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ABSTRACT

Motivation: With the availability of large-scale, high-density single-
nucleotide polymorphism (SNP) markers and information on haplo-
type structures and frequencies, a great challenge is how to take
advantage of haplotype information in the association mapping of
complex diseases in case-control studies.

Results: We present a novel approach for association mapping
based on directly mining haplotypes (i.e., phased genotype pairs)
produced from case-control data or case-parent data via a density-
based clustering algorithm, which can be applied to whole-genome
screens as well as candidate-gene studies in small genomic regi-
ons. The method directly explores the sharing of haplotype segments
in affected individuals that are rarely present in normal individuals.
The measure of sharing between two haplotypes is defined by a new
similarity metric that combines the length of the shared segments
and the number of common alleles around any marker position of
the haplotypes, which is robust against recent mutations/genotype
errors and recombination events. The effectiveness of the approach
is demonstrated by using both simulated datasets and real datasets.
The results show that the algorithm is accurate for different population
models and for different disease models, even for genes with small
effects, and it outperforms some recently developed methods.
Availability: The software, HapMiner, is available on the authors’
website at http://vorlon.case.edu/"jxI175/HapMiner.html.

Contact: jingli@eecs.case.edu

1 INTRODUCTION

However, simple association analysis usigg on each SNP for
case-control data might not be able to give a reliable result. Recent
experimental studies (Daly et al., 2001; Gabriel et al., 2002) over
large genomic regions have shown that the human genome con-
tains long segments with higinkage disequilibriumand limited
haplotype diversity, suggesting the use of haplotype information
for association studies. As a matter of fact, some new statistical
methodse.g, McPeek and Strahs (1999); Tzeng et al. (2003) among
others, have already been proposed to take advantage of the haplo-
type information directly. But these model-based methods were
mainly for candidate gene studies. Intensive computational demands
prohibit them from whole-genome association analyses.
Furthermore, for complex disease, the disease mutations only
increase the risk of being affected, but not every individual carrying
the disease mutations will be affected (low or moderate penetran-
ces). Moreover, not every affected individual carries thgease
susceptibility (DS) genes/alleles (known as phenocopies). For a
case-control study, neither the degree of penetrance nor the rate
of phenocopy is known in advance. While most methods assume
incomplete penetrance, very few existing methods could deal with
data of high phenocopies. We address the problem of gene associa-
tion mapping of complex diseases and develop a novel algorithmic
approach using haplotypeisg(, phased genotype pair of each indi-
vidual). The key assumption underlying haplotype mapping is the
nonrandom association of alleles in disease haplotypes around the
disease genes. The haplotypes from cases are expected to be more
similar than haplotypes from controls in regions near the disease

genes. Several recent papers have proposed to use clustering techni-

Disease gene_mapping ref_ers to the localization of heritable ml_Jtathues for haplotype mapping. Liu et al. (2001) assigned haplotypes
ons that contribute to the risk of diseases and has been the primapy,y c|usters representing allele heterogeneisy, (multiple func-

focus in genetic epidemiology for decades. Many statistical method§onar alleles that might be from different ancestral haplotypes)

have been developed for gene mapping with the aid of moleculay,q employed the Markov chain Monte Carlo method (McMC)

markers and have been successfully applied to the identificatiog, harameter estimations within a Bayesian framework, but their
of a substantial number of Mendelian diseases. However, MOSfiathod could not incorporate locus heterogeneity. Molitor et al.

common diseases are complex diseases and the power of mamy3) modelled haplotype risks using clusters and employed a
existing methodse(.g, linkage analysis) is low since each gene pqpit model, but their method does not take phenocopies into con-
may only have a small effect. Risch and colleges (Risch and Merigjgeration. Both methods were developed mainly for haplotype fine
kangas, 1996) proposed that for genes with moderate or smaj,;nhing and could not scale up for whole-genome screens very
effect, association studies may provide higher power than linkagge|, purrant et al. (2004) adopted a logistic-regression model appli-
analysis. With the advance of technology, and dramatically decregs,pq 1 whole-genome screens using sliding windows, but they had
sing genotyping cost, large scale whole-genome association studigs assume Hardy-Weinberg equilibrium and a multiplicative disease
using single-nucleotide polymorphisn{SNPs) are now feasible. qqe| for the convince of the likelihood calculation. The effects of

violations of these assumptions are unpredictable in general. Inspi-
red by data mining techniques, Toivonen et al. (2000) proposed a
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Affected ) .
Algorithm HapMiner

Input: Haplotypes with labelsSeg Length, weight functionsMin Pt, e
Output: For each marker position, a cluster with the high@stcore

For each markei:

|

2

] Normal

- take the haplotype segments with lengthg Length surrounding:;

- calculate the pairwise distances of haplotype segments;

- find clusters using DBSCAN subroutine with parametefsn Pt, ¢;
Ancestral haplotypes - report the cluster with the highe&t-score;
The marker position with the highest-score is the predicted DS geng

Present-day haplotypes location.

Fig. 1. An illustration of the rationale of linkage disequilibrium mapping by Fig. 2. A pseudo-code of the HapMiner algorithm

mining the shared haplotype segments. Suppose that there were four com-

mon haplotypes in a genomic region in the past, represented by different

colors on the left. Assume that a functional mutation occurred on a parti-

cular haplotype (the first haplotype in the figure). After some generations,

the haplotypes of the current population are just a mixture of the commornodels and population history, and outperforms some recently deve-
haplotypes with recombinations and mutations (mutations not shown in théoped methods. The rest of this paper is organized as follows. The
figure). It is expected that the haplotypes from affected individuals mightdetails of the algorithm is presented in the next section, followed

share some segments from the common ancestral haplotypes in the argg the test results. We conclude the paper with some discussion of
where the functional mutation occurred, as shown on the right. possible future directions.

nonparametric method for haplotype mapping called Hisp(o-

type pattern mining The authors examined the haplotype patterns2 METHODS

in cases and in controls and utilized the pattern frequencies as thehe proposed approach works as follows. The input to the algorithm consists
prediction of disease gene locations. As a model-free method, HPMf phased genotypes (haplotype pairs) for each individual. Such information
has the appealing properties that it does not require any assumpan be inferred computationally from genotypes based on information of
tion on the inheritance patterns and has good localization powefamily members (Kruglyak and Lander, 1998; Li and Jiang, 2004) for case-
even when the number of phenocopies is large. However, methodi@rent data, or some population models (Stephens et al., 2001; _Niu et al.,
based on HPM also have some limitations. First, by allowing “don‘tzooz) for case-control data. For case-control data, we use the disease sta-

" : tus of each individual to label both of its haplotypes. For case-parent data,
care” symbols in a haplotype pattern, many haplotypes have beetﬁansmitted haplotypes can be labelled as case haplotypes and untransmit-

counted multiple times. The effect _Of th_'_s duplicate counting 'S_ted haplotypes as controls. The algorithm scans each marker one by one.
unknown. Second, the frequency of identified haplotype pattems igor each marker position, a haplotype segment with certain length centered
closely related to the sample size, and the statistical significance @f the position will be considered. The segment length is an input parame-
the predicted gene location using such frequency information canter defined by the user based on marker interval distances, and should not
not be assessed. Finally, in the experimental results, Toivonen é&ie determined before hand. Clusters are identified based on some simila-
al. (2000) showed that the prediction accuracy may deteriorate withity/distance measure via a density-based clustering algorithm. The Pearson
dense ¢.g, SNP) markers, which is undesirable and greatly limits x? statistic orZ-score, which are equivalent as shown in Fienberg (1977),
the utility of the method. We reason that disease susceptibility genBased on a contingency table derived from the numbers of case haplotypes
embedded haplotypes, especially mutants of recent origin, tend to t?éld contl_’ol_haplotypes in a cluster can be gsed as an indicator of the degree
of association between the cluster and disease. Both measures can also

close to each other due to linkage disequilibrium, while other haplobe used as association/independence test statistics, properly adgugted (

types can b,e regardeq as random noise sampled from the hgplotyegng Bonferroni correction) for multiple tests. A statistical significance
_space. As illustrated in Figure 1, around _the_' PS gene region, Ifyreshold can be chosen independent of the sample size and all findings
is expected that haplotypes from affected individuals should shargat exceed the threshold will be reported. The algorithm is summarized in
segments from the common ancestral haplotype where the mutatiarigure 2 with the details to follow shortly.

occurred in the past. Based on this logic, a new algorithmic approach A general haplotype (dis)similarity measure.The effectiveness of the

for haplotype mapping is proposed in this paper that utilizes a clualgorithm depends on the similarity measure of haplotype fragments used
stering algorithm. The effectiveness of the approach depends o the clustering algorithm. We propose a new haplotype similarity mea-
the similarity measure of haplotype fragments used in the clusteSure that generalizes several haplotype similarity measures in the literature.

ring algorithm. We propose a new haplotype similarity measureThe similarity of two haplotype segments (consisting of markers that are not

- L P necessarily SNPs) is defined with respect to a particular marker locus. Sup-
that is a generalization of several haplotype similarity measures : .
ose that we focus on a marker at locus 0, with Iod, . . ., 7 on one side

currently used in the literature. It captures the sharing of haplotyp(gnd_lﬁ_z _..—l on the other side. Assume that the genetic/physical
segments due to historical recombination events as demonstrategli-nce from any locus to locus 0 is known and denotedaswhere

by Figure 1, apd also ipcorporates the recent mutations/genotype; < < . A haplotypeh spanning this region is just & + 1 + r)-
errors. Extensive experimental results on real data as well as ofimensional vector and th" dimension of:, denoted a& (k), is the allele
simulated data show the algorithm is robust with respect to diseasat locusk. For a pair of haplotypes;, h; , we define the similarity score of
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Table 1. An illustrative example for the definition of haplotype similarity,

h;, h; with respect to locus 0 as:
whereh;,1 < i < 4 are haplotypes of length 1%y; andws are the

> > weighting functions. The similarities (S) and distances (D) are calculated with
i, = w1 (zk)I(hi(k), hj(k)) + wa(zy), (1)  respect to marker O (the middle marker in this example)&represents the
k=-1 kk:#—l' marker positions away from position 0. The numbers in parentheses adjacent
0

to “S” are the similarity scores for two identical haplotype segmeres the
wherel (a, b) = 1if allelesa andb are the same, an{a, b) = 0 otherwise. ~ maximum scores w.r.t. the parameters.)
The indices—!’ andr’ are two boundary loci such that the two haploty-

pesh;, h; are identical between these two loci and different at both locus Positions w; =we =1 | wy =wy =1-0.1d
—!l’—1andlocus’ + 1. Whenl = 0/r = 0, the locus under consideration ..-101.. s@n] D S (15) D
is the leftmost/rightmost one. The weights andws are two nonincrea- hi 11122112221

: . . . . 11 | 0477 | 89 0.407
sing functions so that the measure on each locus is weighted according to | 2 | 11222112112
the distance from locus 0. The choices of the weightsand w2 will be hs [ 11212112221 o 05721 69 0.540
discussed shortly. hs | 11122111211 : : )

The first summation in Equation 1 is a weighted measure of the number of
alleles in common between haplotyggsandh; in the region, which can be
thought of as Hamming similarity. The remaining summations form a weigh-
ted measure of the longest continuous interval of matching alleles aroundeight towards the region around marker 0, which is a desirable property
locus 0, which has some resemblance to the notion of a longest commosince the measure is with respect to locus 0. The similarities/distances of
substring (Gusfield, 1997). Our definition is quite flexible and generalizesone haplotype pair are different if we are talking about different reference
several similarity measures used in the literature (Tzeng et al., 2003; Molitomarkers. This feature enables us to provide a score for each marker posi-
et al., 2003). For instance, by setting = 1 andw2 = 0, the measure tion even though we are using haplotype information. The weight functions
becomes the counting measure described in Tzeng et al. (2003). The lenggitovides further flexibility that enables users to take into considerations of
measure in the same article can be achieved by setting: 0 andwsz = 1. marker interval distances. The definition of the normalized distance not only
This definition of haplotype similarity is more powerful than the above two provides a standardized measure for different segment length, and it may
specialized measures and can be used for different types of markers by chogetually further differentiate signal from noise by coupling with the two
sing appropriate weighting functions. It has the strengths of both specializedieight functions. For example, the difference of the similarities of the two
measures mentioned above. That s, it is robust against recent marker mutagairs is the samel( —9 = 8.9 —6.9) under two weighting schemes, but the
ons and genotyping/haplotyping errors, and it also apprehends partial sharirjfference of their distances is differefit $72 — 0.477 < 0.540 — 0.407).
from a common ancestral haplotype due to historical recombination events. The distance definition can be further extended. For instance, missing

The requirement for both weighting functions; andw, is that they  alleles can be handled directly in the calculation of the similarity measure
must be nonincreasing functions. It can be exponentially, quadratically, oby taking all the missing alleles as a new distinct allele. To consider gene-
linearly decreasing, or constant. It can also be a discrete function with itgene interactions, a distance for two loci can be defined as the average of
values defined only at marker positions. The user has the freedom of chogairwise distances at each locus. This way the proposed algorithm could
sing the weighting function depending on the marker density of the inputautomatically consider multiple DS loci simultaneously.

data. Noticing thas; ; = s; ;, a distance metric between haplotypesand A density-based clustering algorithm.Clustering is a powerful tool for
h; at marker locus 0 can be defined as: mining massive data. Traditional clustering algorithms fall into two cate-
Sii— Sij Sj.i— Sij gories: partitioning clustering or hierarchigal clustering method; (Haq and
dij = — s == oy = 2 Kamber, 2000). For large datasets with high level noise, there is an incre-

asing interest in a third type of clustering algorithms called density-based
The distance is normalized to the inter{@) 1] so it will not increase with  algorithms. The density-based algorithms are based on the notion of local
the length of haplotypes. An example showed in Table 1 illustrates the condensity. High density areas form clusters and low density areas may be due
cept. The similarities/distances of haplotype pairs&ndhs, hs andhy) of to random noise. In the haplotype association mapping setup, we are inte-
length 11 centered at position O are calculated according to different weightested in identifying haplotype clusters that are strongly associated with the
functions. If we takav; = 1 andws = 1, which means each SNP has the disease under study. The goal is not to partition all the haplotypes into cer-
same weight regardless of its distance from the reference SNP at position @in clusters. Neither do we try to build a cladogram because of the difficulty
the number of common SNPs from the region is seven for both pairs. But thef reconstructing the evolutionary relationship for all haplotypes. Instead,
number of intervals within the shared marker segments around locus 0 is fowve believe that haplotypes from affected individuals are expected to be more
(number of shared markersl) for the first pair and is two for the second similar at the disease gene location than those from controls which are assu-
pair. We believe that the first pair is more similar than the second pair becauseed to be random samples. We do not expect control haplotypes to form
we have more confidence that the shared segments may be from a commany clusters except by chance. A difficulty lies in the fact that, due to the
ancestor if its length is longer. The Hamming similarity alone can not captureexistence of allele and/or locus heterogeneity and phenocopies, some haplo-
such difference that may actually corresponds to historical recombinatiotlypes from affected individuals do not necessarily form a cluster. This is
events. A similarity definition based solely on the longest common segmendlso a main reason why a gene mapping method using case-control data
length is not robust either. For example, it is possible that for the first pair ofwould likely fail in reality if it assumes, explicitly or implicitly, that all or
haplotypes %1 andhz), the segments from position5 to position 2 were  at least most affected individuals do have the same disease mutations. We
from the same ancestral haplotype and there was a historical recombinatidake the problem of finding strongly disease associated haplotype clusters as
between position 2 and position 3. The two haplotypes differ at positidn  the problem of finding clusters from data with noisy background. It has been
only because of a point mutation éf, at position—3, or it may be due  shown that density-based clustering algorithms are capable of and effective
to a genotyping error. In this case, the “longest common segment lengthih identifying meaning clusters from large datasets with high level of noise
definition will underestimate the sharing bf andhg from their common  in many domains (Ester et al., 1996; Hinneburg and Keim, 1998; Ankerst
ancestral haplotype. The proposed similarity definition captures the notion oét al., 1999). So we use the concept of density-based clusters and adopt an
shared ancestral haplotype segments and it is also robust to point mutatioalgorithm called DBSCAN (Ester et al., 1996) with minor modifications.
genotyping errors and historical recombinations. Even if we take constantThe idea of assigning haplotypes to clusters for gene mapping is promising
value for two weight functions, the proposed definition actually gives moreand has been explored by many researchers (Liu et al., 2001; Molitor et al.,
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2003; Durrant et al., 2004). Both Liu et al. (2001) and Molitor et al. (2003) between haplotypes and the trait are broken. The association mapping analy-
partitioned haplotypes into clusters. Each cluster corresponds to a foundsis will be performed on each shuffled data set and the values of the interested
haplotype or is associated with a particular risk. Statistical models werestatistic will be recorded. Then, the process will be iterated for a sufficiently
then built to infer the parameters. Durrant et al. (2004) built a cladogranarge number of times to mimic the distribution of the original data. The pro-
for all haplotypes using a hierarchical clustering algorithm and employedportion of the data sets whose statistic values are equal to or better than the
a logistic-regression model to find the most significant partition. Our algo-statistic of the original data set is regarded as the experimgnalue. The
rithm is much flexible and much efficient, and it is capable of dealing with proposed method using permutation test is so computationally efficient that
large datasets with high level of phenocopies. Comprehensive comparisoiitscan be done for whole-genome screens.
with the method in Durrant et al. (2004) on all diallelic datasets, as well as False positives due to population structurelt is well-known that for
some other methods (Toivonen et al., 2000; Liu et al., 2001; Molitor et al.,case-control data, association can be due to some factors other than linkage
2003), will be presented in the Results section. such as population substructures. Special care must be taken when recruiting
In order to keep the paper self-contained, we briefly introduce the DBSsamples for such case-control studies. One the other hand, our algorithm
CAN algorithm in the context of haplotype mapping. There are two inputcan also be applied to data with family members, such as the case-parent
parameters for DBSCAN. One is the radius of the interested neighborhoodesign, for which the population structure is not a problem. When popu-
e and the other is a density thresh&linPts A haplotype is called aore lation structure is problematic, one can also combine the Genomic Control
haplotype if there are more thaviinPts haplotypes in it neighborhood.  method by Devlin and Roeder (1999) with the proposed algorithm and use
The haplotypes in the neighborhood areirectly reachablefrom the core  the variance inflation factok to adjust the statistic score. See Devlin and
haplotype and a haplotype lisachablefrom a core haplotype if there is a Roeder (1999) for details.
chain of core haplotypes between these two haplotypes where each is directly HapMiner, the computer program. The overall time complexity of the
reachable from the preceding one. Two haplotypedarssity-connecteid algorithm isO(M N?2), where M is the total number of marker loci and
there is a core haplotype such that both haplotypes are reachable from it. A/ is the sample size which is at most thousands in most real datasets. We
density-based clustef haplotypes is a set of density-connected haplotypeshave implemented the algorithm in a computer program called HapMiner.
with maximal density-reachability. All the above definitions are with respectThe executable code on Windows and Linux can be downloaded from the
to the two parameters and MinPts DBSCAN examines every haplotype author's website. Extensive tests have been performed using HapMiner on
and starts to construct a cluster once a core haplotype is found. It then iteraimulated datasets as well as real datasets and will be discussed below.
tively collects directly reachable haplotypes from a core haplotype, merging
clusters when necessary. The process terminates when all haplotypes have
been examined. The clusters are then output and the haplotypes that @ RESULTS

not belong to any cluster are regarded as noise. More details can be fou . .
in Ester et al. (1996). nﬂ1e test datasetsTwo different sets of simulated data were tested.

Score of the degree of associatiorFor each marker position, our algo- 1 N€ first dataset (dataset I) was generated in a previous paper by Toi-
rithm will take the haplotype segments around the marker and calculate th¥onen et al. (2000) in their studies of the HPM me.thod, and the
pairwise haplotype distances according to the distance measure. The DBSecond dataset (dataset Il) was generated by us using an approach
CAN algorithm is then applied on the distance matrix to identify clusters. Asimilar to that in a recent paper by Zollner and Pritchard (2005). The
score for each marker will be calculated as follows. We measure the degregvo simulated datasets differ in many ways. Dataset | mimicked an
of associatior; between a haplotype cluster an_d the disease of interest usifghlated population with an exponential growth rate while dataset Il
Z-score (o value). Suppose that we are given case haplotypes and - haq a constant population size. The scope of interested regions were
n control haplotypes. Letn” andn” denote the numbers of case and con- yigterent. One was at the whole genome level and the other was a
trol haplotypes in a cluster, respectively.2Ax 2 contingency table can be candidate gene study. The disease models and the sampling strate-
constructed and th&-score of the cluster is defined as: . . : . . . .

, , gies were different. Dataset | simulated a dominant disease but with
Z=g m'/m—n'/n . 3) high phenocopy rates and dataset Il simulated a disease with incom-
mEnl (1 — ) (1 /m + 1/n) plete penetrance. Due to the page limitation, results on dataset Il are
" s th ahted diff ¢ relative f o5 of th %rovided as supplementary materials.
represents tne weighted dilierence of relafive frequencies ot the case and ;o specifically, dataset | corresponds to a recently founded

control haplotypes in a cluster and follows approximately a normal distribu- . - . L
tion if we assume haplotypes randomly occur in the cluster. A l&fgeore relatively isolated founder subpopulation that grew from the initial

means strong association between the cluster (actually, the haplotypes withiiZ€ ©f 300 to about 100,000 individuals in 500 years. The region
the cluster) and the disease since many case haplotypes share the genof@sidered was at the Qhromosome level with genetic Iengt.h of
region. We may also use the valueygt based on the table to indicate the 100 cM. Both microsatellite markers and SNP markers were simu-

degree of association. At each marker position, there may be multiple clulated. Markers were evenly spaced along the chromosome with
sters, possibly due to allele heterogeneity. In general, the cluster with thinterval lengths of 1 cM and 1/3 cM for microsatellite markers
highest score is taken as the prediction for each marker. The algorithm can kghd SNP markers, respectively. A dominant disease was modelled,
naturally modelled by taking multiple clusters at each position if their scoresyith g large number of phenocopies. The proportion of mutation-

are significant. The score is regarded as the point estimation of each markett;\rrying chromosomes from all the case chromosomes, denoted by
locus and a consensus haplotype pattern (by taking the majority allele at ea%w is either 2.5%, 5.0%, 7.5%, or 10.0%, corresponding to over-

position) or a haplotype profile (the distribution of alleles at each position) Llngelative risks (of first-degree relatived) = 1.2,1.7,2.7, 4.1,

based on the cluster can be used as disease associated pattern centered a"f1 : . .
locUs. respectively. Mutations were not modelled directly but compensa-

Permutation tests. The significant level of the prediction can be measu- t€d by introducing missing alleles randomly. A detailed description
red by thep-value of they? or Z-score, properly adjusted using Bonferroni Of the simulation procedure can be found in the paper by Toivonen
correction for multiple tests. As a model-free method, it is more appropriateet al. (2000).
to obtain an empiricgb-value using a permutation test. A permutation test  In addition, we tested HapMiner on three real datasets concer-
can be easily performed by shuffling the phenotypes among all the haplotyning different types of diseases. The first real dataset was originally
pes. By randomly shuffling the disease labels, it is expected that associatiorpgported by Kerem et al. (1989) in the study of the fine-mapping
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of Cystic Fibrosis (CF) gene and has been used by many investigaalculated the number of neighbors for every haplotype based on
tors in testing their methods. The second real dataset concerning tlznd choséMinPtsbased on the user-specified percentile parameter.
localization of Friedreich Ataxia (FA) gene was reported in Liu et Experiments on three differeatvalues {.e. 0.1, 0.2 and 0.3) and
al. (2001) and reanalyzed by Molitor et al. (2003). The third datasethree differentMinPtsvalues {.e., 15%, 25%, 35%) indicated that
consisting of affected sib-pair families with type 1 diabetes (T1D) isHapMiner performed consistently well around the DS locus across
from Herr et al. (2000). Detailed information and analytical resultsdifferent parameters (data not shown). We thus fixealbe 0.2 and
on the three real datasets will be discussed shortly. the percentile foMinPtsto be 25% for the remaining tests.
Comparisons with other algorithms. We have made compre- Prediction accuracy.Figure 3c shows the predicted locations (
hensive comparisons with the program CLADHC, a most recentlyaxis) and true locationscfaxis) on 100 data sets with 200 case
developed method by Durrant et al. (2004) that also uses a clusteringaplotypes and 200 control haplotypes for each dataset. All the
algorithm, and the? test using single marker. Due to the limita- parameters were using their default values as specified in the pre-
tion of CLADHC, only datasets with diallelic markers were used vious subsection. The accuracy was high for most datasets even
for the comparison. Independent datasets (dataset ) from Toivonetiough around 90% of case haplotypes did not contain the mutation
et al. (2000) were taken to minimize the bias in evaluating differentallele. The success was mainly due to the concept of density-based
methods. Unfortunately, the program HPM from the same paper islustering algorithms, which allow noisy inputs. Traditional par-
not available to us. We only compared our results with those bytitioning algorithms likek-means could not correctly identify the
HPM in their original paper. Prediction results on real datasets wereluster associated with the disease given such a noisy dataset (data
also compared with those by different methods (Liu et al., 2001;not shown). And it is almost impossible for any method to cor-

Molitor et al., 2003; Kerem et al., 1989). rectly reconstruct the genealogy of the samples (which is the goal of
hierarchical algorithms), given the complexity of the evolutionary
Results on dataset I: whole genome screen history.

HapMiner parameters. There are five parameters that need be spe- We further investigated the power of HapMiner under different
cified by the user, namely, the haplotype segment length and twphenocopy ratesl(— A), different sample sizes, and increasing
weighting functions used in the calculation of pairwise haplotypemarker density, and with missing values. We compared our results
segment similarities, and the radiusand density threshol¥lin- with those reported by Toivonen et al. (2000) using their HPM
Pts required by the DBSCAN algorithm. Figures 3a and 3b showprogram. The results are illustrated in Figure 4 a-d. In the figure,
a typical Z-score distribution map for a dataset with two different the « coordinate represents the distance from the true gene posi-
haplotype segment lengthise., 5 and 7 markers respectively. The tion and they coordinate represents the average fraction (power) of
x coordinate represents the marker positions andytheordinate  the predictions that were within the distance on 100 datasets. As
represents the corresponding score for each marker. The vertical lirexpected, the prediction accuracy increased with the increasing of
indicates the location of the functional allele, while in this case it is A and the increasing of sample sizes. For a sample size of 200 cases
halfway between markers 5 and 6. The predicted gene location is @nd 200 controls (Figure 4a), the prediction errors were small for
marker 5 for both length parameters, withscores of 4.63and 3.86 A = 10%, 7.5% (i.e, relative riskA = 4.1,2.7. But the errors
respectively. As expected, with the increase of the segment lengtlincreased rapidly whedl = 5% (A = 1.7) and neither methods
the score profile tends to be smoother. But the scores near the sign@apMiner and HPM) could successfully predict gene locations
region were rather strong no matter which value we took and onlywhenA dropped t®.5% (A = 1.2). With a sample size of 400 cases
noise was averaged out. The numbers of the haplotypes in the ideand 400 controls (Figure 4b), the accuracy was greatly improved for
tified clusters are 24 and 18, respectively, for the two parameteall the values ofA. For instance, wittd = 10%, all the prediction
values, which are close to the number of true case haplotyjges ( errors were smaller than 4.5 cM. Even with = 5%, more than
haplotype with mutated alleles) since there are 200 haplotypes th&0% of the prediction errors were within 4 cM. The results were bet-
were labelled as case and the fraction of mutation-carrying chroter than those by HPM. Only about 85% of the HPM results achieve
mosomes, denoted & is 10%. Such information on phenocopies the same accuracy fot = 10%, as shown in Fig. 2b of Toivonen et
was not known to HapMiner in advance. Most of the haplotypes inal. (2000), and the performance of HPM did not necessarily improve
the clusters are core haplotypes, which means that the haplotypesivhen the value ofd increased, as illustrated in Fig. 2 and Fig. 4 of
the clusters are very similar to each other. The consensus patteriisivonen et al. (2000). HapMiner demonstrated great advantage in
are the same in the overlapped region for the two different valueslealing with phenocopies.

of haplotype segment length, which also implies the robustness of With the advance of genotyping technology, more SNP markers
HapMiner with respect to this parameter. For the remaining testsvill be available for whole-genome association studies of com-
on dataset |, we took the lengths of haplotype segments the sammon diseases using case-control data in the near future. For any
as those in Toivonen et al. (2000), which were 7 and 21 markers fogene mapping method, it is desirable to see the performance of the
microsatellite markers and SNP markers, respectively. We took simmethod improve with denser markers. Indeed, HapMiner perfor-
ple linear functions with flat tails for both weights since the markersmed better on SNP markers than it on microsatellite markers. For
were evenly spaced. (The functions are depicted in Supplementaipstance, withA = 10%, 98% of the predicted errors were smal-
Figure 1.) There are two ways to set the radius HapMiner. The  ler than 5 cM and 81% of the predicted errors were smaller than
first method is to specify its value directly. Since the pairwise distan-2 cM for SNP markers (Figure 4c) and the results for microsatel-
ces are within the range [0,1], one can specify the radius to be anlte markers (Figure 4a) were 94% and 73% respectively. Another
value from this range. The other way to sé$ to choose a percen- factor that affects the accuracy is the number of missing alleles of
tile according to the distribution of all pairwise distances. We tookthe input data. In reality, most datasets contain a substantial num-
the first method in this study. To set the valueMihPts we first  ber of missing alleles. There are also ambiguities while inferring
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Fig. 3. The Z-score distribution for a dataset with haplotype segment lengths 5 (a) and 7 (b). The prediction accuracy on 100 datasets (c).
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Table 2. Comparisons of three methods in terms of the root mean

haplotypes from genotypes using computational approaches. To testSquared error rate for differents.

how HapMiner performs under such a realistic situation, we exami-
ned HapMiner on the SNP datasets by randomly removing 12.5%

o - A=10% A=7.5% A=5%
alleles that counted for missing and phase-unknown positions. The Seglen | 7 9 = 5 = 5
missing alleles were imputed simply based on allele frequencies HapMiner | 6.37 | 5.81 | 20.71| 18.08 | 34.34| 31.84
before running HapMiner. The results (Figure 4d) were quite satis- Cladhc | 7.97 | 6.81 | 28.19| 27.40| 36.19| 37.10
factory considering the small sample size (200) and high number of Single 35.25 38.55 34.67

phenocopies. For example, with = 10%, more than 80% of the
predictions had errors smaller than 5 cM.

Significance of the predictions.To assess the significance of a result of our prediction is illustrated in Figure 5a. For comparisons,
prediction, a permutation test was performed for 1,000 iterationsall three methods use the adjusted significant levels.iTbeordi-
Figure 4 (e-f) illustrates the permutation test results on every markenate represents the marker positions andjtheordinate represents
position using the same two datasets as in Figure 3 of Toivonen et alhe significant levels. The overall significant leyefor the whole
(2000). The solid black line represents the predicescores forall  region was 0.05. The valuey(;) at marker: for method; was
the markers and the dashed black line underneath shows the empiefined asy; ; = (—log(p;,;)) — (—log(p)/n;), wherep; ; is the
rical p values of the predictions. The predicted gene location forsignificant value of method at position: (both HapMiner and the
the first dataset was within 0.2 cM of the true gene location represingle SNP method use the test with 1 df; CLADHC uses the
sented by the vertical line in Figure 4e and the empiricahlue likelihood ratio test), and:; is the number of total multiple tests
was smaller than 0.001. For the second dataset, where the signaver the region for methog (CLADHC has two levels of multiple
was much weaker, the predicted error was 1 ¢cM and the empiricaests, so the number is different from the number of SNPs). So in
p value was 0.019. While it is a common approach to use the perFigure 5a, a marker with a positive value means it is significant at the
mutation test as a way to assess the significance of the predictioB,05 level. Our predicted disease location is at marker 18 (0.89 cM
it seems inappropriate to take the position with the minimum empi-away from the first marker) with much higher significant level than
rical p-value as the predicted gene location itself, as in Toivonen ett by the simplex? test. CLADHC with the same segment length
al. (2000). Unlike the normal-value of a statistic, the position with 7 output two markers with very similar significant levels while the
the minimum empiricap-value might not have the highest statistic distance between the two markers is 0.125 cM. In terms of point
(Z-score, orx? value in our case). In such a case, it is not clearestimation, our prediction is better than the point estimation (0.8698
why one should take the position with the minimynvalue as the  cM away from the first marker) in Molitor et al. (2003) which took
prediction. the mode of posterior distribution as the disease gene location. No

HapMiner, CLADHC and x? test. We further compared Hap- point estimation was given by Liu et al. (2001) and they only repor-
Miner, CLADHC and the simplg? on the SNP dataset with diffe- ted the 95% confidence interval was around [0.82, 0.93]. The cluster
rent levels of phenocopiesAE10%, 7.5%, 5%\ = 1.7,2.7,4.1 identified by HapMiner consists of 63 haplotypes and 60 of them
in terms of relative risks. The casé=2.5% was dropped since were from the 94 disease chromosomes, which is very close to the
no methods were significantly better than random guesses). Bottotal number of disease chromosomes that had the DS mutation. The
haplotype based approaches achieved much higher power (definajority of the two sets overlapped. The haplotype segment length
ned as the proportion of the predicted locations are within ongyarameter was set to be 7 markers in Figure 5a, and the exactly same
half of the segment length from the true locations, used byset of chromosomes and similar profile were obtained by HapMiner
CLADHC) and returned more accurate results than the sigple when using segment length of 5 (data not shown). For the analysis
test (Figure 4 g-i, Table 2). HapMiner is more robust againston the three real datasets, all other parameters took the default values
noisy data than CLADHC. FaA=10% (Figure 4g), HapMiner and as those in the dataset Il, namely; = wy; = e 1%, ¢ = 0.2,
CLADHC reported similar results for two different values of haplo- and the percentile foMinPtsis 0.25. CLADHC could not handle
type segment lengths tested, and HapMiner was slightly better thamultiallelic data so we only output the results by HapMiner for the
CLADHC in terms of the root mean squared error rate (the squareemaining two datasets using their— score profiles.
root of the average squared errors across 100 runs, Table 2). With The FA dataset.We further applied the algorithm to the second
the increase of the phenocopies, HapMiner achieved much higheeal dataset concerning the localization of Friedreich Ataxia (FA)
power than CLADHC using the same segment lengths (Figure 4lgene reported in Liu et al. (2001) and reanalyzed by Molitor et
for A=7.5%, Figure 4i forA=5% and Table 2). The two haplotype al. (2003). Our data contains 54 disease haplotypes and 69 con-
segment lengths were taken since CLADHC could not deal with segtrol haplotypes with 12 microsatellite markers spanning a region of
ment lengths longer than 10 markers. All other parameters for botll5 cM. The gene is located between the fifth and sixth markers.
programs took their default values. More details about the data can be found in Liu et al. (2001). Hap-

Miner predicted the gene position on the fifth marker as shown in
Results on real datasets Figure 5b, with aZ-score of 6.03. The haplotype segment length
The CF dataset.We applied the algorithm to a widely-studied real parameter was set to be 7 and similar result was obtained for seg-
dataset originally reported by Kerem et al. (1989) in the study ofment length 5. The most informative cluster identified consists of
the fine-mapping of Cystic Fibrosis (CF) gene. The dataset contain25 disease haplotypes where the biggest cluster identified in Liu et
94 affected haplotypes and 92 normal haplotypes with 23 RFLRal. (2001) contained 33 haplotypes. We obtained three other small
markers each. It is known that a certain founder mutathofs clusters as found in Liu et al. (2001) that may be due to allele hete-
between marker 17 and marker 18, about 0.88 cM away from theogeneity. The sizes of our clusters were smaller than those of the
first marker, accounts for 67% of the disease chromosomes. Theusters in Liu et al. (2001) mainly because our parameters were
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Fig. 5. Point estimations on real datasets: significant levels adjusted by multiple testing on CF data (a)Zsddhes on FA data (b) and T1D data (c).

chosen in such a way that the algorithm could detect phenocopidsave tested HapMiner under two evolutionary models and it per-
more effectively. No point estimation or confident interval were formed consistently well regardless of the population history. The
given in Liu et al. (2001). Again, the point estimation was much simulations and the real datasets consisted of dominant, recessive
better than the results in Molitor et al. (2003) where the predictionand complex diseases, and HapMiner was able to successfully iden-
was 2 markers (0.25 cM) away from the true location. tify the DS gene locations for all the cases. It requires no prior
The T1D data set.We have also tested HapMiner on the third real information about the evolutionary history (genealogy of haploty-
dataset, consisting of affected sib-pair families with type 1 diabetepes) or inheritance patterns of the diseases. Extensive tests have
(T1D) obtained from Herr et al. (2000). The T1D dataset consistsalso demonstrated the robustness of HapMiner on the selection of
of 385 affected sib-pair families each with 2 parents and 2 affectedlifferent parameters.
children. There are a total of 25 microsatellite markers spanning a The framework can easily handle diseases with multiple founder
14Mb region on chromosome 6 including the entire HLA complex, mutations per locus since HapMiner could report all clusters that are
with known type 1 diabetes-susceptibility locus. The haplotypessignificant at each marker locus as we did on the FA dataset. It can
were inferred from the genotype data using ifhieger linear pro-  also handle diseases with multiple genes and gene-gene interactions
gramming(ILP) algorithm of the PedPhase program by Li and Jiangby modifying the similarity measure to account for different haplo-
(2004). Only 89 families were taken from all 385 families since thetype segments. The significance level of the prediction is evaluated
other families missed the genotypes of all members in at least onky carrying out permutation tests. The properties of the proposed
locus. For each family, a haplotype from the four parental haploty-statistics Z-score ory?) under different assumptions will be inve-
pes was assigned as a case haplotype if it appears in any of the twgtigated. It is also possible to incorporate statistical techniques for
affected children. Otherwise it was selected as a control haplotypestudying false discovery rates (Storey and Tibshirani, 2003) into our
There were totally 213 case haplotypes and 143 control haplotygenome-wide association mapping studies. For false positive due to
pes. The length of a haplotype segment was set to be 5. The resufp@pulation structure, one can also incorporate the genomic control
(Figure 5c) show that HapMiner could find the DS gene location atmethod to the proposed framework.
marker D6S2444 with Z-score of 3.72. The location is the same as The method presented here assumes that the haplotype pair of
those identified by TDTTransmission Disequilibrium Tédype of  each individual is available, which in general can be inferred by
tests in Herr et al. (2000), while HapMiner only used a much smallecomputational methods based on genotype data. A possible exten-
subset of the total data. The associated cluster has 32 haplotypes asidn is to take into consideration the ambiguity of the inferred
only 3 are from control haplotypes. The number of core haplotype$aplotypes as well as the dependence of the two haplotypes from
is 27 and the consensus haplotype pattern is 61429. the same individual. An alternative to the use of inferred haplo-
types is to calculate similarity/distance based on genotype vectors
directly. For instance, similarity of two genotype vectors can be
measured based on the number of identical alleles at each mar-
4 DISCUSSION ker. But our preliminary results on genotype vectors have shown it
We have described a model-free haplotype association mappingannot provide accurate predictions in most cases. We will systema-
method and proposed a new haplotype similarity measure. The praically investigate how the predictions will be affected while using
gram, HapMiner, is well suited for gene fine mapping and efficientinferred haplotypes from various sources by different algorithms.
for whole-genome screens. Results on two simulated datasets andThe notion of density-based clusters is crucial to the prediction
three real datasets have illustrated that HapMiner could predict D@ccuracy when data contain high level noise such as phenocopies
gene locations with high accuracy under various situations withand incomplete penetrances. It also alleviates the mislabelling pro-
realistic sample sizes, and it has a better performance than sonigem of haplotypesij.e., for case-control data, it is possible that
recently developed approaches. Simulations based on the dataggfly one of the two case haplotypes from an affected individual

from the literature show that it is effective even for data containing acontains the disease mutation, while we labels both of them as case
high rate of phenocopies (corresponding to small relative risks). We
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