables users to take into considerations of
marker interval distances. The definition of the normalized distance not only
provides a standardized measure for different segment length, and it may
actually further differentiate signal from noise by coupling with the two
weight functions. For example, the difference of the similarities of the two
pairs is the same (11−9 = 8.9−6.9) under two weighting schemes, but the
difference of their distances is different (0.572− 0.477 < 0.540− 0.407).

The distance definition can be further extended. For instance, missing
alleles can be handled directly in the calculation of the similarity measure
by taking all the missing alleles as a new distinct allele. To consider gene-
gene interactions, a distance for two loci can be defined as the average of
pairwise distances at each locus. This way the proposed algorithm could
automatically consider multiple DS loci simultaneously.

A density-based clustering algorithm.Clustering is a powerful tool for
mining massive data. Traditional clustering algorithms fall into two cate-
gories: partitioning clustering or hierarchical clustering methods (Han and
Kamber, 2000). For large datasets with high level noise, there is an incre-
asing interest in a third type of clustering algorithms called density-based
algorithms. The density-based algorithms are based on the notion of local
density. High density areas form clusters and low density areas may be due
to random noise. In the haplotype association mapping setup, we are inte-
rested in identifying haplotype clusters that are strongly associated with the
disease under study. The goal is not to partition all the haplotypes into cer-
tain clusters. Neither do we try to build a cladogram because of the difficulty
of reconstructing the evolutionary relationship for all haplotypes. Instead,
we believe that haplotypes from affected individuals are expected to be more
similar at the disease gene location than those from controls which are assu-
med to be random samples. We do not expect control haplotypes to form
any clusters except by chance. A difficulty lies in the fact that, due to the
existence of allele and/or locus heterogeneity and phenocopies, some haplo-
types from affected individuals do not necessarily form a cluster. This is
also a main reason why a gene mapping method using case-control data
would likely fail in reality if it assumes, explicitly or implicitly, that all or
at least most affected individuals do have the same disease mutations. We
take the problem of finding strongly disease associated haplotype clusters as
the problem of finding clusters from data with noisy background. It has been
shown that density-based clustering algorithms are capable of and effective
in identifying meaning clusters from large datasets with high level of noise
in many domains (Ester et al., 1996; Hinneburg and Keim, 1998; Ankerst
et al., 1999). So we use the concept of density-based clusters and adopt an
algorithm called DBSCAN (Ester et al., 1996) with minor modifications.
The idea of assigning haplotypes to clusters for gene mapping is promising
and has been explored by many researchers (Liu et al., 2001; Molitor et al.,
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2003; Durrant et al., 2004). Both Liu et al. (2001) and Molitor et al. (2003)
partitioned haplotypes into clusters. Each cluster corresponds to a founder
haplotype or is associated with a particular risk. Statistical models were
then built to infer the parameters. Durrant et al. (2004) built a cladogram
for all haplotypes using a hierarchical clustering algorithm and employed
a logistic-regression model to find the most significant partition. Our algo-
rithm is much flexible and much efficient, and it is capable of dealing with
large datasets with high level of phenocopies. Comprehensive comparisons
with the method in Durrant et al. (2004) on all diallelic datasets, as well as
some other methods (Toivonen et al., 2000; Liu et al., 2001; Molitor et al.,
2003), will be presented in the Results section.

In order to keep the paper self-contained, we briefly introduce the DBS-
CAN algorithm in the context of haplotype mapping. There are two input
parameters for DBSCAN. One is the radius of the interested neighborhood
ε and the other is a density thresholdMinPts. A haplotype is called acore
haplotype if there are more thanMinPts haplotypes in itsε neighborhood.
The haplotypes in theε neighborhood aredirectly reachablefrom the core
haplotype and a haplotype isreachablefrom a core haplotype if there is a
chain of core haplotypes between these two haplotypes where each is directly
reachable from the preceding one. Two haplotypes aredensity-connectedif
there is a core haplotype such that both haplotypes are reachable from it. A
density-based clusterof haplotypes is a set of density-connected haplotypes
with maximal density-reachability. All the above definitions are with respect
to the two parametersε andMinPts. DBSCAN examines every haplotype
and starts to construct a cluster once a core haplotype is found. It then itera-
tively collects directly reachable haplotypes from a core haplotype, merging
clusters when necessary. The process terminates when all haplotypes have
been examined. The clusters are then output and the haplotypes that do
not belong to any cluster are regarded as noise. More details can be found
in Ester et al. (1996).

Score of the degree of association.For each marker position, our algo-
rithm will take the haplotype segments around the marker and calculate the
pairwise haplotype distances according to the distance measure. The DBS-
CAN algorithm is then applied on the distance matrix to identify clusters. A
score for each marker will be calculated as follows. We measure the degree
of association between a haplotype cluster and the disease of interest using
Z-score (orχ2 value). Suppose that we are givenm case haplotypes and
n control haplotypes. Letm′ andn′ denote the numbers of case and con-
trol haplotypes in a cluster, respectively. A2 × 2 contingency table can be
constructed and theZ-score of the cluster is defined as:

Z =
m′/m− n′/nq

m′+n′
m+n

(1− m′+n′
m+n

)(1/m + 1/n)
. (3)

It represents the weighted difference of relative frequencies of the case and
control haplotypes in a cluster and follows approximately a normal distribu-
tion if we assume haplotypes randomly occur in the cluster. A largeZ-score
means strong association between the cluster (actually, the haplotypes within
the cluster) and the disease since many case haplotypes share the genomic
region. We may also use the value ofχ2 based on the table to indicate the
degree of association. At each marker position, there may be multiple clu-
sters, possibly due to allele heterogeneity. In general, the cluster with the
highest score is taken as the prediction for each marker. The algorithm can be
naturally modelled by taking multiple clusters at each position if their scores
are significant. The score is regarded as the point estimation of each marker
locus and a consensus haplotype pattern (by taking the majority allele at each
position) or a haplotype profile (the distribution of alleles at each position)
based on the cluster can be used as disease associated pattern centered at the
locus.

Permutation tests.The significant level of the prediction can be measu-
red by thep-value of theχ2 or Z-score, properly adjusted using Bonferroni
correction for multiple tests. As a model-free method, it is more appropriate
to obtain an empiricalp-value using a permutation test. A permutation test
can be easily performed by shuffling the phenotypes among all the haploty-
pes. By randomly shuffling the disease labels, it is expected that associations

between haplotypes and the trait are broken. The association mapping analy-
sis will be performed on each shuffled data set and the values of the interested
statistic will be recorded. Then, the process will be iterated for a sufficiently
large number of times to mimic the distribution of the original data. The pro-
portion of the data sets whose statistic values are equal to or better than the
statistic of the original data set is regarded as the experimentalp-value. The
proposed method using permutation test is so computationally efficient that
it can be done for whole-genome screens.

False positives due to population structure.It is well-known that for
case-control data, association can be due to some factors other than linkage
such as population substructures. Special care must be taken when recruiting
samples for such case-control studies. One the other hand, our algorithm
can also be applied to data with family members, such as the case-parent
design, for which the population structure is not a problem. When popu-
lation structure is problematic, one can also combine the Genomic Control
method by Devlin and Roeder (1999) with the proposed algorithm and use
the variance inflation factorλ to adjust the statistic score. See Devlin and
Roeder (1999) for details.

HapMiner, the computer program. The overall time complexity of the
algorithm isO(MN2), whereM is the total number of marker loci and
N is the sample size which is at most thousands in most real datasets. We
have implemented the algorithm in a computer program called HapMiner.
The executable code on Windows and Linux can be downloaded from the
author’s website. Extensive tests have been performed using HapMiner on
simulated datasets as well as real datasets and will be discussed below.

3 RESULTS
The test datasets.Two different sets of simulated data were tested.
The first dataset (dataset I) was generated in a previous paper by Toi-
vonen et al. (2000) in their studies of the HPM method, and the
second dataset (dataset II) was generated by us using an approach
similar to that in a recent paper by Zollner and Pritchard (2005). The
two simulated datasets differ in many ways. Dataset I mimicked an
isolated population with an exponential growth rate while dataset II
had a constant population size. The scope of interested regions were
different. One was at the whole genome level and the other was a
candidate gene study. The disease models and the sampling strate-
gies were different. Dataset I simulated a dominant disease but with
high phenocopy rates and dataset II simulated a disease with incom-
plete penetrance. Due to the page limitation, results on dataset II are
provided as supplementary materials.

More specifically, dataset I corresponds to a recently founded,
relatively isolated founder subpopulation that grew from the initial
size of 300 to about 100,000 individuals in 500 years. The region
considered was at the chromosome level with genetic length of
100 cM. Both microsatellite markers and SNP markers were simu-
lated. Markers were evenly spaced along the chromosome with
interval lengths of 1 cM and 1/3 cM for microsatellite markers
and SNP markers, respectively. A dominant disease was modelled,
with a large number of phenocopies. The proportion of mutation-
carrying chromosomes from all the case chromosomes, denoted by
A, is either 2.5%, 5.0%, 7.5%, or 10.0%, corresponding to over-
all relative risks (of first-degree relatives)λ = 1.2, 1.7, 2.7, 4.1,
respectively. Mutations were not modelled directly but compensa-
ted by introducing missing alleles randomly. A detailed description
of the simulation procedure can be found in the paper by Toivonen
et al. (2000).

In addition, we tested HapMiner on three real datasets concer-
ning different types of diseases. The first real dataset was originally
reported by Kerem et al. (1989) in the study of the fine-mapping
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of Cystic Fibrosis (CF) gene and has been used by many investiga-
tors in testing their methods. The second real dataset concerning the
localization of Friedreich Ataxia (FA) gene was reported in Liu et
al. (2001) and reanalyzed by Molitor et al. (2003). The third dataset
consisting of affected sib-pair families with type 1 diabetes (T1D) is
from Herr et al. (2000). Detailed information and analytical results
on the three real datasets will be discussed shortly.

Comparisons with other algorithms. We have made compre-
hensive comparisons with the program CLADHC, a most recently
developed method by Durrant et al. (2004) that also uses a clustering
algorithm, and theχ2 test using single marker. Due to the limita-
tion of CLADHC, only datasets with diallelic markers were used
for the comparison. Independent datasets (dataset I) from Toivonen
et al. (2000) were taken to minimize the bias in evaluating different
methods. Unfortunately, the program HPM from the same paper is
not available to us. We only compared our results with those by
HPM in their original paper. Prediction results on real datasets were
also compared with those by different methods (Liu et al., 2001;
Molitor et al., 2003; Kerem et al., 1989).

Results on dataset I: whole genome screen
HapMiner parameters. There are five parameters that need be spe-
cified by the user, namely, the haplotype segment length and two
weighting functions used in the calculation of pairwise haplotype
segment similarities, and the radiusε and density thresholdMin-
Pts required by the DBSCAN algorithm. Figures 3a and 3b show
a typicalZ-score distribution map for a dataset with two different
haplotype segment lengths,i.e., 5 and 7 markers respectively. The
x coordinate represents the marker positions and they coordinate
represents the corresponding score for each marker. The vertical line
indicates the location of the functional allele, while in this case it is
halfway between markers 5 and 6. The predicted gene location is at
marker 5 for both length parameters, withZ-scores of 4.63 and 3.86
respectively. As expected, with the increase of the segment length,
the score profile tends to be smoother. But the scores near the signal
region were rather strong no matter which value we took and only
noise was averaged out. The numbers of the haplotypes in the iden-
tified clusters are 24 and 18, respectively, for the two parameter
values, which are close to the number of true case haplotypes (i.e.,
haplotype with mutated alleles) since there are 200 haplotypes that
were labelled as case and the fraction of mutation-carrying chro-
mosomes, denoted asA, is 10%. Such information on phenocopies
was not known to HapMiner in advance. Most of the haplotypes in
the clusters are core haplotypes, which means that the haplotypes in
the clusters are very similar to each other. The consensus patterns
are the same in the overlapped region for the two different values
of haplotype segment length, which also implies the robustness of
HapMiner with respect to this parameter. For the remaining tests
on dataset I, we took the lengths of haplotype segments the same
as those in Toivonen et al. (2000), which were 7 and 21 markers for
microsatellite markers and SNP markers, respectively. We took sim-
ple linear functions with flat tails for both weights since the markers
were evenly spaced. (The functions are depicted in Supplementary
Figure 1.) There are two ways to set the radiusε in HapMiner. The
first method is to specify its value directly. Since the pairwise distan-
ces are within the range [0,1], one can specify the radius to be any
value from this range. The other way to setε is to choose a percen-
tile according to the distribution of all pairwise distances. We took
the first method in this study. To set the value ofMinPts, we first

calculated the number of neighbors for every haplotype based onε
and choseMinPtsbased on the user-specified percentile parameter.
Experiments on three differentε values (i.e., 0.1, 0.2 and 0.3) and
three differentMinPts values (i.e., 15%, 25%, 35%) indicated that
HapMiner performed consistently well around the DS locus across
different parameters (data not shown). We thus fixedε to be 0.2 and
the percentile forMinPts to be 25% for the remaining tests.

Prediction accuracy.Figure 3c shows the predicted locations (y-
axis) and true locations (x-axis) on 100 data sets with 200 case
haplotypes and 200 control haplotypes for each dataset. All the
parameters were using their default values as specified in the pre-
vious subsection. The accuracy was high for most datasets even
though around 90% of case haplotypes did not contain the mutation
allele. The success was mainly due to the concept of density-based
clustering algorithms, which allow noisy inputs. Traditional par-
titioning algorithms likek-means could not correctly identify the
cluster associated with the disease given such a noisy dataset (data
not shown). And it is almost impossible for any method to cor-
rectly reconstruct the genealogy of the samples (which is the goal of
hierarchical algorithms), given the complexity of the evolutionary
history.

We further investigated the power of HapMiner under different
phenocopy rates (1 − A), different sample sizes, and increasing
marker density, and with missing values. We compared our results
with those reported by Toivonen et al. (2000) using their HPM
program. The results are illustrated in Figure 4 a-d. In the figure,
the x coordinate represents the distance from the true gene posi-
tion and they coordinate represents the average fraction (power) of
the predictions that were within the distance on 100 datasets. As
expected, the prediction accuracy increased with the increasing of
A and the increasing of sample sizes. For a sample size of 200 cases
and 200 controls (Figure 4a), the prediction errors were small for
A = 10%, 7.5% (i.e., relative riskλ = 4.1, 2.7. But the errors
increased rapidly whenA = 5% (λ = 1.7) and neither methods
(HapMiner and HPM) could successfully predict gene locations
whenA dropped to2.5% (λ = 1.2). With a sample size of 400 cases
and 400 controls (Figure 4b), the accuracy was greatly improved for
all the values ofA. For instance, withA = 10%, all the prediction
errors were smaller than 4.5 cM. Even withA = 5%, more than
80% of the prediction errors were within 4 cM. The results were bet-
ter than those by HPM. Only about 85% of the HPM results achieve
the same accuracy forA = 10%, as shown in Fig. 2b of Toivonen et
al. (2000), and the performance of HPM did not necessarily improve
when the value ofA increased, as illustrated in Fig. 2 and Fig. 4 of
Toivonen et al. (2000). HapMiner demonstrated great advantage in
dealing with phenocopies.

With the advance of genotyping technology, more SNP markers
will be available for whole-genome association studies of com-
mon diseases using case-control data in the near future. For any
gene mapping method, it is desirable to see the performance of the
method improve with denser markers. Indeed, HapMiner perfor-
med better on SNP markers than it on microsatellite markers. For
instance, withA = 10%, 98% of the predicted errors were smal-
ler than 5 cM and 81% of the predicted errors were smaller than
2 cM for SNP markers (Figure 4c) and the results for microsatel-
lite markers (Figure 4a) were 94% and 73% respectively. Another
factor that affects the accuracy is the number of missing alleles of
the input data. In reality, most datasets contain a substantial num-
ber of missing alleles. There are also ambiguities while inferring
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Fig. 3. The Z-score distribution for a dataset with haplotype segment lengths 5 (a) and 7 (b). The prediction accuracy on 100 datasets (c).
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Fig. 4. The results on dataset I. The effects ofA on prediction accuracy using sample sizes of 200 individuals (a) and 400 individuals (b). The prediction
accuracy using the SNP dataset with complete data (c) and with missing data (d) for sample sizes of 200 individuals. Permutation test results (e, f) on the same
two datasets as in Toivonen et al. (2000). The comparisons of three algorithms using differentAs and different segment lengths (g, h, i).
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haplotypes from genotypes using computational approaches. To test
how HapMiner performs under such a realistic situation, we exami-
ned HapMiner on the SNP datasets by randomly removing 12.5%
alleles that counted for missing and phase-unknown positions. The
missing alleles were imputed simply based on allele frequencies
before running HapMiner. The results (Figure 4d) were quite satis-
factory considering the small sample size (200) and high number of
phenocopies. For example, withA = 10%, more than 80% of the
predictions had errors smaller than 5 cM.

Significance of the predictions.To assess the significance of a
prediction, a permutation test was performed for 1,000 iterations.
Figure 4 (e-f) illustrates the permutation test results on every marker
position using the same two datasets as in Figure 3 of Toivonen et al.
(2000). The solid black line represents the predictedZ-scores for all
the markers and the dashed black line underneath shows the empi-
rical p values of the predictions. The predicted gene location for
the first dataset was within 0.2 cM of the true gene location repre-
sented by the vertical line in Figure 4e and the empiricalp value
was smaller than 0.001. For the second dataset, where the signal
was much weaker, the predicted error was 1 cM and the empirical
p value was 0.019. While it is a common approach to use the per-
mutation test as a way to assess the significance of the prediction,
it seems inappropriate to take the position with the minimum empi-
rical p-value as the predicted gene location itself, as in Toivonen et
al. (2000). Unlike the normalp-value of a statistic, the position with
the minimum empiricalp-value might not have the highest statistic
(Z-score, orχ2 value in our case). In such a case, it is not clear
why one should take the position with the minimump value as the
prediction.

HapMiner, CLADHC and χ2 test. We further compared Hap-
Miner, CLADHC and the simpleχ2 on the SNP dataset with diffe-
rent levels of phenocopies (A=10%, 7.5%, 5%,λ = 1.7, 2.7, 4.1
in terms of relative risks. The caseA=2.5% was dropped since
no methods were significantly better than random guesses). Both
haplotype based approaches achieved much higher power (defi-
ned as the proportion of the predicted locations are within one
half of the segment length from the true locations, used by
CLADHC) and returned more accurate results than the simpleχ2

test (Figure 4 g-i, Table 2). HapMiner is more robust against
noisy data than CLADHC. ForA=10% (Figure 4g), HapMiner and
CLADHC reported similar results for two different values of haplo-
type segment lengths tested, and HapMiner was slightly better than
CLADHC in terms of the root mean squared error rate (the square
root of the average squared errors across 100 runs, Table 2). With
the increase of the phenocopies, HapMiner achieved much higher
power than CLADHC using the same segment lengths (Figure 4h
for A=7.5%, Figure 4i forA=5% and Table 2). The two haplotype
segment lengths were taken since CLADHC could not deal with seg-
ment lengths longer than 10 markers. All other parameters for both
programs took their default values.

Results on real datasets
The CF dataset.We applied the algorithm to a widely-studied real
dataset originally reported by Kerem et al. (1989) in the study of
the fine-mapping of Cystic Fibrosis (CF) gene. The dataset contains
94 affected haplotypes and 92 normal haplotypes with 23 RFLP
markers each. It is known that a certain founder mutation∆F508

between marker 17 and marker 18, about 0.88 cM away from the
first marker, accounts for 67% of the disease chromosomes. The

Table 2. Comparisons of three methods in terms of the root mean
squared error rate for differentAs.

A=10% A=7.5% A=5%
SegLen 7 9 7 9 7 9

HapMiner 6.37 5.81 20.71 18.08 34.34 31.84
Cladhc 7.97 6.81 28.19 27.40 36.19 37.10
Single 35.25 38.55 34.67

result of our prediction is illustrated in Figure 5a. For comparisons,
all three methods use the adjusted significant levels. Thex coordi-
nate represents the marker positions and they coordinate represents
the significant levels. The overall significant levelp for the whole
region was 0.05. The value (yi,j) at markeri for methodj was
defined asyi,j = (−log(pi,j)) − (−log(p)/nj), wherepi,j is the
significant value of methodj at positioni (both HapMiner and the
single SNP method use theχ2 test with 1 df; CLADHC uses the
likelihood ratio test), andnj is the number of total multiple tests
over the region for methodj (CLADHC has two levels of multiple
tests, so the number is different from the number of SNPs). So in
Figure 5a, a marker with a positive value means it is significant at the
0.05 level. Our predicted disease location is at marker 18 (0.89 cM
away from the first marker) with much higher significant level than
it by the simpleχ2 test. CLADHC with the same segment length
7 output two markers with very similar significant levels while the
distance between the two markers is 0.125 cM. In terms of point
estimation, our prediction is better than the point estimation (0.8698
cM away from the first marker) in Molitor et al. (2003) which took
the mode of posterior distribution as the disease gene location. No
point estimation was given by Liu et al. (2001) and they only repor-
ted the 95% confidence interval was around [0.82, 0.93]. The cluster
identified by HapMiner consists of 63 haplotypes and 60 of them
were from the 94 disease chromosomes, which is very close to the
total number of disease chromosomes that had the DS mutation. The
majority of the two sets overlapped. The haplotype segment length
parameter was set to be 7 markers in Figure 5a, and the exactly same
set of chromosomes and similar profile were obtained by HapMiner
when using segment length of 5 (data not shown). For the analysis
on the three real datasets, all other parameters took the default values
as those in the dataset II, namely,w1 = w2 = e−10x, ε = 0.2,
and the percentile forMinPts is 0.25. CLADHC could not handle
multiallelic data so we only output the results by HapMiner for the
remaining two datasets using theirZ − score profiles.

The FA dataset.We further applied the algorithm to the second
real dataset concerning the localization of Friedreich Ataxia (FA)
gene reported in Liu et al. (2001) and reanalyzed by Molitor et
al. (2003). Our data contains 54 disease haplotypes and 69 con-
trol haplotypes with 12 microsatellite markers spanning a region of
15 cM. The gene is located between the fifth and sixth markers.
More details about the data can be found in Liu et al. (2001). Hap-
Miner predicted the gene position on the fifth marker as shown in
Figure 5b, with aZ-score of 6.03. The haplotype segment length
parameter was set to be 7 and similar result was obtained for seg-
ment length 5. The most informative cluster identified consists of
25 disease haplotypes where the biggest cluster identified in Liu et
al. (2001) contained 33 haplotypes. We obtained three other small
clusters as found in Liu et al. (2001) that may be due to allele hete-
rogeneity. The sizes of our clusters were smaller than those of the
clusters in Liu et al. (2001) mainly because our parameters were
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Fig. 5. Point estimations on real datasets: significant levels adjusted by multiple testing on CF data (a), and theZ-scores on FA data (b) and T1D data (c).

chosen in such a way that the algorithm could detect phenocopies
more effectively. No point estimation or confident interval were
given in Liu et al. (2001). Again, the point estimation was much
better than the results in Molitor et al. (2003) where the prediction
was 2 markers (0.25 cM) away from the true location.

The T1D data set.We have also tested HapMiner on the third real
dataset, consisting of affected sib-pair families with type 1 diabetes
(T1D) obtained from Herr et al. (2000). The T1D dataset consists
of 385 affected sib-pair families each with 2 parents and 2 affected
children. There are a total of 25 microsatellite markers spanning a
14Mb region on chromosome 6 including the entire HLA complex,
with known type 1 diabetes-susceptibility locus. The haplotypes
were inferred from the genotype data using theinteger linear pro-
gramming(ILP) algorithm of the PedPhase program by Li and Jiang
(2004). Only 89 families were taken from all 385 families since the
other families missed the genotypes of all members in at least one
locus. For each family, a haplotype from the four parental haploty-
pes was assigned as a case haplotype if it appears in any of the two
affected children. Otherwise it was selected as a control haplotype.
There were totally 213 case haplotypes and 143 control haploty-
pes. The length of a haplotype segment was set to be 5. The results
(Figure 5c) show that HapMiner could find the DS gene location at
marker D6S2444 with aZ-score of 3.72. The location is the same as
those identified by TDT (Transmission Disequilibrium Test) type of
tests in Herr et al. (2000), while HapMiner only used a much smaller
subset of the total data. The associated cluster has 32 haplotypes and
only 3 are from control haplotypes. The number of core haplotypes
is 27 and the consensus haplotype pattern is 61429.

4 DISCUSSION
We have described a model-free haplotype association mapping
method and proposed a new haplotype similarity measure. The pro-
gram, HapMiner, is well suited for gene fine mapping and efficient
for whole-genome screens. Results on two simulated datasets and
three real datasets have illustrated that HapMiner could predict DS
gene locations with high accuracy under various situations with
realistic sample sizes, and it has a better performance than some
recently developed approaches. Simulations based on the dataset
from the literature show that it is effective even for data containing a
high rate of phenocopies (corresponding to small relative risks). We

have tested HapMiner under two evolutionary models and it per-
formed consistently well regardless of the population history. The
simulations and the real datasets consisted of dominant, recessive
and complex diseases, and HapMiner was able to successfully iden-
tify the DS gene locations for all the cases. It requires no prior
information about the evolutionary history (genealogy of haploty-
pes) or inheritance patterns of the diseases. Extensive tests have
also demonstrated the robustness of HapMiner on the selection of
different parameters.

The framework can easily handle diseases with multiple founder
mutations per locus since HapMiner could report all clusters that are
significant at each marker locus as we did on the FA dataset. It can
also handle diseases with multiple genes and gene-gene interactions
by modifying the similarity measure to account for different haplo-
type segments. The significance level of the prediction is evaluated
by carrying out permutation tests. The properties of the proposed
statistics (Z-score orχ2) under different assumptions will be inve-
stigated. It is also possible to incorporate statistical techniques for
studying false discovery rates (Storey and Tibshirani, 2003) into our
genome-wide association mapping studies. For false positive due to
population structure, one can also incorporate the genomic control
method to the proposed framework.

The method presented here assumes that the haplotype pair of
each individual is available, which in general can be inferred by
computational methods based on genotype data. A possible exten-
sion is to take into consideration the ambiguity of the inferred
haplotypes as well as the dependence of the two haplotypes from
the same individual. An alternative to the use of inferred haplo-
types is to calculate similarity/distance based on genotype vectors
directly. For instance, similarity of two genotype vectors can be
measured based on the number of identical alleles at each mar-
ker. But our preliminary results on genotype vectors have shown it
cannot provide accurate predictions in most cases. We will systema-
tically investigate how the predictions will be affected while using
inferred haplotypes from various sources by different algorithms.

The notion of density-based clusters is crucial to the prediction
accuracy when data contain high level noise such as phenocopies
and incomplete penetrances. It also alleviates the mislabelling pro-
blem of haplotypes,i.e., for case-control data, it is possible that
only one of the two case haplotypes from an affected individual
contains the disease mutation, while we labels both of them as case
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haplotypes. A limitation of the DBSCAN algorithm is that it could
not automatically determine the density of the input data. In the
current implementation, we have to rely on the user to supply the
parameters. Although we have shown that the algorithm is robust
against a broad range of parameters, it is still difficult to argue
what is the optimal value for each parameter. The two parameters
(ε andMinPts) depend on the level and the patten of LD near the
disease locus, which is generated by many forces such as recom-
bination rate and distribution, population structure, the age of the
disease mutation, genetic drift,etc. Detail characterization of the
relationship between the parameters and those factors is difficult.
Nevertheless, one possible extension to the current framework is to
automatically estimate the density of the input data. For example,
the density around a data point can be evaluated by looking at the
distance distribution from this data point to all other data points.
Another possible direction is to incorporate model-based clustering
algorithms, which assumes that different clusters correspond to dif-
ferent distributions (Fraley and Raftery, 2002). Then the problem
of finding appropriate threshold values is just the standard model
selection and parameter estimation problem.

In addition to complex diseases, many continuously distributed
quantitative traits are of primary clinical and health significance.
Examples of such quantitative traits are blood pressure, choleste-
rol level, obesity, and bone mineral density,etc. In many cases,
the disease status of an individual is actually defined based on
some threshold value of a particular quantitative trait. Quantitative
values can actually provide much more detailed information than the
disease status only. The approach proposed here can be extended to
quantitative trait association mapping by defining a new score. The
idea is to identify clusters first according to haplotype similarities,
and evaluate the mean differences of the trait values of those in a
cluster and those not in the cluster. Additional work will be done
to investigate the feasibility of quantitative trait mapping using the
framework.

In summary, results on datasets from various sources demonstrate
the high accuracy and great flexibility of the proposed method. Hap-
Miner will be a useful tool for LD mapping and complement the
existing model-based statistical methods.
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