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ARTICLE

Overcoming the Winner’s Curse: Estimating Penetrance
Parameters from Case-Control Data
Sebastian Zöllner and Jonathan K. Pritchard

Genomewide association studies are now a widely used approach in the search for loci that affect complex traits. After
detection of significant association, estimates of penetrance and allele-frequency parameters for the associated variant
indicate the importance of that variant and facilitate the planning of replication studies. However, when these estimates
are based on the original data used to detect the variant, the results are affected by an ascertainment bias known as the
“winner’s curse.” The actual genetic effect is typically smaller than its estimate. This overestimation of the genetic effect
may cause replication studies to fail because the necessary sample size is underestimated. Here, we present an approach
that corrects for the ascertainment bias and generates an estimate of the frequency of a variant and its penetrance
parameters. The method produces a point estimate and confidence region for the parameter estimates. We study the
performance of this method using simulated data sets and show that it is possible to greatly reduce the bias in the
parameter estimates, even when the original association study had low power. The uncertainty of the estimate decreases
with increasing sample size, independent of the power of the original test for association. Finally, we show that application
of the method to case-control data can improve the design of replication studies considerably.
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Identification of the genetic variants that contribute to
complex traits is an important current challenge in the
field of human genetics. Although there is a steady stream
of reported associations, replication of findings is often
inconsistent, even for those associations that do ultimate-
ly turn out to be genuine.1,2 In large part, the difficulties
of replication occur because most genuine associations
have modest effects; hence, there is generally incomplete
power to detect associations in any given study. These
challenges will undoubtedly continue as we move into
the era of affordable whole-genome association studies,
through which it is possible to detect variants of small
effect anywhere in the genome.3,4

When a study identifies a marker that shows evidence
of association with a disease, it is common to estimate the
impact of this variant on the phenotype of interest. This
impact is often expressed as an odds ratio—that is, the
ratio of the odds of manifesting the disease in carriers of
the risk allele to the odds of manifesting the disease in
noncarriers. A complete description of the impact of a
variant affecting a binary phenotype includes two sets of
parameters: the frequencies of the genotypes and the pen-
etrances of the genotypes. These parameters can be used
to assess the impact of the detected variant, as measured,
for example, by the attributable risk. Estimation of the
strength of the effect of a genetic variant on the pheno-
type is also helpful for planning successful replication
studies.

Unfortunately, estimation of these parameters with the
same data set that was used to identify the variant of in-

terest is not straightforward, since the data set does not
constitute a random population sample for two reasons.
First, samples that are used for association mapping are
usually collected to oversample affected individuals rela-
tive to their frequency in the population (e.g., the sample
might include equal numbers of cases and controls). Sec-
ond, and more seriously, there is a major ascertainment
effect that occurs when a variant is of interest specifically
because it was significant for association. For a variant that
is genuinely—but weakly—associated with disease, there
may be only low or moderate power to detect association.
Hence, when there is a significant result, it may imply that
the genotype counts of cases and controls are more dif-
ferent from each other than expected. Consequently, the
estimates of effect size are biased upward. This effect, which
is an example of the “winner’s curse” from economics,5

depends strongly on the power of the initial test for as-
sociation.6 If the power is high, most random draws from
the distribution of genotype counts will result in a sig-
nificant test for association; thus, the ascertainment effect
is small. On the other hand, if the power is low, condi-
tioning on a successful association scan will result in a big
ascertainment effect.

This problem is well appreciated in the field. It has been
observed that the odds ratio of a disease variant is usually
overestimated in the study that first describes the variant.
In a meta-analysis of 301 association studies of 25 puta-
tive disease loci, Lohmueller et al.2 concluded that, even
though the replication studies indicated that 11 of the loci
were genuinely associated with disease, a striking 24 of the
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25 loci were reported in the initial study to have an odds
ratio higher than the estimates based on subsequent rep-
lication studies. One important implication of the win-
ner’s curse is that it makes it hard to design appropriately
powered replication studies. If the sample size of a repli-
cation study is chosen on the basis of the odds ratio ob-
served in the initial study, then the replication will almost
certainly be underpowered.1

Göring et al.6 were the first to highlight the challenges
of the winner’s curse for genome scans. Studying the prob-
lem for variance-components linkage scans of QTLs, they
showed that, for low-powered studies, the naive estimate
of the genetic effect at a significant locus is almost un-
correlated with the true underlying genetic effect; this re-
sults in a significant overestimation. They concluded that
the only method for generating a useful estimate is to
collect a large, independent, population-based sample of
individuals, without regard to phenotype, and then to
phenotype and genotype each individual. Although such
a sample would provide unbiased estimates of allele fre-
quencies and penetrance parameters with properly cali-
brated confidence regions, this may be a prohibitively ex-
pensive solution to the problem. Thus, it is of interest to
develop methods that generate unbiased estimates of the
parameters of interest from the same data set used to de-
tect the variant.

Several authors have since described methods that cor-
rect for the ascertainment bias when estimating genetic
effects after a whole-genome scan for linkage. Allison et
al.7 noted that, for a specified genetic model, the distri-
bution of the effect, constrained by ascertainment bias,
can be analyzed. Using a method-of-moments approach,
they calculated an estimate of the genetic effect. Sieg-
mund8 proposed lowering the confidence limit in the ini-
tial test, thus accepting a large number of false-positive
results. As indicated above, this leads to a high power for
each individual test and only a small ascertainment effect.
Siegmund8 then suggested calculating CIs and accounting
for the high number of tests by increasing the stringency
of the CIs. To correct for ascertainment, this method also
requires specifying the genetic model. Sun and Bull9 sug-
gested multiple methods based on randomly splitting the
sample into a detection sample and an estimation sample.
By comparing the estimate generated from the detection
sample and the estimate from the estimation sample, they
were able to calculate a correction factor for the ascertain-
ment effect. However, the resulting estimator is still some-
what biased, and the SE of the corrected estimate is ac-
tually higher than the SE of the naive estimator.9 In a
somewhat analogous setting, one study of family-based
association tests proposed that the available information
be split into two orthogonal components.10 Then, one
component of the information is used to validate prom-
ising signals from the other component. However, that
study focused primarily on testing rather than estimation.

Although some of the methods for correcting for the
winner’s curse in linkage studies could be extended to

association studies, association studies differ from linkage
studies in several respects. The sample collected for an
association study is more similar to a random population
sample, which allows a more precise calculation of the
sampling probabilities. Furthermore, the power of an as-
sociation study should be much higher than the power of
a linkage study of the same trait,11 so it is not clear how
well the conclusions of Göring et al.6 apply to whole-ge-
nome scans for complex diseases.

The goal of the present study was to develop a method
for generating corrected estimates of genetic-effect size for
a locus that was identified in a significant test for associ-
ation. Instead of calculating an odds ratio or relative-risk
parameter, we use information about the population prev-
alence of the disease to estimate directly the penetrance
parameters of the variants of interest. This allows us to
perform the estimation for any specific genetic model
(e.g., additive or dominant) or for a completely general
genetic model. We describe an algorithm for calculating
the approximate maximum-likelihood estimates (MLEs)
of the frequencies and the penetrance parameters of the
genotypes and associated confidence regions. We find
that, for a variety of genetic models, our estimator corrects
the ascertainment effect and provides reasonably accurate
estimates and well-calibrated CIs while slightly underes-
timating the genetic effect. We show that these corrected
estimates provide a far better basis for designing repli-
cation studies than do the naive uncorrected estimates.
Last, we show an application of the method to the asso-
ciation of the Pro12Ala polymorphism in PPARg with type
2 diabetes.12

Methods
Model

We developed a fairly general model for calculating the likelihood
of a set of penetrance parameters and genotype frequencies con-
ditional on having observed a “significant” signal for association
at a certain biallelic marker. It is assumed that significance is
determined according to a prespecified test and type 1 error rate
(a). In a data set of na affected individuals and nu unaffected
individuals, we consider the three genotypes g1, g2, and g3 in-
dicating, respectively, the minor-allele homozygote, the hetero-
zygote, and the major-allele homozygote. Let the data D p

be the counts of these genotypes in affected(a , … ,a ,u … ,u )1 3 1 3

and unaffected individuals that constitute the significant signal
for association. Furthermore, let be the populationf p (f , … ,f )1 3

frequencies of the genotypes, let be the penetrances,v p (v , … ,v )1 3

and let F be the population prevalence of the disease phenotype.
F, which is assumed to be known from independent data, will be
used to constrain the sample space for the other parameters as
follows:

3

F p v f . (1)� i i
ip1

We split the ascertainment into two parts. Let B indicate that, as
required, the marker of interest shows significant association at
level a, and let S be the experimental design of sampling na af-
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fected individuals and nu unaffected individuals, regardless of the
prevalence F. We use as a shorthand for . We calculatePr (7) Pr (7FS)S

the likelihood and obtain an MLE for v and f, using theL(v,f)
equation

L(v,f) p Pr (DFB,v,f)s

Pr (BFD,v,f) #Pr (DFv,f) Pr (DFv,f)s s sp p .
Pr (BFv,f) Pr (BFv,f)s s

(2)

This result is obtained using the fact that the data D consti-
tute, by definition, a significant result, so D implies B; hence,

. The numerator on the right side of equation (2)Pr (BFD,v,f) p 1s

is the likelihood of the observed genotype counts, and the de-
nominator is the power of the test used in the initial genome
scan. The numerator is maximized at the naive penetrance esti-
mates. Meanwhile, the denominator (power) is made smaller as
the penetrance values move closer together. This has the effect
of tilting the maximum likelihood toward smaller differences
among the penetrances. Notice that equation (2) is undefined
when the power is 0 (e.g., if all the ); however,f p 0 power pi

implies that observing a significant result is impossible. Since0
we condition our estimation on observing a significant result,
this case can be ignored.

Under the assumption that the samples of affected and unaf-
fected individuals are only a small proportion of the affected and
unaffected individuals in the population, is the productPr (GFv,f)s

of two multinomial distributions

3 3
n ! n !a ua ui iPr (DFv,f) p Pr (g FA) Pr (g FU) , (3)� �3 3S i i

ip1 ip1� a ! � u !i i
ip1 ip1

where A indicates the affected phenotype and U the unaffected
phenotype. is the probability that a randomly selectedPr (g FA)i

affected individual carries genotype gi and can be calculated

Pr (AFg )Pr (g ) v # fi i i iPr (g FA) p pi Pr (A) F

and

(1 � v )fi iPr (g FU) p .i 1 � F

A general expression for the denominator of equation (2) is

Pr (BFv,f) p Pr (D Fv,f) , (4)�S S i
D significanti

where the represent all significant realizations of the data vec-Di

tor D.
For many designs of tests for association, it is possible to cal-

culate the power of the initial test exactly (see appendix A). To
apply this algorithm to tests that do not have a simple method
of power calculation, equation (4) can be evaluated by sampling

conditional on v and f and approximating by MonteD Pr (BFv,f)i

Carlo integration. These calculations assume that controls are
selected to not show the phenotype of interest. If random (un-
phenotyped) controls are used, equation (3) is modified by re-

placing with . Note that, although, in the initialPr (g FU) Pr (g )i i

scan for association, several tests can be performed at each of
many markers, the multiple testing affects the estimates only
indirectly through the choice of the level of significance, a.

The equations can be extended to estimate gene-gene inter-
action parameters. To assess the interaction of m loci in the ge-
nome, all possible combinations of genotypes have to be con-
sidered, so there are states. Enumerating these statesmk p 3

, the set of genotype counts can then be expressed as1, … ,k
, and the goal is to estimate the vector ofD p {u , … ,u ,a , … ,a }1 k 1 k

population genotype frequencies and the vectorf p (f , … ,f )1 k

of penetrances by extending equations (1)–(4).v p (v , … ,v )1 k

The Algorithm

We designed a two-stage algorithm to estimate the population
frequencies of the underlying genotypes and their penetrance
parameters conditional on a known disease prevalence F, by max-
imizing . In the first step, we generated an approximateL(v,f)
likelihood surface by sampling independent sets ofm p 30,000
parameters conditional on F (i.e., that satisfy eq. [1]). The three
genotypes were assumed to be in Hardy-Weinberg proportions
in the overall population. We then calculated the likelihood

for each parameter set and selected the setL(DFf , … ,f , v , … ,v )1 3 1 3

with the highest likelihood as a first approximation of the point
estimate of the parameters. In the second step, we improved this
estimate by perturbing each parameter value by a small value e

and accepting the new parameter values if the likelihood is higher
than the likelihood of the old maximum. By repeating this pro-
cedure 3,000 times, reducing e with every repetition, we generated
highly stable estimates. We assessed the fidelity of this algorithm
by analyzing a set of data sets multiple times, and we observed
that the parameter estimates differed by a magnitude of only

. To generate estimates for a known genetic model, we re-�510
peated the analysis in parameter spaces that are constrained
accordingly.

We generated 95% confidence regions by comparing the like-
lihood of all initial m parameter points with the likelihood of the
point estimate. We included all points for which twice the dif-
ference of log-likelihoods was !95th percentile of a distribution2x

with 3 df. (The model contains three free parameters: an allele
frequency and three penetrances that are jointly constrained to
produce the overall disease prevalence F.) For simpler genetic
models, we used fewer degrees of freedom as appropriate.

Analysis of the Algorithm

We tested our algorithm by simulating association scan data and
then estimating the true underlying parameters according to the
following scheme:

1. Simulate genotype counts D on the basis of minor-allele
frequency f and penetrances v1, v2, and v3 for a sample of n
cases and n controls, according to equation (3), under the
assumption of Hardy-Weinberg equilibrium in the general
population.

2. Perform test of significance for the simulated data, com-2x

paring allele counts in cases and controls at significance level
. If significant, move to step 3; otherwise, return to�6a p 10

step 1.
3. Generate three estimates ( ) on the basis of D:ˆ ˆ ˆf̂v ,v ,v1 2 3

a. without correcting for the ascertainment effect (naive
estimator),
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b. with use of the correction for ascertainment described
here, and

c. simulating a second, independent sample and gener-
ating the estimates on the basis of the second sample.

Using this procedure, we performed two simulation studies: (1)
a simple example to explore the basic properties of the winner’s
curse and the proposed correction and (2) a set of studies sim-
ulated under a large number of penetrance models, to assess the
effect of genetic model, sample size, and power of the initial study.

Simulation study 1.—We set the minor-allele frequency f p 0.2
and considered three additive combinations for the penetrance
parameters : (0.18, 0.14, 0.1), (0.25, 0.175, 0.1), and (0.32,(v ,v ,v )1 2 3

0.21, 0.1). At a sample size of and , these three�6n p 400 a p 10
parameter sets yielded power of 0.03, 0.54, and 0.97, respectively.
We assumed that the underlying model was known to be additive,
and we constrained the parameter space accordingly. For each
estimate, we calculated the estimated additive component ˆ(v �1

and compared the resulting distributions.v̂ )2

Simulation study 2.—We sampled random data sets of 1,000 pa-
rameter combinations for each , generatingn � {100,200,400,800}
the minor-allele frequency f from a uniform distribution on
(0.05,0.5), drawing v1 and v3 independently from a uniform dis-
tribution on (0,1), and setting

1
v p (v � v )2 1 32

(additive model). We sampled from such data sets to have ap-
proximately uniformly distributed power in the initial test for
association, by evaluating 100 parameter sets with a power be-
tween 0.005 and 0.1, 100 sets with a power between 0.1 and 0.2,
and so on; the last category was 100 parameter sets with a power
between 0.9 and 0.995. All other parameter sets were rejected.
For each parameter set, we generated one set of genotype counts
D. On the basis of D, we obtained one estimate under the as-
sumption that the underlying genetic model was known to be
additive, constraining the parameter space accordingly, and a sec-
ond estimate under the assumption that the model was unknown.

We summarized the difference between the estimated pene-
trances , , and and the true values v1, v2, and v3 as the sumˆ ˆ ˆv v v1 2 3

of squared deviations (ssq)

3

2ˆssq p (v � v ) .� i i
ip1

To evaluate the bias of the different estimation methods, we cal-
culated the true additive effect and compared it with thev � v2 1

estimates of the same effect, calculating

ˆ ˆ(v � v ) � (v � v )2 1 2 1
D p

v � v2 1

for corrected estimates and uncorrected estimates. Our results
indicate that the winner’s curse has only a small effect on esti-
mates of the allele frequency f (data not shown).

Furthermore, we evaluated whether the true underlying pa-
rameters lie within the confidence region by comparing the like-
lihoods and . We calculated the relative size of theˆ ˆL(v,f ) L(v,f )
confidence region, dividing the number of sampled parameter
points that were in the confidence region by 30,000, the total

number of parameter points sampled during step 1 of the esti-
mation procedure.

We repeated the analysis by simulating data under four genetic
models: dominant ( ), recessive ( ), multiplicativev p v v p v1 2 2 3

( ), and a general three-parameter model ( sampled�v p v # v v2 1 3 2

independently). When we performed the same analysis, we found
no qualitative differences among models (data not shown).

To assess the effect of misspecifying the disease prevalence, we
simulated 1,000 association studies of 400 cases and 400 controls
in which the specified prevalence was 20%, 40%, or 60% of the
true prevalence parameter. We observed that the estimates of the
penetrance parameters were affected by this change, in the sense
that the mean square error increased with increasing misspeci-
fication. However, the median odds ratio of the minor allele com-
pared with that of the major allele was unaffected. Furthermore,
when sample sizes were calculated for a replication study with
an allele-based test, sample sizes predicted under a misspecified
prevalence were as precise as sample sizes predicted under the
correct prevalence.

To estimate the sample size necessary for a replication study,
we calculated the minimum sample size ( ) necessary to achieveŝ
a power of 0.80 at a significance level of under the assump-�610
tion of a test that compared allele frequencies on the basis of v̂

and generated with the unconstrained model (see appendix A).f̂
We performed the same computation for each point in the con-
fidence region, considering the maximum of the results as the
upper bound of sample sizes necessary to replicate the association
( ). We repeated this calculation for three additional tests ofŝm

association, comparing (1) the number of homozygotes for the
minor allele, (2) the number of homozygotes of the major allele,
and (3) the number of heterozygotes in a test. We selected the2x

test that required the smallest of those four sample sizes as the
best test for a replication study and recorded the sample size
required under this best test.

Results

For a qualitative assessment of the algorithm, we selected
three parameter sets with additive penetrance represent-
ing a low-powered study (0.03), a moderately powered
study (0.54), and a high-powered study (0.97). For each
parameter set, we simulated 100 significant association
studies of 400 affected and 400 unaffected individuals and
obtained three estimates of the penetrance parameters: (1)
without correcting for the ascertainment effect, (2) with
application of the algorithm described earlier to correct
for ascertainment, and (3) with an independent sample
that was not conditioned to show a significant association
result. For the low-powered parameter set, the uncorrected
estimate for each of the 100 simulated studies is consid-
erably higher than the true underlying value, clearly dem-
onstrating the effect of the winner’s curse (fig. 1). In mod-
erately powered studies, the uncorrected estimate is still
clearly biased toward overestimation of the genetic effect:
in 93 of the 100 studies, the estimated effect of the variant
is higher than the true underlying effect size. Only in the
high-powered study are the estimates centered on the true
underlying value.

In contrast, the estimate that is corrected for ascertain-
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Figure 1. Estimates of the genetic effect generated for three
parameter sets with low, intermediate, and high power. For each
parameter set, 100 significant association studies were generated,
and the underlying parameters were estimated by three different
methods: (1) not correcting for ascertainment (diamonds), (2)
correcting for ascertainment (circles), and (3) collecting a second
unascertained sample and basing the estimate on that sample
(squares). The vertical axis shows the estimated genetic effect;
the horizontal axis groups the estimates by the power of the initial
study. The horizontal line in each power category indicates the
true underlying genetic effect, and the short horizontal bar in-
dicates the average of each distribution of 100 data sets.

Figure 2. Bias of the uncorrected and corrected estimates of the
additive genetic effect. For each of the sample sizes, the data set
has been stratified into 10 categories of power indicated on the
horizontal axis. The vertical axis indicates the average relative
bias observed in each power category. We performed simulations
with four sample sizes, as indicated by the legend. The solid lines
show the bias of estimates of penetrance parameters that were
generated without correction for ascertainment, whereas the
dashed lines show the bias of estimates generated while correcting
for ascertainment.

ment yields a distribution of estimates that is centered
on the true value in all three cases. The average of the
estimated effect is close to the true value, regardless of
the underlying power, although the estimates are biased
slightly downward. However, in every set of simulated
data sets analyzed with ascertainment correction, we ob-
serve a cluster of simulated data sets in which the esti-
mated genetic effect is far below the true effect. These
points represent case-control studies in which the test sta-
tistic is only slightly larger than the critical value C. The
probability of observing such a test statistic near C con-
ditional on observing a test statistic 1C is large for genetic
models with small effect sizes, but it is not very large for
models with moderate or large effect sizes. In the models
we considered, whenever the test statistic was close to C,
a model of low genetic effect had the highest likelihood.
Furthermore, under most genetic models, some data sets
generated a test statistic near C. In these data sets, the
effect size was underestimated after correction for ascer-
tainment. Thus, the corrected estimate has a bias toward
underestimating the effect size.

We can also observe differences in the variances of the
estimates. In general, figure 1 reveals that estimates of
genetic effect can vary widely, even if no ascertainment
bias is introduced. In comparison with the distribution of
estimates generated from the unascertained sample, the

uncorrected estimates for low- and moderately powered
studies are more tightly clustered around the biased av-
erage, whereas estimates generated with the corrected
method are more widely dispersed. These results illustrate
the problems of the winner’s curse in low-powered as-
sociation studies and show that our algorithm generates
nearly unbiased estimates of the penetrance parameters.

To assess the bias of our method in a more systematic
fashion, we calculated the relative difference between the
estimated and true underlying genetic effect, D, for each
data set generated in simulation study 2 (see the “Simu-
lation study 2” section) that was simulated with an ad-
ditive model. Without correction for ascertainment, the
genetic effect is overestimated by 20%, on average, over
all parameter sets, independent of sample size. After ap-
plying the correction for ascertainment, we underestimate
the additive effect of the causative allele by 12% of the
true additive effect. To assess the effect of the power of
the initial test for association on these biases, we stratified
the simulated association scans by the power of each scan
and averaged the bias over all parameter sets in power
intervals of 0.10, starting in a bin of 0.05–0.10 power.

Figure 2 shows the average bias for case and control
sample sizes between 100 and 800. Figure 2 indicates that
the bias of the uncorrected estimate is strongly dependent
on the power of the underlying test for association (solid
lines). If the power of the initial scan is low (!10%), then
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Figure 3. Accuracy of point estimates for penetrance parameters
dependent on sample size (horizontal axis). All estimates were
corrected for ascertainment. The height of each bar indicates the
average difference between the true and inferred parameters mea-
sured as ssq (see the “Methods” section), and the black portion
of the bar displays the median ssq statistic. The dark gray bars
show the ssq error of estimates generated without conditioning
on a genetic model. The white bars show the ssq error of an
estimate generated from an unascertained sample of the same size
without knowing the underlying model.

the additive effect is overestimated by 70%, on average,
when the ascertainment effect is not taken into account.
In contrast, if the power of the initial test is 10.90, then
the uncorrected estimate has almost no bias. By compar-
ison, figure 2 illustrates that the corrected estimate is bi-
ased toward underestimating the genetic effect but that
the power of the initial study has only limited effect on
the bias of the corrected estimate (dashed lines). The av-
erage bias for parameter sets with power !0.10 (�17%) is
only slightly more pronounced than the average bias of
data sets for which the power is between 0.60 and 0.70
(�11%). Only if the power of the initial scan is 10.90 is
the bias of the corrected estimate negligible.

We analyzed the impact of sample size on the precision
of the corrected estimate, using data sets generated with
simulation scheme 2 (see the “Simulation study 2” sec-
tion). Since the winner’s curse effect is dependent on the
power of the initial test for association, it can be expected
that, for a given set of parameters, the precision of an
estimate will increase with sample size, since the power
rises with sample size. To determine whether sample size
would also have a direct effect on the precision of the
estimate beyond the effect of increased power, we con-
ditioned each data set of 1,000 simulated scans to have a
uniform distribution of power in the initial test for asso-
ciation. Here, we present data simulated with the additive
model. Generating data with other genetic models yielded
similar results.

Figure 3 displays the difference between the estimated
and the true parameters as a function of sample size. The
dark gray bars show the average ssq error for estimates
generated with our method, under the assumption that
the true underlying model is unknown.

The results indicate that the accuracy of the estimated
penetrances strongly depend on sample size. Analysis of
association studies with 800 cases and controls resulted,
on average, in roughly a quarter of the ssq error of the
same analysis of studies with 100 cases and controls. Fig-
ure 3 also shows that the medians of the error scores (black
part of each bar) was considerably lower than the average,
indicating that the distribution of the relative error and
ssq over 1,000 simulated data sets consists of mostly es-
timates with a small error and a few estimates with a high
error. These statistics can be appreciated by comparing
them with an estimate generated from an independent
sample of equal size with the assumption of unknown
penetrance parameters (fig. 3, white bars). Unsurprisingly,
the unascertained sample generated more-precise estimates
(smaller ssq values) than did the ascertained sample. Nev-
ertheless, comparison of the values between the sample
sizes revealed that the median ssq of an independent sam-
ple was roughly the same as the median ssq of an ascer-
tained sample with twice the sample size.

We can quantify the uncertainty of the point estimate
as a four-dimensional confidence region corresponding to
the three penetrance parameters and the allele frequency.
Assessing whether the confidence regions were well cali-

brated, we observed the true value falling in the con-
structed 95% confidence regions in 94.7% of all simulated
data sets. Thus, our statistic yields appropriate confidence
regions.

The volume of this confidence region summarizes the
extent of uncertainty as a single statistic. We estimated
this volume for each simulated data set relative to the size
of the underlying parameter space and observed a strong
effect of sample size on the size of the confidence region.
For each doubling of the sample size, the average volume
of the confidence region was approximately halved. Fur-
thermore, the results indicate that estimates generated from
a second independent sample have only slightly smaller
confidence regions than do the bias-corrected estimates
obtained from the original association sample.

Replication Studies

Using the MLEs of minor-allele frequency and penetrance
parameters, we calculated the sample size ( ) required toŝ
achieve power of �0.80 at a significance level of a p

in a replication study with an allele-based test for�610
association. First, we applied this analysis to estimates
from 100 simulated association studies, shown in the
“Low power” section of figure 1, generated in simulation
study 1. For each estimated set of parameters, we calcu-
lated the replication sample size and the upper boundŝ

(see the “Methods” section). We compared these esti-ŝm
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Table 1. Design of Replication Studies Based on the
Estimated Penetrance Parameters

Sample Size and
Genetic Model

Replication Test

Ratio

Allele Based Best Model

ŝ
s

ˆFs � sF
s

ŝmin

s

ˆFs � sFmin

s

100/100:
Multiplicative 1.09 .37 1.00 .34 .87
Three parameter 1.10 .39 .96 .24 .59
Recessive 1.03 .39 .87 .28 .42

200/200:
Multiplicative 1.07 .40 .99 .38 .88
Three parameter 1.06 .40 .97 .22 .55
Recessive 1.07 .38 .91 .25 .41

400/400:
Multiplicative 1.13 .41 1.04 .38 .87
Three parameter 1.13 .41 .98 .20 .44
Recessive 1.03 .38 .95 .22 .41

800/800:
Multiplicative 1.12 .44 1.03 .42 .87
Three parameter 1.10 .41 .98 .17 .38
Recessive 1.11 .39 .99 .21 .37

NOTE.—Designing samples of the indicated sizes (number of
cases/number of controls) were simulated assuming a multiplicative
model, a three-parameter model, or a recessive model. For each
replicate simulation, the sample size to obtain 80% power in aŝ
replication study was estimated. Here, is compared with the trueŝ
required sample size s for two test strategies: with use of the allele-
based test or with choice of the best of several test statistics.
Columns 2 and 4 show the median ratio, and columns 3 and 5 display
the median relative difference. The final column shows the ratio
between the estimated sample sizes for the first and the second
strategy.

mated sample sizes with the true sample size required to
replicate the association with power of 0.80 and observed
that none of the sample sizes based on uncorrected esti-
mates was sufficient (fig. 4); none generated a power 10.04.
For 27% of all simulated data sets, even the upper bound
of this sample size is too small to generate sufficientŝm

power.
In contrast, the sample sizes calculated using the cor-

rected estimates are centered on the true required sample
size. Nevertheless, the distribution of sample sizes is quite
broad. For many simulated data sets, the calculated rep-
lication sample size is quite different from the truth. Since
the effect size is low, penetrance estimates that differ by
0.02 result in very different replication sample sizes. The
uncertainty in estimates of small effect size is reflected in
the large upper bound of each estimate; only 4 of the 100
data sets resulted in an !10,000. A similar level of un-ŝm

certainty can be observed in estimates generated from un-
ascertained samples; here, we observe that only 35 unas-
certained samples resulted in !10,000.ŝm

However, this analysis assumes that the test for the rep-
lication study is chosen independent of the estimated pen-
etrance parameter. Instead, we can select the test that is
most powerful for the estimated parameters. To evaluate
this approach, we compared two strategies for planning
replication studies: (1) select a test for association inde-
pendent of the estimated parameters and then estimate
the necessary sample size and (2) select the test statistic
that is most powerful for the estimated penetrance param-
eters and estimate the sample size required for a replica-
tion study with that test. We applied both strategies to
data sets simulated with simulation study 2, using three-
parameter models, recessive models, and multiplicative
models for various different sample sizes (table 1). All data
were analyzed using the three-parameter model; thus,
no knowledge about the underlying genetic model was
assumed.

First strategy.—For each data set, we calculated the sam-
ple size required to replicate the association with anŝ
allele-based test. The median ratio between and the trueŝ
sample size is slightly 11.0 (table 1, column 2). The median
deviation between the true and the estimated necessary
sample size relative to the true necessary sample size is
∼0.4, indicating that, in ∼50% of all simulated cases, the
predicted necessary sample size is over- or underestimated
by �40%. Both the median ratio and the median deviation
seem to be unaffected by the underlying genetic model
or the sample size.

Second strategy.—To design the replication study on the
basis of the estimated penetrance parameters, we calcu-
lated the replication sample size for four different testsŝ
of association, selecting the one that required the smallest

(i.e., ). The four tests assessed the difference betweenˆ ˆs smin

affected and unaffected individuals in (1) the homozy-
gotes for the minor allele, (2) the homozygotes for the
major allele, (3) heterozygotes, and (4) allele count. We
then calculated the true sample size necessary for the se-

lected optimal test and the ratio between the estimated
sample size and the necessary true sample size; see ap-
pendix A for details about these calculations. The results
for these comparisons are seen in columns 3 and 5 of table
1, which displays the same statistics as described above,
whereas the last column shows the ratio of generatedŝmin

with strategy 2 to generated with strategy 1. Other thanŝ
for the first strategy, the summary statistics depend on
sample size and on the underlying genetic model. If the
optimal test is the allele-based test employed in the first
strategy, we expect no improvement from applying the
second strategy. This can be observed for data generated
with the multiplicative model in which the allele-based
test was almost always the most powerful test.

In contrast, for parameter sets generated with the three-
parameter model, the allele-based test is only sometimes
optimal. Thus, the required sample size for replication
studies designed with the second strategy is about half
(38%–59%) of the sample size required under the first
strategy. We also observe that the median ratio : is closeŝ s
to 1, and the median normalized difference between the
estimated value and the true value is ∼0.2 (0.17–0.24),
indicating that sample sizes calculated here are centered
on the true required sample size and are reasonably
accurate.

Finally, for data simulated with the recessive model, the
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Figure 4. Estimated sample size for a replication study. We used
the 100 parameter estimates for the low-powered study described
in figure 1 to calculate the sample size required to achieve 0.80
power for in a replication study. The vertical axis in-�6a p 10
dicates the calculated sample size, and the horizontal axis shows
the method used to estimate the sample size; the squares represent
results based on point estimates; the diamonds show results based
on upper 95% bounds. The horizontal line shows the actual re-
quired sample size (1,261), and the short horizontal bars display
the average of each set of point estimates.

allele-based test is never the best test to use. Thus, use of
the second strategy generates replication sample sizes that
are lower than the sample sizes generated with the first
strategy; in our analysis, we observed that the second strat-
egy required ∼40% of the sample required under the first
strategy. However, for penetrance estimates based on small
initial sample sizes, the sample size required in the repli-
cation study is somewhat underestimated. For sample sizes
that are more appropriate for whole-genome association
studies, this ratio is close to 1. The median relative dif-
ference between the necessary sample size and the esti-
mated sample size is ∼0.24.

Thus, the results suggest that use of the data to inform
the design of the replication study is an advantageous
strategy. It provides a smaller relative error and a bigger
proportion of tests for which we can provide an upper
bound for the necessary sample size. Most importantly, it
reduces the required number of samples that need to be
typed for the replication study while retaining the targeted
power.

Data Example

A well-known example of the winner’s curse in practice
is the Pro12Ala substitution in PPARg and its association
with type 2 diabetes.12 The first published report of this
association was based on a comparison of the frequency
of the PPARg proline homozygote in 91 Japanese Ameri-

cans affected with type 2 diabetes and 54 healthy controls.
The study observed a significantly smaller proportion of
proline homozygotes in unaffected individuals (45) than
in affected individuals (87). From these data, the authors
estimated a 4.35-fold risk that carriers of the Pro/Pro ge-
notype will develop type 2 diabetes. However, among five
follow-up studies with sample sizes of 450–1,200 pro-
bands, only one study found a significant replication of
the result.14–18 A larger follow-up study combined with a
meta-analysis of all the previous studies, excluding the
initial report, included 13,000 individuals.19 The study did
find a significant association of the Pro/Ala polymorphism
with type 2 diabetes. However, the meta-analysis estimated
the odds ratio of the Pro allele to be 1.25, much lower
than the original estimate of 4.35.

We applied the methods described in the present study
to the initial PPARg data,12 to estimate the allele frequency
and penetrance parameters and to calculate from those
values the odds ratio for the Pro/Pro genotype. We as-
sumed that the association had been found with a test
comparing the number of observed Pro/Pro genotypes at
a significance level of .05. Furthermore, we set the prev-
alence of type 2 diabetes in Japanese Americans to the
worldwide prevalence of 0.028 (see the work of Wild et
al.20). Variation of the disease prevalence between 0.015
and 0.04 changed the estimated penetrance parameters
without affecting the odds ratios. Thus, moderate changes
in the assumed prevalence do not affect our conclusions.

Without constraining the genetic model, we generated
an MLE of 0.049 for the allele frequency and penetrances
of 0.0 for Ala/Ala, 0.0265 for Ala/Pro, and 0.0282 for Pro/
Pro. From these estimates, we calculated the odds ratio of
the Pro/Pro genotype and the odds ratio of the Pro allele
(table 2). Furthermore, we calculated the odds ratios for
every point in the 95% confidence region to generate CIs.
The resulting CIs clearly exclude the naive estimate of 4.35
but are consistent with the odds ratio estimated by Altshu-
ler et al.19 Because of the low counts of heterozygotes and
Ala/Ala homozygotes in the sample, the penetrance esti-
mates for those two genotypes were quite variable, and
underdominant models, in which the penetrance of Ala/
Pro is smaller than the penetrance of Ala/Ala, were in-
cluded in the confidence region. Thus, the 95% CI of the
odds ratios includes values !1. Constraining the pene-
trance parameters to Pro-recessive models did not affect
our conclusions.

On the basis of these estimates, we calculated that a
minimum sample size of 2,100 is required to replicate
the association, with the assumption of a population fre-
quency of 0.15 of the Ala allele. This is considerably larger
than the sample size used by the early and inconsistent
replication attempts14–18 but smaller than the sample used
in the eventual study and meta-analysis that ultimately
provided strong support for the association. Thus, this
analysis would have predicted that the initial replication
attempts were underpowered.
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Table 2. Estimated Odds Ratios of the Pro12Ala Mutation in the
PPARg Gene

Data Source Pro/Pro Odds Ratio (CI) Pro Odds Ratio (CI)

Deeb et al.,12 uncorrected estimate 4.35 (1.27–14.91) 4.54 (1.39–14.86)
Deeb et al.,12 corrected estimate 1.09 (.47–2.63) 1.12 (.39–2.09)
Altshuler et al.19 … 1.25 (1.11–1.43)

NOTE.—The case-control data collected by Deeb et al.12 showed a significant asso-
ciation between the Pro/Pro genotype and type 2 diabetes. From their data, we es-
timated the odds ratios for both the Pro/Pro genotype and for the proline allele. The
first row shows the results without correction for the ascertainment effect, and the
second row shows the results obtained for these data with use of our method. The
third row provides an estimate of the odds ratio of the proline allele generated from
a large meta-analysis.19

Discussion

Estimates of the genetic effect of a newly detected variant
are confounded by ascertainment. It has been argued that
the only way to obtain an unbiased estimate is to gener-
ate a second independent sample.6 However, this view is
overly pessimistic. As we show here, we can, in fact, obtain
corrected estimates that are far less biased than the naive
estimates. We have performed extensive testing of the al-
gorithm, conditioning on a uniform distribution of test
power to allow us to draw inferences about the impact of
sample size without being confounded by the power of
the initial study. The results indicate that our algorithm
generates an accurate estimate of the penetrance param-
eters of a disease allele. An independent sample of at least
half the size of the initial case-control sample is required
to obtain an estimate that is more accurate than the cor-
rected estimate based on the initial sample. The algorithm
also provides well-calibrated confidence regions for the
penetrance parameters, thus quantifying the uncertainty
of each estimate. We have shown that the sample size of
the association scan strongly influences the precision of
the estimate and the size of the confidence region, inde-
pendent of the underlying genetic model. Nevertheless,
we observed a small bias toward underestimation of the
genetic effect that is independent of the sample size. The
power of the initial association scan also has a major im-
pact on the size of the confidence region but has only
little influence on the precision of the point estimate or
on the extent of the negative bias. Thus, we concluded
that the sample sizes used in whole-genome association
studies will provide sufficient data to generate useful es-
timates of the penetrance parameters of an allele.

For simplicity, we assumed that the initial test for as-
sociation is a simple comparison of allele frequencies be-
tween cases and controls. Application of the algorithm to
any other testing method is generally straightforward, re-
quiring only an efficient way to calculate the power of the
initial scan for association conditional on the penetrance
and frequency parameters. Although these calculationsare
usually simple for single-point methods, they may be more
complicated for multipoint methods, necessitating the es-
timation of power by computer simulation.

Furthermore, the estimation procedure also requires a
good understanding of the sampling scheme that was used
to collect cases and controls. In the results we presented,
it was assumed that cases and controls were randomly
drawn from affected and unaffected people in a popula-
tion. In real association studies, this may not be the case;
for example, samples are often drawn from patients at one
or more medical facilities. However, a model of random
sampling serves as a good approximation of this oppor-
tunistic ascertainment.21 Extending the algorithm to other
sampling designs is possible, although some care should
be taken in interpreting the results, as illustrated by the
following example. In a commonly used study design, par-
ticularly for diseases with late onset age, random members
of the population, rather than unaffected individuals, are
sampled as the control group. For this type of sample,
modification of equation (3) will take into account the
fact that the control group provides no information about
the penetrance parameters; the rest of the algorithm is
unchanged. In general, the algorithm in this work can be
applied to any sampling scheme that can be described in
a simple statistical model. Problems will arise if the ascer-
tainment strategy is not clearly documented. Especially in
meta-analyses, this is likely to be the case. For such data,
it may be more fruitful to assess the error in the estimation
procedure by simulating different ascertainment strategies
or to adopt bootstrap algorithms similar to the ones pre-
sented by Sun and Bull.9

A more general problem for estimating genetic risk of
association data is that, in practice, the manifestation of
a complex disease not only will be governed by the alleles
at one locus but will also depend on environmental and
genetic covariates. If these covariates are unknown, they
cannot be accounted for by the estimation procedure.
Thus, we are estimating marginal penetrances, summariz-
ing the effects of other genomic loci and environmental
factors on the disease as the penetrance parameters of one
allele. If studies are performed in different populations, the
frequency of genetic covariates might vary significantly
across samples, resulting in very different marginal pene-
trances. However, this problem is not specific to the de-
scribed algorithm; as long as we are aware of only a subset
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of all covariates, we are confined to calculating marginal
risks of these known covariates.

This problem can be somewhat alleviated by extending
the scheme presented here to estimation of genotype-en-
vironmental interaction or the effect of multiple loci at
once. By estimating the penetrance of combinations of
genotypes, it is possible to calculate an MLE for models
of gene-gene or gene-environment interaction. Thus, it is
possible to compare the resulting likelihood with the like-
lihood generated under a model of no interaction. Since
the two models are nested, the support for an interaction
parameter can be tested by a likelihood-ratio test. Thus,
the interaction between an allele and a covariate can be
identified and quantified, and the covariate can be con-
trolled for in further studies.

We have also shown that the corrected estimates can
be used to calculate the sample size required to replicate
a new finding. Although the estimates are biased toward
weaker genetic effects, this results in overestimating the
required sample size by only 10%. Furthermore, it is pos-
sible to quantify the uncertainty in that estimate of the
sample size, allowing the researcher to plan the study ac-
cordingly. Moreover, we have demonstrated that estimat-

ing the set of penetrance parameters provides another ma-
jor advantage for planning replication studies: based on
the three parameters, it is possible to predict what kind of
test would be most powerful in the replication study and
to design the study accordingly. We have demonstratedthat
even a rough comparison between simple tests was suffi-
cient to reduce the required sample size significantly.

In summary, we have provided an algorithm that gen-
erates estimates of the frequency and penetrances of a
variant while correcting for the winner’s curse. Providing
these estimates in future publications of association-map-
ping results should facilitate evaluation of the genetic ef-
fect of a variant, the planning of replication studies, and
comparison of the results of multiple signals observed in
the same region.
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Appendix A

Power Calculation

Multiple methods exist to calculate the power of a test for association. The most commonly used algorithm uses a
normal approximation of the test statistic (e.g., the work of Pritchard and Przeworski13). This approximation can be2x

imprecise, especially if the resulting power is small (!0.01). Since calculating the likelihood of each parameter point
requires a precise calculation of the power, we instead use equation (4), summing over all realizations of the 2 # 2
table that result in a significant test for association. To speed up computation, we calculate in advance all critical
values— and —of allele-counts of allele 0 in the unaffected sample (cu) conditional on the allele counts incv (c ) cv (c )a a1 2

the affected sample (ca) that result in a significant Pearson’s test, by solving the quadratic equation2x

K n Kc K na a u2 2 2c (� � ) � c (K � 2 � 2c ) � (Kc � c � c ) ! 0u u a a a aN n N N nu a

for cu, where na is the affected sample size, nu is the unaffected sample size, , and K is the critical value ofN p n � na u

a distribution at the appropriate significance level. Using those critical values, we can then calculate the power of2x1

the association scan with

vn c (i) na 1 u

Pr (BFv,f) p Pr (c p i,c p jFv,f) � Pr (c p i,c p jFv,f) ,� � �[ ]S S a u S a u
ip0 jp0 jpc (i)v2

where the summed probabilities are calculated using equation (3).
To calculate the sample sizes for replication studies, we used the normal approximation mentioned in the work of

Pritchard and Przeworski.13 Under the null hypothesis, the difference

�zc cu a� ≈ N 0, ,( )�n n nu a

with if and is the frequency of allele 0 in the sample. With andˆ ˆ ˆz p 2f(1 � f) n p n p n f q p Pr (0FU) q p Pr (0FA)a u u a
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as the frequency of allele 0 in the unaffected and affected individuals, respectively, the alternative is approximately
normally distributed, with expectation and variancem p q � qu a

2q (1 � q ) � q (1 � q ) gu u a a2j p p .
n n

With a as the critical value of a standard normal distribution at an appropriate significance level and b as its 20th
percentile, we can then calculate the sample size necessary to obtain 0.80 power as

2a � bg�z
n p .( )

q � qu a

Web Resource

The URL for data presented herein is as follows:

S.Z.’s Web site, http://www.sph.umich.edu/csg/zollner (for sup-
plementary material containing results for additional genetic
models, the size of the 95% confidence region for different
sample sizes, and results for misspecified disease prevalence)
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