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Abstract

Genome-wide association studies become feasible and promising with the
availability of densely spaced markers over the whole genome. The data from
genome-wide association studies typically consists of information on a huge
number of markers with a relatively small sample size. The currently existing
methods, which only account for marginal gene effects, are either ineffective
or unmanageable in computation when extended to assess joint gene effects.
There is an urgent need for efficient statistical methods that can assess joint
gene effects and, at the same time, are computationally feasible. In this paper,
we develop a tournament approach of this nature. The approach combines four
ingredients together: a) variance component model, b) non-quadratic penalized
likelihood, c) permutation aggregating, and d) model selection criteria. With
these ingredients properly combined, the approach assesses the joint gene ef-
fects in stages which mimic rounds of competitions in a tournament, hence the
name of the approach. The tournament approach is applied to a real data set
containing quantitative trait values and genotypes of 2155 SNPs of 16 pedigrees
with 233 individuals. It is demonstrated by simulation studies that the tourna-
ment approach is powerful in detecting multiple associations and at the same
time incurs low false discovery rate. The tournament approach will provide a
powerful tool for genome-wide association studies, especially, when there are a
huge number of markers.

Keywords: Genome-wide association study, Penalized likelihood, Permutation aggregating,

QTL mapping, Variance component model.
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1 Introduction

With the advance of biotechnology, rapid collection of huge amount of molecular

biological data is becoming the norm. Genetic markers, especially single nucleotide

polymorphisms (SNPs), are becoming available in tens or hundreds of thousands.

As the markers are sufficiently closely spaced to allow the detection of the linkage

disequilibrium (LD) with any etiological variant, a genome-wide association study is

becoming feasible and promising.

The analysis of the data resulted from genome-wide studies poses great challenges

to statisticians and statistical geneticists. Since etiological variants for common dis-

eases and complex traits are generally large in number and small in individual effects,

they are overwhelmed in the sea of the huge amount of markers. Traditional statistical

methods are inefficient in this situation. New statistical methods must be developed.

The development of statistical methods for genome-wide association studies is still in

its infancy.

The main approaches currently available for genome-wide association studies can

roughly be classified into three categories. The first category consists of strategies

of multiple tests based on single locus statistics or two loci statistics. They include

methods using Bonferroni correction to control the family-wise type I error rate, see

Marchini, Donnelly and Cardon (2005), and methods to control a more appropriate

measure, the false discovery rate (FDR), see Benjamini and Hochberg (1995), and

Storey and Tibshirani (2003). The second category consists of strategies that pool

together the strength of single locus statistics to increase the power of detecting genes

with significant contributions. These include the sum-statistic method developed by

Hoh, Wille and Ott (2001), see also Hoh and Ott (2003), and the method using

truncated product of p-values, see Zaykin et al. (2002) and Dudbridge and Koeleman
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(2003). The third category consists of strategies, which have mainly been used for

microarray analysis, that treat gene effects as random variables and use Bayesian

approach or mixture model techniques, see Ishwaran and Rao (2003), Kauermann

and Eilers (2004). There are also a few other approaches, say, the combinatorial-

partitioning method (CPM) proposed by Nelson et al. (2001), the multifactor di-

mensionality reduction method modified from CPM by Ritchie et al. (2001) and

Martin et al. (2006). All these methods just mentioned have met some success in

certain particular situations and none of them dominates the others. The statistics

used in the above mentioned approaches only summarize marginal gene effects such

as single locus and two loci marginal effects. Consequently, they may fail to capture

some precious joint effects of various genes in the data. A surge of new statistical

methodologies for genome-wide association studies is yet to come.

We confine ourselves to association studies of quantitative traits with SNPs in

this paper. The complexity of genome-wide association studies is tremendously in-

creased. The fundamental issue, however, remains the same: among all the SNPs

under investigation, which of them are responsible or are in LD with the QTL that

are responsible for the observed variation in the quantitative traits of interest? For a

given set of SNPs, the effects of the SNPs on the quantitative trait can be assessed

jointly by an appropriate statistical model. The problem of genome-wide association

study then amounts to the problem of model selection. However, at the scale of tens

or hundreds of thousands SNPs, traditional model selection procedures can not be

expected to work. The all-subset selection procedure is well known to be instable, see

Breiman (1996a). The backward selection procedure is infeasible since the number of

SNPs is much larger than the number of observations. The full model can achieve a

perfect goodness-of-fit with any sufficiently large subset of SNPs no matter whether
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or not they have any effect on the quantitative trait of concern. The consequence of

this is that even the most important SNP may appear very ordinary at the presence

of all the others and be removed from the model at very early stages. The forward

or stepwise selection procedures are well known for their greedy nature; that is, the

virtue of a variable (in the current context, a SNP) is assessed only against the vari-

ables already included in the model, not considered in its synergetic role among all

the variables. As a consequence, relatively unimportant variables might be selected

but more important variables might be missed. The weakness of the traditional model

selection procedures become even more prominent at the scale of genome-wide stud-

ies. Besides, the computation task involved in those procedures is also prohibitive at

such a scale.

In this paper, we propose a model selection approach for the genome-wide asso-

ciation study with pedigree data. Because of its similarity to the competitions in a

tournament, we refer to this approach as the tournament approach. The basic idea

of the tournament approach is as follows. The SNPs are assessed and selected jointly

by penalized likelihood models in stages. The stages are similar to rounds of com-

petitions. At each stage, the SNPs entered into this stage are divided into groups.

The SNPs in each group are jointly assessed by a penalized likelihood model and a

specified number of them are selected. These are similar to parallel matches in a

round of competitions. The SNPs selected in the current stage then enter the next

stage. At the last stage (the final), all the SNPs entered the final are jointly assessed

and ranked by a penalized likelihood model. The SNPs are then grouped into nested

subsets. For each of the subsets, an un-penalized likelihood model is fitted and a

model selection criterion is applied to assess these models. There are four ingredients

in the tournament approach: (a) a variance-component model to account for the co-
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variance structures of the pedigrees, (b) a non-quadratic penalized likelihood used for

selecting SNPs, (c) a permutation aggregating process adopted to ensure fair-play,

and (d) a model selection criterion for the assessment of final models. Unlike the

approaches based on marginal SNP effects, the tournament approach makes the se-

lection of SNPs based on their joint effects. The information missing in those single

locus and two loci statistics are recaptured in the tournament approach. In addition,

the tournament approach is applicable for any number of SNPs, small or huge, with

much less computational difficulties.

We have applied the tournament approach to a real data set consisting of 16

pedigrees with 233 individuals. The data set contains, for each individual, the value

of the trait of interest and the genotypes of 2155 SNPs spread over 23 chromosomes.

The heritability of the trait is estimated from the data as 0.48. The tournament

approach detects four SNPs which are countable for the heritability. A numerical

assessment shows that the detection is highly significant. We also used the pedigree

structures and the SNP genotypes of the real data set as the setting for a simulation

study. The simulation study demonstrates that the tournament approach is powerful

to detect true QTL and at the same time incurs a low false discovery rate.

The details of the tournament approach are described and discussed in §2. The

background of the real data set and its analysis are given in §3. The simulation study

is discussed in §4. Some further discussion is presented in §5. Computational issues

are addressed in the Appendix.

2 The tournament approach

The tournament approach is described in detail in this section. We first discuss the

ingredients and then the procedure of the tournament approach.
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The variance component model. To facilitate our discussion, we begin with some

basics of quantitative genetics. Let Y be a quantitative trait whose variation can be

attributed to genetic factors. Then we have Y = µ0 + g + ε, where µ0 is the overall

mean, g is the genetic effect with variance σ2
g and ε is the non-genetic effect with

variance σ2
e . It is assumed that g and ε are independent. If there are more than

one QTL contributing to Y , g is decomposed as g =
∑

k gk, where gk is the effect of

QTL k with variance σ2
k. Also the gk’s are commonly assumed independent. If there

are dependent QTL, they can be pooled together and be considered as a compound

QTL. Thus, σ2
g =

∑
k σ2

k. Now consider two individuals j and l with quantitative trait

values Yj and Yl given, respectively, by

Yj = µ0 +
∑
k

gjk + εj and Yl = µ0 +
∑
k

glk + εl.

Then the covariance between Yj and Yl is given by

Cov(Yj, Yl) =
∑
k

Cov(gjk, glk).

It follows from the theory of population genetics, see Lange (2002), that

Cov(gjk, glk) = 2σ2
kΦjl,

where Φjl is the kinship coefficient between individual j and l which is a function

of the biological relationship between j and l. The kinship coefficient is indeed the

probability that an allele selected at random from j and an allel selected at random

from the same autosomal locus of l are identical by descend. If j and l are biologically

un-related, Φjl = 0. We have,

Var(Yj) = Var(Yl) = σ2
g + σ2

e ,

Cov(Yj, Yl) = 2σ2
gΦjl.
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The ratio σ2
g/(σ

2
g + σ2

e) is referred to as the heritability in genetics. If the genotypes

at QTL k are known for j and l, then conditioning on these genotypes, we have

Var(Yj|gjk) = Var(Yl|glk) = (σ2
g − σ2

k) + σ2
e ,

Cov(Yj, Yl|gjk, glk) = 2(σ2
g − σ2

k)Φjl.

If the genotypes at all QTL are known then the above variances and convariance

reduce to

Var(Yj|gj) = Var(Yl|gl) = σ2
e ,

Cov(Yj, Yl|gj, gl) = 0.

Let yi = (Yi1, . . . , Yini
)t be the vector of trait values of ni individuals in pedigree i.

Then the variance-covariance matrix of yi is given by

Σi = σ2
gAi + σ2

eI,

where Ai = 2(Φjl). Furthermore, if yi is assumed to follow a multivariate normal

distribution, the model is referred to as the variance component model which was first

considered by Amos (1994). The variance component model is used in the tournament

approach to model the correlations among the individuals from the same pedigree. In

the variance component model considered by Amos, there are also additional variance

components due to common household or other attributable common non-genetic

factors. In this paper, we confine ourselves to the simpler form described above.

However, if necessary, other components can be easily added into the model, which

will not affect the procedure of the tournament approach.

The genotypes at an SNP on an autosome or on the sex chromosome for female

take the form: A-A, A-B and B-B, and are coded as 0, 1, and 2 respectively. The

genotypes at an SNP on the sex chromosome for male take the form A and B and are
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coded as 0 and 1 respectively. Let xk denote the genotype code of SNP k, the effect

of this SNP, if any, can be represented by βkxk. Here, for the sake of convenience, we

implicitly assumed that the dominant effect of an SNP is negligible.

The variance-component-model ingredient of the tournament approach is now

described as follows. Suppose that the data set consists of n pedigrees and the trait

values of pedigree i are represented by yi = (Yi1, . . . , Yini
)t. Let S be a set of SNPs.

Let XiS denote the matrix of genotypes of pedigree i with its rows corresponding to

individuals and columns corresponding to the SNPs in S, its first column being a

vector of 1’s. Then, conditioning on S,

yi|S ∼ N(XiSβS , ΣiS),

where ΣiS = νSAi + σ2
eI, νS being the genetic variance conditioning on S. It should

be noted that, for the SNPs in S which are not QTL, the corresponding components

in βS are zeros. If there is no QTL in S then νS = σ2
g . The more QTL the S contains,

the smaller the νS . Let

ΣS =

 Σ1S · · · 0
· · · · · · · · ·
0 · · · ΣnS

 , XS =

 X1S
· · ·
XnS

 , y =

 y1

· · ·
yn

 .

Denote by v the vector (νS , σ2
e)

t. Then the likelihood function of the data is given by

L(βS , v|S) =
n∏

i=1

1

(2π)ni/2|ΣiS |1/2
exp{−1

2
(yi −XiSβS)tΣ−1

iS (yi −XiSβS)}

=
1

(2π)N/2|ΣS |1/2
exp{−1

2
(y −XSβS)tΣ−1

S (y −XSβS)}, (1)

where N =
∑n

i=1 ni. This model will be referred to as the un-penalized likelihood

model in the tournament approach.

Non-quadratic penalized likelihood. In recent years, a new class of model selection

procedures using non-quadratic penalized likelihood has emerged. In the penalized
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likelihood approach, a penalty function imposed on the linear parameters is added

to the log likelihood function. The penalty function is deliberately constructed so

that, by tuning a parameter in the penalty function, the zero components of the

linear parameters should be estimated as zeros when the penalized log likelihood is

maximized. Let Pλ(|βS |) be the penalty function where λ is the tuning parameter.

The penalized likelihood is given by

lp(βS , v|S, λ) = ln L(βS , v|S)−NPλ(|βS |). (2)

Usually, Pλ(|βS |) is of the form
∑

k∈S pλ(|βk|). If pλ(|β|) = λ|β|, Pλ(|βS |) is the

penalty function used in LASSO proposed by Tibshiranni (1996). Another popular

choice is more conveniently specified by its derivative function

p′λ(|β|) = λ

{
I(|β| ≤ λ) +

(aλ− |β|)+

(a− 1)λ
I(|β| > λ)

}

for some choice of a > 2. This penalty is proposed by Fan and Li (2001) and will

be referred to as the SCAD penalty. It is seen that the SCAD penalty becomes a

constant when β is larger than aλ. Thus, it does not discriminate between “large”

fitted values of β. This property is useful to allow the fitted values of important

SNPs not being influenced much when the penalty increases, and therefore more

likely to be retained in the model. Because of this property, the SCAD penalty is

used in the tournament approach. The penalized maximum likelihood estimates of

the coefficients have positive probability to contain zero fitted components. When

the penalty increases, the number of zero fitted coefficients increases. By tuning the

parameter λ in the penalty function, a model containing practically any given number

of covariates can be selected. The selection is based on the joint effect of all the SNPs

instead of on the marginal effects of the SNPs. This feature is essential for the non-

quadratic penalized likelihood to be an ingredient of the tournament approach.
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The non-quadratic penalized likelihood approach has only been used so far for

model selection in the case that the number of linear parameters is not much larger

than and usually smaller than the number of observations. It is used in the following

way. All the covariates are entered into the model, a cross-validation procedure is

used to tune the parameter λ such that a subset of the covariates that best explain the

data can be selected. The estimation of the parameters and the selection of covariates

are done simultaneously in this procedure. In the genome-wide association studies,

we are confronted with a completely different situation — the number of covariates

is much larger than the number of observations. We use the penalized likelihood in a

different way in the tournament approach. It is used to select a prespecified number

of SNPs with non-zero fitted coefficients by tuning the parameter λ at each stage

of the tournament procedure. The tuned value of λ determines in certain sense the

qualification of SNPs for their further participation in the tournament.

Permutation aggregating. In principle, the penalized likelihood approach can be

applied for any number of covariates even when the number of covariates far exceeds

the number of observations. However, when the number of covariates becomes too

large, there will be some practical obstacles. For example, the numerical computation

in this case involves a very large Hessian matrix, and it is severely ill conditioned. The

computation becomes possible only for relatively large values of the tuning parameter

λ. But then the fitted values of the linear parameters will be overly influenced by

the penalty, not much by their own virtue. Some covariates might hence be removed

from the model prematurely. In the end, the truly important covariates can be easily

missed. The huge size of Hessian matrix also inflates the amount of computation,

and destabilize the numerical precision.

To overcome the difficulties discussed above, we adopt the following strategy. At
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the begining of the tournament, the SNPs are divided into nearly equally numbered

subsets. Then the penalized likelihood maximization is applied to each of the subsets

to select a pre-specified number of SNPs with non-zero fitted parameters. If the total

number of SNPs pooled together from all the subsets is still large, then they are

subject to further division and selection, until a group of finalists close to a targeted

number is reached.

However, this one-time partition might be erratic; that is, the finalist group is

dependent of the particular initial partition. To reduce this erratic nature, a per-

mutation aggregating procedure is applied for the selection of the finalists. The

permutation aggregating procedure is as follows. Instead of just one partition, the

SNPs are randomly permuted and partitioned for a given number of times. For each

partition, the procedure described in the last paragraph is repeated. In the end, the

SNPs that appear in the finalist groups most often are finally selected to enter the

final.

The idea of permutation aggregating is the same as the bootstrap aggregating

(Bagging) proposed by Breiman (1996b). The only difference is that bootstrapping

in bagging is here replaced by random permutation.

Model selection criterion. The last ingredient of the tournament approach is the

model selection criterion. At the final stage, a sequence of values of λ are tuned such

that, for a pre-specified number m, with the first λ value, m SNPs with non-zero fitted

coefficients are selected, with the second λ value, m − 1 SNPs with non-zero fitted

coefficients are selected, and so on, until, with the last λ value, only one SNP with

non-zero fitted coefficient is selected. The SNPs selected by a particular λ value form

a subset. An un-penalized likelihood model of form (1) is fitted with each subset.

A model-selection-criterion ingredient is used to assess these models. In principle,
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any model selection criteria such as AIC, BIC, CV or GCV can be used, see Akaike

(1973), Schwarz (1978), and Craven and Wahba (1979). However, in the case that

the number of covariates is huge, which is typical in genome-wide association study,

both AIC and BIC are too liberal; that is, these criteria tend to select a model with

a larger than necessary number of covariates. This phenomenon has been observed

by Broman and Speed (2002). CV and GCV are theoretically close to AIC. Besides,

they need more computaions. Here we introduce a modified information criterion

(MIC) which is defined below:

MIC(k) = −2 sup{L(βS , v|S) : S contains k SNPs}+ k(log N + log P ) (3)

where P is the total number of SNPs under consideration over the whole genome. A

heuristic justification of MIC is as follows. Since sup{L(βS , v|S)} is the maximum

of
(

P
k

)
χ2-random variables, it follows that sup{L(βS , v|S)} − log

(
P
k

)
has essentially

an asympotic extreme value distribution. The quantity log
(

P
k

)
is the amount in

sup{L(βS , v|S)} inflated by taking the maximum of the χ2-random variables. There-

fore, the superimum must be adjusted by subtracting log
(

P
k

)
. It follows from Ster-

ling’s formula that log
(

P
k

)
≈ k log(P − k) − log(k!) ≈ k log P for large P . When

some SNPs are in linkage disequilibrium, as long as the equivalent number

of independent SNP is still in the order of P , this size is still well moti-

vated. In the original BIC criterion, replacing the log likelihood by the adjusted

superimum log likelihood then gives rise to the criterion MIC.

We now put all the ingredients together and describe the complete procedure of

the tournament approach. Let M be a pre-determined subset size such that the

maximization of the penalized likelihood is stable. From our experience, it seems

appropriate to take M to be half of the number of observations. Let m be a pre-

determined number for the SNPs to be selected from each subset. The m is determined
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large enough to retain all important SNPs and small enough to reduce the burden

of further computation. We take m to be two tenth of M . The procedure of the

tournament approach goes as follows.

Pre-matches

Round 1: Let S1 be the set of all SNPs in the data set. Partition S1 at random

into subsets of nearly equal size M to yield

S1 = S1
l ∪ · · · ∪ S1

J ,

where J is the integer such that [JM ] is the total number of SNPs. For

each subset S1
j , maximize lp(βS1

j
, v|S1

j , λ) by tuning λ so that m SNPs

in S1
j have non-zero fitted coefficients. Let S1

j∗ denote the set of these m

SNPs. Form the set

S2 = S1
1∗ ∪ · · · ∪ S1

J∗.

Round r: Repeat the same procedure as in round 1 with the set Sr generated

from the previous round when necessary.

Pre semi-final: The pre semi-final begins when there are nearly only M SNPs

left from the previous rounds of competitions. From these M SNPs, a

group of C finalists (C is pre-specified and is not necessarily the same as

m) are selected through the maximization of the penalized likelihood by

tuning the parameter λ.

Permutation aggregating

Repeat the pre-matches B times, say B = 100. From all the SNPs that entered

the finalist groups at least once, select the C SNPs that entered the finalist

groups most often. These C SNPs form the eventual group of finalists.
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The Final

Ranking and grouping: The C finalists are ranked in the following way.

First, in the maximization of the penalized likelihood including all the C

finalists, tune the parameter λ such that λ1 is the smallest value that pro-

duces less than C SNPs that have non-zero fitted coefficients. There could

be less than C − 1 SNPs with non-zero fitted coefficients. The SNPs with

non-zero fitted coefficients are grouped together and the group is referred

to as the λ1-level group. The SNPs with zero fitted coefficients receive

rank C and are excluded from further competitions. Next, consider the

maximization of the penalized likelihood with the λ1-level group, increase

the value of the tuning parameter until the first time the number of SNPs

with non-zero fitted coefficients differs from the λ1-level group. Suppose

the value of the tuning parameter achieving this state is λ2. The SNPs

with non-zero fitted coefficients at this step are grouped together and the

group is referred to as the λ2-level group. The SNPs with zero fitted co-

efficients at this step receive rank C − 1. The process continues this way

until eventually the value of the tuning parameter becomes so large that

none of the SNPs remained will have a non-zero fitted coefficient.

Model fitting and Selection: For each of the groups at different λ-levels, fit

the un-penalized likelihood model (1) and compute the model selection

criterion MIC. The group which achives the smallest MIC value is selected

as the significant group of SNPs.

Apart from the significant group, the output of the above procedure also contains the

ranks of the finalists and the MIC value of each λ-level group. From these results,
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one can judge the relative importance of the SNPs selected and draw guidelines for

further investigation or confirmation study.

The computational issue of the tournament approach is dealt with in the Ap-

pendix.

3 Analysis of the Real Data

We have applied the tournament approach to a real data set. The data consists of the

trait values together with the genotypes at 2155 SNPs spread over 23 chromosomes

of 16 pedigrees with a total of 233 individuals. The 16 pedigrees are a part of the

reference pedigrees that were originally collected from Utah, USA by the Centre dE-

tude du Polymorphisme Humain (CEPH). B lymphocytes from the blood samples of

these pedigrees were transformed into immortalized lymphoblastoid cell lines (LCLs)

by Epstein-Barr Virus (EBV). The trait of interest is a measure of the mRNA expres-

sion level of the EBNA-3A gene in LCLs. EBNA-3A is one of the EBV genes that

are expressed in the LCLs and are important for the transformation of B lympho-

cytes. The genotype data of the 2155 SNPs in the 233 individuals of the 16 pedigrees

are extracted from a larger data set at the SNP Consortium that has been used for

constructing a linkage map of the human genome (Matise et al. 2003).

In this section, we give a detailed analysis on the output of the tournament pro-

cedure with this data.

The data set contains a large number of missing values. At some SNPs, the

genotypes of all the individuals in a family are missing. These SNPs are removed

from our consideration. There are also SNPs at which the genotypes of a pedigree

are only partially missing. For these SNPs, We imputed the missing values by a

random sampling from the un-missing genotypes of the pedigree. This might have
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caused some genetically incompatible genotypes in these pedigrees. However, these

incompatibility does not severely affect the result of the statistical analysis. There

are also SNPs at which all the individuals have the same genotype. Since these

SNPs are non-informative, they are removed from the analysis. There are also a few

missing trait values. For the individuals with missing trait values, their trait values

are imputed by a random sampling from their pedigree members as well.

After this preliminary treatment, 741 SNPs are removed and 1414 SNPs are left

for the analysis. Some visual inspection reveals that the removed SNPs are scattered

sporadically. Thus, the information loss in terms of association study is not too

serious. Table 1 gives both the original number of SNPs as well as the number of

SNPs left on each chromosome. Also given in Table 1 are the ranges of indices of the

SNPs in the original data set.

The tournament approach is applied to these 1414 SNPs. At the first round,

the SNPs are randomly divided into 14 subsets of equal size 101, and 20 SNPs are

selected from each subset. At the second round, the SNPs selected from the first

round are randomly divided into two subsets of equal size and 30 SNPs are selected

from each subset. Then 30 finalists are determined from these 60 SNPs. This process

is repeated 100 times. The SNPs which entered the finalist lists most frequently are

given in Table 2. The order of the SNPs reflects their frequencies in descending order.

The cutoff point is determined as the frequency has a big drop after the 38th SNP.

In the data set, the locations of the SNPs on the chromosomes are known. In order

to see whether or not the locations can supply more information for the detection of

associations, we adopted another strategy in the tournament approach. Instead of

partitioning the SNPs at random in the first round, each chromosome is taken as a

natural subset. A set of around 15 SNPs are selected from each chromosome at the
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Table 1: Distribution of the SNPs over the chromosomes

Chromosome Index Range Original Number Number Left
1 1-188 188 119
2 945-1117 173 118
3 1314-1466 153 97
4 1467-1586 120 81
5 1587-1712 126 80
6 1713-1836 124 89
7 1837-1954 118 76
8 1955-2064 108 76
9 2063-2155 93 53
10 189-302 114 84
11 303-385 83 52
12 386-479 94 62
13 480-547 68 49
14 548-639 82 51
15 630-687 58 35
16 688-760 73 47
17 761-823 63 41
18 824-903 80 52
19 904-944 41 28
20 1118-1189 72 44
21 1190-1232 43 29
22 1233-1280 48 32
23 1281-1313 33 20

first round. At the second round, the SNPs selected at the first round are divided at

random into two subsets of equal size. Then for each subset, 30 SNPs are selected.

At the third round, the 60 SNPs from the second round are screened by the penalized

likelihood and 28 finalists are selected. The indices of these 28 SNPs together with

their chromosomes are given in Table 3.

Since the number of SNPs is not uniformly distributed over the 23 chromosomes.

We were concerned that the above strategy may give SNPs in chromosomes with
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Table 2: The SNPs selected from the aggregation of 100 random permutations (the
SNPs with ∗ are the frequent finalists in Table 3, and the SNPs with ∗∗ appear in
Table 3 but are not the frequent finalists)

Order 1 2 3 4 5 6 7 8 9 10
SNP 1985∗ 1836∗ 847∗ 393 83∗ 1999∗ 462 2079∗ 1832 1762∗

Order 11 12 13 14 15 16 17 18 19 20
SNP 819∗ 846 1373 426∗∗ 681∗ 1750∗ 1847 389 290∗∗ 1
Order 21 22 23 24 25 26 27 28 29 30
SNP 1040∗ 928 602∗ 278∗ 1231∗ 1787∗ 2055∗∗ 333∗∗ 868 2151
Order 31 32 33 34 35 36 37 38
SNP 124 687 125∗∗ 957 1232 78 925 77∗

fewer competitors unwarranted advantage of being finally selected. For example,

15 SNPs are choosing out of 20 SNPs on chromosome 23, but out of 119 SNPs on

chromosome 1. Is it possible for less important SNPs to be selected from chromosome

23 and for more important SNPs to be missed on chromosome 1? However, from the

results given in Table 3, it does not seem to be the case. To further clear our doubt, we

randomly chose only 50 SNPs from those chromosomes with more than 50 SNPs and

went through the tournament procedure with the above strategy. This was repeated

100 times and resulted 100 finalist lists. The SNPs in Table 3 with the ∗ sign are the

ones which most frequently entered the 100 lists of finalists. Note that the count of

these frequent finalists is 18 out of 28. This demonstrates that the imbalanced set

size at the first stage does not seem to have much influence on the final results.

It is interesting to note that among the 18 frequent finalists in Table 3, 17 of them

are among the first 30 frequent finalists in Table 2. A total of 21 finalists in Table 3

are among the first 30 frequent finalists in Table 2. This indicates that the random

partitioning strategy in the tournament approach does not loss any information which
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Table 3: The selected finalist SNPs with chromosomes treated as natural subsets

Chromosome SNP indices
1 77*, 83*, 125, 185
2 1025, 1040*
4 1565
6 1750*, 1762*, 1769, 1787*, 1836*
7 1839
8 1985*, 1999*, 2055
9 2079*
10 278*, 290
11 333
12 389*, 426, 462*
14 602*
15 681*
17 819*
18 847*
21 1231*

could have been carried by the position structure of the SNPs.

The SNPs in Table 2 are brought into the final of the tournament procedure. For

the purpose of comparison, after ranking and grouping, the MIC as well as AIC, BIC

are computed for the ranked groups. These values for the first 8 highly ranked SNPs

and their corresponding groups are given in Table 4. The values in each column

correspond to the model containing the SNPs in the first row from the leftmost to

the one in that column. For example, the first model contains SNP 1836 only, and

the second model contains SNPs 1836 and 393, and so on.

As expected, both AIC and BIC have not reached their minimum yet when all

the 8 SNPs are included in the model. On the other hand, the MIC has its minimum

at the model containing the first 4 SNPs. Therefore, the first 4 SNPs are selected as

singificant ones. These 4 SNPs were recommended for further boilogical confirmation
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Table 4: The final result of the tournament procedure with the real data set

SNPs None 1836 393 1231 1985 1999 1 847 681

AIC 233.8 216.9 207.7 194.9 181.3 176.2 174.3 169.8 157.6
BIC 233.8 220.3 214.6 205.3 195.1 193.5 195.0 183.9 185.2
MIC 233.8 227.6 229.1 227.0 224.1 229.8 238.5 244.7 243.2

study. In addition to these 4 SNPs, the other SNPs can also be taken for confirmation

study if resources are available. A simulation study for the justification of the use of

MIC will be provided in the sequel.

It is of interest to know how many SNPs will be selected by the tournament

procedure if none of the SNPs has significant contribution to the variation of the

quantitative trait. Here we prerent some results of a random permutation study

regarding this question. The issue will be tackled more systematically in the next

section. The quantitative trait values are randomly permuted 200 times, thus cutting

off any possible association of the trait values with the SNP genotypes. For each

permutation, a slightly simplified version of the tournament procedure is carried out.

In the simplified version, the permutation aggregating step is skipped for the sake

of less amount of computation. The frequencies of different number of SNPs being

selected by the AIC, BIC and MIC criteria are given in Table 5.

It is seen from Table 5 that neither AIC nor BIC can be used as the model

selection criterion in the tournament procedure. Although none of the SNPs affects

the quantitative trait, the AIC and BIC still have a high probability to select a large

number of SNPs. This is especially the case for AIC which selects more than 7 SNP

in all the 200 replicates. However, on the contrast, the MIC is quite efficient in

eliminating the non-significant SNPs. There are 82% of times the MIC selects none
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Table 5: The frequencies of different number of SNPs being selected by tournament
procedure with randomly permuted quantitative traits.

No.of SNPs 0 1 2 3 4 5 6 7 8 ≥ 9
AIC 0 0 0 0 0 0 0 0 3 197
BIC 0 11 19 16 27 24 19 14 20 51
MIC 164 33 3 0 0 0 0 0 0 0

of the SNPs, 16.5% of times it selects only one SNP, 1.5% of times it selects two

SNPs. The MIC does not select more than two SNPs. In other words, if there is no

genetic effect at all, the probability that MIC will falsely select more than two SNPs

is almost zero. Thus we can interpret that the selection of four SNPs by MIC in the

real data example is extremly significant.

4 Simulation studies

In this section, we discuss some simulation studies which were designed to assess the

performance of the tournament approach.

In the usual simulation study, we need to generate pedigree data. However, the

generation of SNP genotypes over the whole genome for a given pedigree structure

is difficult. To avoid this difficulty, we adopted the following strategy. We retain

the same pedigree structure together with all the SNP genotypes of the real data set

throughout the simulation studies. Then the QTL and trait values are generated as

follows. In each simulation repetition, we randomly select a fixed number of SNPs

out of the 1414 SNPs in the real data set and take them as if they are the true QTL

to form

yS = XSβ + εS ,

where XS consists of the columns in the design matrix of the real data set correspond-
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ing to the selected SNPs, the β is a vector of given coefficients, and εS is generated as

a vector of independent identically distributed random errors with a normal distribu-

tion of zero mean and a given variance. The randomly selected SNPs and hence the

matrix XS and the error vector εS change from repetition to repetition. The QTL

effects β remain the same throughout each simulation study. It is assumed here that

the genetic variation is completely accounted for by the selected SNPs. Therefore,

given XS , the residuals are independent.

We considered two settings of the simulation. In both settings, we fix the number

of randomly selected SNPs at 10. In the first setting, the vector β is taken as

βt = (2,−.31,−.23, .42,−.32,−.33,−.26, .41, .29,−.35,−.69),

where the first component is the intercept. The variance of the error term is taken

as 0.6. These values are two times a set of fitted values obtained in our exploratory

analysis of the real data set. This setting represents the situation where none of

the SNPs dominates the others in their genetic contributions to the quantitative

trait. With this setting, an average heritability is around 40%. We did not insist on

matching the heritability in the real data set, because to do so not only the coefficient

values but also the structure of the genotypes of selected SNPs must match those in

the real data, which is far from trivial.

In the second setting, the vector β is taken as

βt = (2,−1.56,−1.09, 1.22,−.06,−.08,−.012, .067, .047, .07, .05).

In this setting, the effects of the first three SNPs are markedly more prominent

than the others. This represents the case where a few major QTL dominate the

contribution to the variation of the quantitative trait. Together with the other 7

SNPs, they contribute around 66% of the variation in the simulated trait values.
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Table 6: The average number of SNPs selected by the model selection criteria AIC,
BIC and MIC over 200 repititions (numbers in parenthese are standard deviations).

Setting 1 Setting 2
AIC BIC MIC AIC BIC MIC

Correct 6.37 (1.50) 6.35 (1.50) 5.73(1.73) 3.00(.07) 3.00(.07) 3.00(.07)
Incorrect 4.61 (1.50) 4.05 (1.69) 0.82(0.96) 7.67(.65) 3.36(2.25) 0.13(0.39)

The tournament approach is applied in both settings in the same way except that

the finalists consist of 30 SNPs in the first setting but the finalists consist of only 15

SNPs in the second setting. To save the amount of computation, the permutation

aggregating is not implemented in the simulation.

All the three criteria — AIC, BIC and MIC — are applied in the final stage of the

tournament approach. The average numbers of SNPs correctly chosen and incorrectly

chosen under both settings are given in Table 6.

The average number of correctly selected SNPs with all the three model selection

criteria are very close. In the first setting, around 60% of the SNPs which have minor

effects on the quantitative trait are identified. In the second setting, almost all the

three major SNPs are identified. But the AIC and BIC suffer high false discovery

rates: 42% and 39% respectively in the first setting, 72% and 53% respectively in the

second setting. The MIC, on the other hand, controls the false discovery rate quite

well. The false discovery rates with MIC are only 13% and 4% respectively in the

first and second setting. In the case of false discovery, the AIC always tend to dicover

a large number of false SNPs while the numbers of false SNPs discovered by BIC

are spread out, which is reflected by the standard deviations of the false discovery

numbers given in the Table.
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Table 7: Number of SNPs selected when no SNPs are significant.

Number of SNPs 0 1 2 3 4 5 6 7 8 ≥ 9
AIC 0 0 0 0 0 0 0 0 0 200
BIC 0 2 8 15 23 20 16 23 17 76
MIC 158 36 6 0 0 0 0 0 0 0

Table 7 contains the simulation results when no SNPs have significant contribution

to the variation of the quantitative trait. We set the value of β at the order of 0.01 to

make the situation more realistic. The results are similar to those presented in Table

5. The AIC and BIC fail to eliminate non-significant SNPs while the MIC guards

against the non-significant SNPs very well.

In summary, the simulation results demonstrate that the tournament approach

with the MIC model selection criterion has high power and low false discovery rate

in detecting major SNPs. Even in the case of minor SNPs, the approach still has

desiorable power and false discovery rate, noting that the sample size is not very

large. The tournament approach provides a promising powerful tool for gonome-wide

association studies.

5 Conclusion and discussion

We have developed an effective tournament approach for the data analysis of genome-

wide association studies. Although this approach is developed with the specific genetic

application in mind, it can be adapted for any model selection problems with a huge

number of covariates. Through the real data analysis and the simulation studies, it

is demonstrated that the tournament approach is statistically efficient in identifying

genes with significant contributions towards the variation of the quantitative trait at
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relatively very low computational cost. These properties are particularly important

in the analysis of genetic data containing tens or even hundreds of thousands markers.

The tournament approach is apprently more general than what we have presented

in this paper. We can supplement this approach with many other attachments. For

example, we can further improve the stability of the method by introducing permu-

tation aggregating in every pre-match rounds. In the presentation of this paper, the

dominant effects of the SNPs are assumed negligible. If this is not the case, the

approach can be rectified easily by introducing two variables for each SNP in the

model with a modest increment in computational amount. Further, the tournament

approach can also accommodate the analysis of epistasis effects of genes. In this as-

pect, more research is needed to moderate the substantial increment in computational

amount. There is still much room left for further studies of this approach, which will

take our continous effort in our further research.

Appendix

In this appendix, we deal with the computational issue of the tournament approach.

The first point to note is that the design matrix X must be standardized for the

tournament approach; that is, each column of X must be normalized to have mean

zero and standard error 1. This step is necessary for the penalized likelihood to be

meaningful.

Since the penalty function pλ(β) is not smooth at 0, the commonly used Newton-

Raphson method is not applicable for the maximization of the penalized log likelihood.

Following Fan and Li (2001), for non-zero βk0, we approximate pλ(β) at the vicinity

of βk0 by

pλ(|βk|) ≈ pλ(|βk0|) +
1

2

{
p′λ(|βk0|)
|βk0|

}
(β2

k − β2
k0).
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Let

Gλ(β0) = Diag

{
p′λ(|βk0|)
|βk0|

, k = 1, 2, . . .

}
.

By deleting the columns of Xi with zero initial coefficients, up to a constant, the

penalized log likelihood becomes

lp(β) = −
n∑

i=1

(yi −Xiβ)tΣ−1
i (yi −Xiβ)− βtGλ(β0)β. (4)

In principle, (4) can now be maximized by the Newton-Raphson method. Since the

Newton-Raphson method can not guarantee the positiveness of the variance com-

ponents, we adopt the following coordinate ascent algorithm for the maximization.

The approximate penalized log likelihood (3) is estimated alternatively with respect

to β and (σ2
g , σ

2
e). For each given value of σ2

g and σ2
e , lp(β, σ2

g , σ
2
e |X, λ) is maxi-

mized with respect to β. Let the resultant fitted value of β be denoted by β̂. Then

lp(β̂, σ2
g , σ

2
e |X, λ) is maximized with respect to (σ2

g , σ
2
e). The iteration is repeated until

convergence occurs.

In the step of maximizing lp(β, σ2
g , σ

2
e |X, λ) with respect to β, the computation

is further simplified by taking the structure of Σi into account. By standard matrix

theory, we may decompose Ai as Ai = Qt
iΛiQi for each i with Qi being an orthogonal

matrix, and Λi being a diagonal matrix. Consequently, we have Σi = Qt
i[σ

2
gΛi+σ2

eIi]Qi

where Ii is an identity matrix of order ni, the size of the ith pedigree. With these,

we may write

lp(β) = −
n∑

i=1

(ỹi − X̃iβ)tD−1
i (ỹi − X̃iβ)− βtGλ(β0)β, (5)

where ỹi = Qt
iyi, X̃i = Qt

iXi, and Di = σ2
gΛi + σ2

eIi. This simplification avoids

repeated computations of the inverse of Σi for new values of (σ2
g , σ

2
e). An explicit

solution for β is then available.
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Next, we consider for a given β̂ the maximization of lp(β̂, σ2
g , σ

2
e |X, λ) with respect

to (σ2
g , σ

2
e). Define

r = − log(σ2
g/σ

2
e)

so that σ2
g = σ2

e exp(−r). Let D̃i = exp(−r)Λi + Ii and ε̃i = D
−1/2
i (ỹi − X̃iβ). It is

then seen that maximizing lp(β̂, σ2
g , σ

2
e |X, λ) is equivalent to maximizing

lp(r, σ
2
e) = − 1

σ2
e

n∑
i=1

ε̃τ
i ε̃i −N log σ2

e −
n∑

i=1

ni∑
j=1

log d̃ijj

with d̃ijj being the diagonal element of D̃i. It is easily seen that for a given value of

r, the function is maximized when

σ2
e = σ̂2

e(r) = N−1
n∑

i=1

ε̃τ
i ε̃i.

It turns out then that we only need to choose r to maximize

lp(r) = −N log σ2
e(r)−

n∑
i=1

ni∑
j=1

log d̃ijj

because the other term does not depend on r.

Since exp(−r)/[1 + exp(−r)] has a range between 0 and 1, a range of r can be set

easily for the maximization. For example, we may set the range as [−10, 40]. The

one-dimensional optimization problem can then be solved easily.
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