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ABSTRACT

Motivation: Selecting SNP markers for genome-wide association

studies is an important and challenging task. The goal is to minimize

the number of markers selected for genotyping in a particular platform

and therefore reduce genotyping cost while simultaneouslymaximizing

the information content provided by selected markers.

Results:Wedevisedan improvedalgorithm for tagSNPselectionusing

the pairwise r2 criterion. We first break down large marker sets into

disjoint pieces, where more exhaustive searches can replace the

greedy algorithm for tagSNP selection. These exhaustive searches

lead to smaller tagSNP sets being generated. In addition, our method

evaluatesmultiple solutions that are equivalent according to the linkage

disequilibrium criteria to accommodate additional constraints. Its per-

formance was assessed using HapMap data.

Availability: A computer program named FESTA has been developed

based on this algorithm. The program is freely available and can be

downloaded at http://www.sph.umich.edu/csg/qin/FESTA/

Contact: qin@umich.edu

Supplementary information: http://www.sph.umich.edu/csg/qin/

FESTA/

INTRODUCTION

With the rapid improvement of high-throughput genotyping tech-

nologies, genome-wide association studies are emerging as a prom-

ising approach to detect genetic variants that contribute to human

diseases. Initially, genome-wide association studies will focus on

single nucleotide polymorphisms (SNPs) because of their high

abundance in the human genome, their low mutation rates and

their accessibility to high-throughput genotyping (Collins et al.,
1997). There are more than 10 million verified SNPs in dbSNP

(build 124) (Sachidanandam et al., 2001), but typing all available

SNP markers is inefficient and not necessary since many will pro-

vide redundant information due to linkage disequilibrium (LD).

A better strategy is to select a subset of representative SNPs (tagging

SNPs or tagSNPs) and to remove the rest from consideration

(Johnson et al., 2001; Cardon and Abecasis, 2003). The objective

is to have little information overlap among the selected SNPs while

retaining much of the signal contained in the original set.

The selection of tagSNPs has become a very active research

topic and many strategies have been proposed (Patil et al., 2001;

Zhang et al., 2002; Gabriel et al., 2002; Johnson et al., 2001; Meng

et al., 2003; Sebastiani et al., 2003; Avi-Itzhak et al., 2003; Ke and

Cardon, 2003; Goldstein et al., 2003; Stram, 2003; Hampe et al.,
2003; Chapman et al., 2003; Lin and Altman, 2004; Halldórsson

et al., 2004; Rinaldo et al., 2005). Recently, Zhang and Jin (2003)

and Carlson et al. (2004) introduced methods based on the LD

measure r2. These methods search for a small set of SNPs that

are in strong LD (measured through pairwise r2) with other

SNPs that are not selected for genotyping. Pairwise r2 is an attract-

ive criterion for tagSNP selection since it is closely related to stat-

istical power for case–control association studies, where a directly

associated SNP is replaced with an indirectly associated tagSNP

(Pritchard and Przeworski, 2001).

In this manuscript, we describe efficient algorithms for tagSNP

selection based on pairwise LD measure r2. The algorithms were

implemented in a computer program named FESTA (fragmented

exhaustive search for tagging SNPs). Essentially, we replace a

greedy search, where markers are added sequentially to the tagSNP

set, with an exhaustive search where all marker combinations are

evaluated. To achieve this, we arrange the genome into precincts of

markers in high LD, such that markers in different precincts show

only low pairwise disequilibrium. TagSNP selection can then be

performed within each precinct independently, greatly reducing

computation cost. In most settings, our method is guaranteed to

find the optimal tagSNP set(s) defined by the r2 criterion. For a

small proportion of precincts where exhaustive search is computa-

tionally too expensive to carry out, an efficient greedy-exhaustive

hybrid search algorithm is described. Using data from the HapMap

project (The International HapMap Consortium, 2003), we show

that the majority of these precincts contain relatively small numbers

of SNPs, especially when a stringent r2 criterion is used. Our algo-

rithm readily identifies equivalent tagSNP sets, so that additional

selection criteria can be incorporated. Other useful extensions are

also discussed in this manuscript, such as the inclusion/exclusion of

certain SNPs and double coverage, which can increase robustness of

tagSNP sets against sporadic genotyping failures or errors.

METHODS

Consider a set S which contains M bi-allelic SNP markers a1, a2, . . . , aM.

Further assume that all these markers have minor allele frequency (MAF)

above a certain threshold (0.05 was used in this study). First, two-SNP

haplotype frequencies were estimated (Hill, 1974), and then the pairwise

LD measure r2 (also referred to as ‘D2’) (Devlin and Risch, 1995) was�To whom correspondence should be addressed.
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calculated for each pair of markers using the inferred haplotype frequencies

(Hill and Robertson, 1968). Two markers ai and aj are said to be in strong LD

if the r2 between them is greater than a pre-specified threshold value r0,

denoted as r2(ai, aj) � r0 (r0 ¼ 0.5 or 0.8 in in this study). Both are considered

tagSNPs for each other; in that ai can be used as a surrogate for aj, or vice

versa.

Our aim is to a find tagSNP set, denoted by T, a subset of S such that

8ai 2 S\T, 9aj 2 T that satisfies r2(ai, aj) � r0. In our presentation, we

introduce two intermediate SNP sets, P and Q. P is called the candidate

set which contains all the markers that are eligible to be chosen as tagSNPs

and Q is named the target set which contains all the markers that are yet to be

tagged, i.e. no marker in Q is in LD with any tagSNP in T. For each marker

am in P, let C(am) ¼ {a : a2Q and r2(a, am) � r0} represent the subset of Q

which contains markers that are in strong LD with am, and let |C(am)| be the

number of the elements in the set C(am). Typically, the candidate set P is the

complement of the tagSNP set T, P ¼ S\T and P ¼ Q. One exception occurs

when some SNPs are excluded as tagSNPs because they cannot be easily

genotyped, but they still should be tagged by other markers if possible. In this

case, the candidate set is a subset of target set. We describe several different

algorithms for updating P, Q and T starting with a greedy approach (Carlson

et al., 2004). We then outline successive refinements and extensions of a

partition and exhaustive search algorithm, designed to handle various scen-

arios encountered when planning association studies.

Greedy approach

The detailed algorithm is as follows (Carlson et al., 2004).

Algorithm 1 (greedy approach):

(1) Set T ¼ [ and P ¼ Q ¼ S;

(2) For each marker am in P, calculate |C(am)|;

(3) For every marker am where |C(am)| ¼ 0, add am into T, and remove it

from Q;

(4) Find the marker inP that has the highest |C(am)| value, denoted as amax,

and add amax into T, removing it and all connected SNPs, i.e. C(am)

from Q;

(5) Repeat Steps 2–4 until Q ¼ [.

In Step 4, by removing associated markers from consideration, the coverage

overlap among tagSNPs is greatly reduced. Although it is simple to imple-

ment, the greedy procedure may miss more efficient solutions. Figure 1 gives

a simple example, where markers A and B each tag half of all markers and

together can tag all the markers. However, marker C is connected to more

than half of all markers, and it is the first marker selected by the greedy

algorithm. In this example, the greedy algorithm produced a set with three

tagSNPs, despite the fact that the optimal solution contains only A and B.

FESTA

An exhaustive search guarantees the minimum tagSNP set. Therefore, the-

oretically, the exhaustive search solves the tagSNP selection problem. But in

practice, genome-wide tagSNP selection requires consideration of hundreds

of thousands of SNP markers. For problem of this scale, exhaustive searches

cannot be directly applied due to prohibitive computation costs.

Since appreciable LD only occurs within clusters of nearby markers along

chromosomes, a practical solution is to first decompose the set of markers

into disjoint precincts, such that markers in different precincts are never in

strong LD. Then, selecting tagSNPs using the r2 criterion in the whole set is

equivalent to selecting tagSNPs in each precinct and then combining all the

tagSNPs together. Here the concept of precinct is defined based on pairwise

LD measure. It is therefore closely related to haplotype blocks (Reich et al.,

2001; Patil et al., 2001; Daly et al., 2001; Jeffreys et al., 2001; Gabriel et al.,
2002; Dawson et al., 2002), which are regions where historical recombin-

ation events are rare. The main difference is that the precincts of markers

in high LD are determined purely on genetic distance. Unlike haplotype

block, markers within each precinct may not be consecutive markers sitting

next to each other.

Partitioning the markers into precincts can be achieved using standard

algorithms in graph theory. We applied the Breadth First Search (BFS)

algorithm (Cormen et al., 2001). Starting from any node (a marker) in a

new precinct, this algorithm adds all neighboring nodes (markers in LD) and

all neighbors of the newly added nodes to the precinct, until there are no

neighbors to be added to the precinct. This process is restarted from different

nodes until all the nodes are assigned a precinct.

After the partitioning step, we perform the tagSNP selection within each

precinct. Starting with K¼ 1, all K-marker combinations are searched to see

if they cover all markers within this precinct. If not, K is increased by one and

the search is repeated until a tagSNP set is found or a pre-specified search

limit is reached.

When evaluating all K-marker combinations, the computation cost

required for an exhaustive search might be too great in some precincts.

In such cases, we propose a hybrid solution which reduces the computation

cost and retains a good chance of finding optimal tagSNP sets. For each

precinct i with Ni markers (Here on, all parameters with subscript i indicate

parameters within the i-th precincts, such as Ki, Ji, Pi, Qi, Ti and Ni.), we

decide whether an exhaustive search is feasible by comparing the compu-

tation cost required for evaluating all K-marker combinations within a pre-

cinct,
�
Ni

K

�
, with a computation cost limit L specified a priori, determined

based on available computing resources. Larger limits allow a more com-

prehensive search, which may result in fewer tagSNPs being selected, but

require additional computational effort. In this study, we set this limit at 1

million. When this limit is exceeded, we apply the following hybrid algo-

rithm. Specify K�
i such that it is the largest K possible that satisfies�

Ni

K

�
� L0, where L0 is a pre-specified computation cost limit (less than

L, set at 10 000 in studies conducted here). Subsequently, for each K�
i -marker

combinations, denoted as fa1‚ . . . ‚aK�
i
g, assume that these markers have

already been selected, remove am together with all the markers in CðamÞ
from candidate set Pi and target set Qi, m ¼ 1‚ . . . ‚K�

i , i.e. Pi ¼ Qi ¼
Si\ [

K�
i

m¼1 ðfamg [ CðamÞÞ then apply the greedy approach to identify a subset

of Pi that is able to cover Qi, which contains the remaining untagged markers.

The tagSNP set obtained in the reduced set plus the previous K�
i markers

together form a complete tagSNP set for the i-th precinct. The detailed

algorithm is as follows:

Algorithm 2 (FESTA: greedy-exhaustive hybrid search):

(1) Apply the Breadth First Search to decompose the entire set of markers

into precincts such that high LD can only be observed within precincts.

S ¼ [n
i¼1 Si, and Si \ Sj ¼ [ for all i 6¼ j;

Fig. 1. An example when the greedy approach does not provide the smallest

tagSNP set.
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(2) Within each precinct Si, set K ¼ 1,

(a) If
�
Ni

K

�
� L, move to b, otherwise, conduct an exhaustive search

over all possibleK-marker combinations. Both the candidate setPi

and the target set Qi is Si. If no combination of K SNPs can cover

the entire precinct, set K ¼ K + 1, and repeat this step;

(b) FindK�
i such that

� Ni

K�
i

�
� L0 and

� Ni

K�
i þ 1

�
> L0. For everyK�

i -

marker combination in Si, denoted as fa1‚ . . . ‚aK�
i
g, let

Ti ¼ [K�
i

m¼1 famg, Pi ¼ Qi ¼ Si\[
K�
i

m¼1 ðfamg [ CðamÞÞ, and

apply the greedy approach to identify a subset of Pi that is able

to cover the remaining untagged markersQi. Among all the result-

ing tagSNP sets, we choose the smallest.

(3) Record all minimum tagSNP sets that cover the precinct. These form

the complete minimum tagSNP setsfTj
i : j ¼ 1‚ . . . ‚Jig, where Ji is the

total number of such minimum tagSNP sets.

(4) Any combination of tagSNP sets identified from all disjoint precincts

forms a tagSNP set for the whole set S. Suppose the size of the mini-

mum tagSNP set(s) in each precinct is Ki, then the overall size of such

minimum tagSNP sets is
Pn

i¼1 Ki, and the total number of such mini-

mum tagSNP sets is
Qn

i¼1 Ji.

FESTA executes either a ‘pure exhaustive search’ or a ‘greedy-exhaustive

hybrid search’ in each precinct depending on the computational cost.

Exhaustive search is first attempted, and if the computation cost becomes

too high, the hybrid algorithm is used as a fallback. Typically, only a small

proportion of the precincts require the ‘greedy-exhaustive hybrid search’.

FESTA double coverage

So far, both the greedy approach and our FESTA algorithm focus on finding

a tagSNP set such that each SNP is either a tagSNP itself or is in LD with at

least one of the tagSNPs. This is a criterion aimed at minimizing the number

of tagSNPs selected. In reality, random genotyping failure or genotyping

error on these tagSNPs can result in loss of power to identify the true signal.

To be more robust against such adverse events, we evaluated a more strin-

gent criterion requiring that every untyped SNP be in LD with at least two

tagSNPs.

Our FESTA algorithm can be extended to find tagSNP sets that will have

double coverage on the SNP markers considered. As always, an exhaustive

search is able to find such tagSNP sets when the marker set considered is not

too large. When exhaustive search is not feasible, the same greedy-

exhaustive hybrid search strategy can be applied. The detailed FESTA

double coverage algorithm can be found in the Supplementary Online Mater-

ial. Note that in practice, it may be useful to consider double coverage only

for large precincts, where the cost of losing an SNP to genotyping failure

might be higher.

Further tagSNP selection considerations

Mandatory tagSNP markers Our algorithm readily allows users to

force certain SNP markers to be included in or excluded from the tagSNP

set. There are several scenarios where such functionality is important. First,

in candidate gene studies, previous knowledge may be available as to which

SNPs are functionally important. These might include non-synonymous

coding region SNPs (cSNPs) as well as SNPs located in regulatory regions.

Second, in genome-wide studies, one might carry out multiple rounds of

genotyping and tagSNP selection. In such cases, additional tagSNPs could be

selected at each round to cover the markers not tagged by tagSNPs success-

fully genotyped in the previous round. In other settings, it may be useful to

exclude certain SNPs from consideration as tags. For example, some SNP

markers may be difficult to genotype using a particular platform.

When there are mandatory markers t1, t2, . . . , tr, to be included, put these

markers into the tagSNP set T and remove them from the candidate set, e.g. P

becomes P\ [r
i¼1ftig. The target set Q becomes Q\ [r

i¼1 ðftig [ CðtiÞÞ. If

there are SNPs u1, u2, . . . , us that need to be excluded from the tagSNP

set, remove them from the candidate set P, the target set Q is unchanged.

Choosing between alternative solutions Within a densely typed SNP

set, redundant tagSNPs are common, which results in multiple tagSNP sets

of the same size. All of these sets are equal in the sense of minimizing the

number of tagSNPs. In order to choose one set for genotyping, additional

criteria can be entertained. Here are examples of such additional criteria:

(1) Maximize average r2 between tagSNPs and untagged SNPs they repre-

sent;

(2) Maximize the lowest r2 between tagSNPs and the untagged SNPs they

connect to;

(3) Minimize the average r2 among all pairs of tagSNPs within a precinct.

In Criteria 1 and 2, we try to identify tagSNP sets whose members have the

strongest connections with those untagged SNPs. Since pairwise r2 between

disease locus and marker loci is closely related to statistical power of detect-

ing association, this strategy should result in increased power on average and

in the worst case, respectively. These criteria are recommended in regular

association study designs. The purpose of using Criterion 3 is to find a

tagSNP set whose members are as independent as possible which minimizes

overlap between covered SNPs of different tagSNPs and potentially

increases the chance of linking to untyped SNPs. This strategy is particularly

useful if one suspects the actual disease locus is not among the marker loci

genotyped. To evaluate the potential of uncovering the disease-causing

mutations in association studies among tagSNP sets identified by the afore-

mentioned criteria, we conducted some empirical evaluations, summarized

in the Results section.

Other types of criteria may be of even greater interest in practice. For

example, in many genotyping technologies, some SNPs are harder to geno-

type than others due to the characteristics of surrounding genome sequence.

We can use this information to select tagSNPs that are likely to have a high

success rate and to avoid SNPs that are prone to genotyping failure.

RESULTS

In order to illustrate our proposed piecewise exhaustive search

strategy, compare it with the greedy approach and explore the

various characteristics of the tagSNP sets selected by our method,

we applied both methods to two sets of data, the entire Chromosome

2 and five ENCODE regions (ENr112, ENr131, ENr113, ENm010

and ENm013) genotyped by the HapMap project (release 16c, June

2005). All three populations: CEU (European), YRI (Yoruban) and

JPT + CHB (Japanese and Chinese) were studied. The first is in the

context of a genome-wide association study and the second is sim-

ilar to the situation of a candidate region study.

Chromosome-wide tagging

We have applied the greedy algorithm and FESTA to Chromosome

2 using HapMap Phase 1 genotype data (release 16c, June 2005).

Table 1 (r2 threshold of 0.5) and Table S1 (r2 threshold of 0.8)

summarize the results. FESTA produces less tagSNPs compared

with the greedy approach in all three populations. When compared

across populations, the YRI samples have about twice the amount

of tagSNPs as the CEU or the JPT + CHB samples. The JPT + CHB

samples have slightly less tagSNPs identified than the CEU sam-

ples. With r2 threshold 0.5, the percentages of tagSNPs identified by

our new algorithm are 21.6% in CEU, 39.3% in YRI and 20.9% in

JPT + CHB samples, respectively.

The size of the tagSNP set is optimal for precincts where the

greedy approach indicates that one or two tagSNPs are enough to

cover all the SNPs in it. Improvements over the greedy approach is
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only possible for the remaining precincts. In the CEU samples,

there are 599 of such precincts, in which the greedy approach

identified 2423 tagSNPs, and FESTA identified 2022, a 16.5%

reduction. When the r2 threshold is 0.8, 154 precincts require

more than two tagSNPs, as identified by the greedy approach.

Among them, the greedy approach and FESTA identified 526

and 402 tagSNPs, respectively. The reduction rate is 23.6%. All

the detailed results are summarized in Table 2 (r2 threshold of 0.5)

and S1 (r2 threshold of 0.8). When double coverage is required, 69.1

and 45.9% more tagSNPs are needed with r2 thresholds of 0.5 and

0.8, respectively. Similar results were obtained from the YRI and

JPT + CHB samples.

Among all the non-singleton precincts in the CEU samples (6545

for r2 threshold of 0.5 and 10196 for r2 threshold of 0.8), most

require only a small number of tagSNPs, so that the exhaustive search

can be applied directly. With r2 threshold of 0.5, the greedy-

exhaustive hybrid approach was required for only 98 precincts or

1.5% of all precincts (11 precincts (0.1%) with r2 thershold of 0.8).

Densely typed region

A very dense SNP map was recently released by the HapMap

project on the ENCODE regions. We used five such regions

(ENr112, ENr131, ENr113, ENm010 and ENm013) to evaluate

the performance of our algorithm. Each ENCODE regions is 500

kb in length, for the CEU samples, the average number of SNPs in

these regions is 832 (ranges from 551 to 1126), corresponding to an

SNP density about 1 SNP per 601 bps (1 SNP per 907 bps to 1 SNP

per 444 bps for individual regions). The detailed results were sum-

marized in Table 3. Detailed results for the YRI and JPT + CHB

samples can be found in Supplementary Tables S2 and S3.

In this set of densely typed SNPs, using our method with r2

threshold of 0.5, the average percentage of tagSNPs required to

cover each of the five regions is 8.3% of all markers (ranges from

5.4 to 11.3%). For double coverage, on average, 76.7% more tag-

SNPs are required (ranges from 70.7 to 83.6%). With a more strin-

gent r2 threshold of 0.8, the average percentage of tagSNPs required

increased to 16.6% of all markers (ranges from 11.4 to 24.1%). To

double cover these regions, on average, 62.9% more tagSNPs are

required (ranges from 56.9 to 71.6%). For those precincts where

improvement over greedy search is possible, using FESTA, the

reduction rate is 17.9 and 23.0% on average for the five ENCODE

regions with r2 thresholds of 0.5 and 0.8, respectively. Applying our

method to YRI and JPT + CHB samples reveals similar trends (data

not shown).

Additional TagSNPs for denser SNP map

With the rapid advance of genotyping technologies, progressively

denser SNP maps will become available. As more refined associ-

ation studies are carried out, it will be useful to select new tagSNPs

to ‘fill holes’ in the initial sparse maps. With a good picking strategy

for the first round of tagging, this staged approach should result in

only a small-to-moderate increase in the total number of tagSNPs

compared to a one-stage strategy.

To evaluate this strategy, we constructed an artificial sparse SNP

map for each of the five ENCODE regions (using the CEU samples

only). Specifically, we selected one in every five consecutive SNP

markers. The density of this sparse map is about 1 SNP per 3kb,

close to the density of the phase I HapMap. Then, three different

tagSNP sets are identified using the three criteria described previ-

ously, denoted by Ti, i ¼ 1, 2, 3. Finally, we applied our approach

to the full ENCODE SNP set, using each of these tagSNP sets as a

seed, so as to search for additional tagSNPs to cover the previously

‘hidden’ SNP markers. The effectiveness of these tagSNP sets is

evaluated by comparing the number of new tagSNPs needed to

cover the ‘newly found’ SNPs. In addition to the three criteria,

we also compared three other tagSNP selection strategies: Z random

SNPs, assume Z is the number of tagSNPs for the sparse map; a

picket fence strategy with Z equally spaced SNPs (where we place

equally spaced grid points along the interval and then select markers

that are closest to these grid points); or using all original SNPs as

tagSNPs. The results are summarized in Table 4 (r2 threshold of 0.5)

and Table S4 (r2 threshold of 0.8) in the Supplementary Online

Material. From there, one can see that when the r2 threshold is 0.5,

14.4% more tagSNPs (range from 7.0 to 20.9%) are needed to fill

holes in the original map and that number is only 5.4% (range from

3.8 to 7.0%) when r2 threshold is 0.8. The three tagSNP sets require

Table 1. Summary of Chromosome 2: size of disjoint precincts and number

of SNPs and tagSNPs in each precinct

CEU YRI JPT + CHB

No. of SNPs 64 801 69 630 57 810

r2 � 0.5

No. of precincts 11 786 24 752 10 248

No. of tagSNPs (Greedy) 14 384 27 804 12 454

No. of tagSNPs (FESTA) 13 983 27 379 12 108

No. of tagSNPs (FESTA,

double cover)

23 644 41 668 20 644

r2 � 0.8

No. of precincts 23 426 41 079 20 178

No. of tagSNPs (Greedy) 24 300 41 729 21 044

No. of tagSNPs (FESTA) 24 176 41 664 20 963

No. of tagSNPs (FESTA,

double cover)

35 824 54 101 31 463

Table 2. Distributions of the size of the tagSNP sets using the greedy

approach and the FESTA algorithm (with r2 threshold of 0.5)

CEU YRI JPT+CHB

Greedy FESTA Greedy FESTA Greedy FESTA

Singletona 5241 5241 15 079 15 079 4416 4416

1 5172 5172 8096 8096 4660 4660

2 774 911 924 1070 634 770

3 318 278 355 291 312 250

4 144 99 127 100 113 90

5 59 42 73 53 60 30

6 27 18 36 28 16 15

7 17 17 21 10 14 6

8 16 4 10 8 11 6

9 11 1 6 3 4 4

10+ 7 3 25 14 8 1

Total 14 384 13 983 27 804 27 379 12 454 12 108

aSingleton means the precinct only contains one SNP. In other words, singleton refers to

an SNP marker that is not in LD (pairwise LD measure r2 greater than a threshold) with

any other SNP in the entire set. Such an SNP, by definition, is one of the tagSNPs.
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fewer tagSNPs to cover the holes, compared with tagSNPs picked

using a picket fence strategy (31.6% difference for r2 threshold of

0.5 and 21.6% difference for r2 threshold of 0.8) or picked at ran-

dom (33.8% difference for r2 threshold of 0.5 and 21.0% difference

for r2 threshold of 0.8).

DISCUSSION

In this manuscript, we developed an efficient computational

framework for tagSNP selection using the pairwise r2 criterion.

Our algorithm is able to identify smaller tagSNP sets than the

greedy approach (Carlson et al., 2004). Although the improvement

is modest, our algorithm always outperforms the greedy approach

in terms of the tagSNP size under exactly the same pairwise

LD criterion. Using both chromosome-wide data and densely

typed ENCODE region data from the HapMap Project, we

illustrated the utility of our approach and showed savings increase

in more densely typed regions and inside large LD ‘blocks’.

Computational time required by FESTA is quite reasonable and

can be tailored to available computing resources as needed.

Under the default setting, with r2 threshold of 0.5, FESTA takes

�1–15 min to run on the five ENCODE regions, and �120 min on

entire Chromosome 2 (with r2 threshold of 0.8, �0.1–1.5 min on

the five ENCODE regions, and �24 min on Chromosome 2) using a

2.8 GHz Pentium class computer server. Another important

advance is the ability of our method to identify multiple equi-

valent tagSNP sets and to use additional criteria to choose an

optimal tagSNP set for typing. This feature offers flexibility in

picking tagSNPs which is desirable when designing real association

studies.

The key improvement of FESTA over the greedy approach is the

‘precinct partitioning’ step which enables the exhaustive search to

be carried out very rapidly in most of the partitioned precincts. This

is similar in spirit to the idea of ‘partition-ligation’ algorithm pro-

posed by Niu et al. (2002) for haplotype inference.

Many of the existing tagSNP picking algorithms aim to capture

haplotype diversity using the reduced set of markers (called hap-

lotype tagging SNPs, htSNPs) such as BEST (Sebastiani et al.,
2003). They work well when a small number of common haplotypes

exist (typically true in the vicinity of a candidate gene) but these

approaches often require the knowledge of complete haplotype

phase and the boundary of the haplotype blocks. On the other

hand, tagSNP selection using r2 criteria does not require knowledge

of block boundaries and can easily be applied to cover the whole

chromosome. Recently, multiple-marker tagging strategies (Stram,

2005; P.I. de Bakker, 2005, http://www.broad.mit.edu/mpg/tagger)

in which multiple tagSNPs can be used to represent each untagged

SNPs have been proposed. While these methods further reduce the

Table 3. Summary of TagSNPs identified by the greedy approach, the

FESTA and FESTA double coverage algorithms in the five ENCODE

regions (CEU samples)

Region ENr112 ENr131 ENr113 ENm010 ENm013

No. of SNPs 863 988 1061 539 708

r2 � 0.5

No. of precincts 55 78 43 44 26

No. of singletonsa 23 31 16 16 11

No. of tagSNPs

(Greedy)

81 110 71 66 41

No. of tagSNPs

(FESTA)

75 105 67 61 38

No. of tagSNPs

(FESTA double

cover)

128 183 123 109 67

r2 � 0.8

No. of precincts 134 184 131 125 72

No. of singletonsa 63 81 62 61 25

No. of tagSNPs

(Greedy)

152 197 142 131 83

No. of tagSNPs

(FESTA)

146 193 141 130 81

No. of tagSNPs

(FESTA,

double cover)

237 311 229 204 139

aSingleton refers to an SNP marker that is not in LD (pairwise LD measure r2 greater than

the threshold) with any other marker in the entire set. Such a marker, by definition, is one

of the tagSNPs.

Table 4. Performance comparison of tagSNP sets selected by three different

criteria in terms of coverage on denser SNP maps (CEU samples, with r2

threshold of 0.5)

Region ENr112 ENr131 ENr113 ENm010 ENm013

SNPs in dense mapa 863 988 1061 539 708

SNPs in sparse mapb 173 198 213 108 142

One-stage picking

TagSNPs in dense map 75 105 67 61 38

Two-stage picking

Max average r2 b/tags

and non-tagsc

85 114 81 72 40

Min lowest r2/tags

and non-tagsd

85 115 80 75 40

Min average r2

among tagse

85 117 82 74 42

Other strategies

Random pickingf 103.2 137.7 91.4 71.0 52.0

Picket fenceg 103 136 94 78 52

Use all sparseh 200 241 239 134 153

aDense map means the densely typed SNP sets obtained in the ENCODE region from

the HapMap website http://www.hapmap.org (CEU samples, release 16c, June 2005).

All tagSNPs in this table were identified using our new algorithm.
bSparse map means the SNP sets obtained by selecting the first SNP in every five

consecutive SNPs in the dense maps.
c–eTotal number of tagSNPs needed to cover the SNPs in the dense map using the

tagSNPs identified using different criteria on the sparse map as seeds. Criterion 1,

maximize the average r2 between tagSNP and SNPs that it connected to; Criterion 2,

minimize the average r2 between tagSNP and SNPs that it connected to; Criterion 3,

minimize the average r2 among all tagSNPs.
fTotal number of tagSNPs needed to cover the SNPs in the dense map using T random

SNPs in the sparse map as seeds. T is the number of tagSNPs identified by our algorithm

on the sparse map. The number is obtained by repeating this procedure 100 times and

taking the average.
gTotal number of tagSNPs needed to cover the SNPs in the dense map using T equally

spaced SNPs (where we place equally spaced grid points along the interval and then

select markers that are closest to these grid points) in the sparse map as seeds.
hTotal number of tagSNPs needed to cover the SNPs in the dense map using all the SNPs

in the sparse map as seeds.
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number of tagSNPs selected, this ‘aggressive’ approach may be

sensitive to random genotyping failures.

Our approach is amenable to further computational improve-

ments. For example, parallel programming could be used to

search for tagSNPs in separate precincts, further speeding up the

computation.

FESTA is freely available and can be downloaded at http://www.

sph.umich.edu/csg/qin/FESTA
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