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This appendix provides further specifics on the models described briefly in the Methods
section (2) of the paper A comparison of background correction methods for two-colour
microarrays.

Kooperberg: Kooperberg et al. (2002) suggest an empirical Bayes model made up of a
convolution of normal distributions to background adjust the signals. Observed foreground
and background mean intensities (Xf and Xb) and their standard deviations (SDf and
SDb), along with the number of foreground and background pixels (nf and nb) for each
spot in a given channel are used in the model,
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where φ(.) is the density of the standard normal distribution, Φ(x) =
∫ x
−∞ φ(y)dy is the cu-

mulative standard normal distribution, σf = aSDf/
√

nf , σb = aSDb/
√

nb, σd =
√

σ2
b + σ2

f

and a is a scaling factor. Numerical integration is applied to obtain the expected value
of the true signal E(µ|Xb, Xf , σb, σf ) in each channel for each spot. The a-values were
estimated separately for each channel by regressing the observed background variability
(SDb/

√
nb) on the empirical standard deviation of the background from the 3 (for spots on

an outer row/column) or 4 nearest neighbour spots within a print-tip group. This model-
based method avoids missing values and was demonstrated to reduce the high variability
of low intensity log-ratios when used on data from a self-self hybridisation where there is
no differential expression.

The function kooperberg was implemented in the limma package (Smyth, 2004) to adjust
the foreground signals according to Equation 1. The R code was modified from Charles
Kooperberg’s S-Plus code (supplied in personal communication). This method was applied
to GenePix data in this study, with the local mean estimate used for the background.
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Edwards: A simpler background correction method is suggested in Edwards (2003),
who adjusts the foreground intensities as follows:

R =

{
Rf −Rb if Rf −Rb > δ

δ exp[1− (Rb + δ)/Rf ] otherwise

G =

{
Gf −Gb if Gf −Gb > δ

δ exp[1− (Gb + δ)/Gf ] otherwise

(2)

In this model, subtraction of the background is done as usual when the difference between
the foreground and background is larger than a threshold value δ, however when the differ-
ence is small or negative (≤ δ), subtraction is replaced by a smooth monotonic function.

A value for the parameter δ was adaptively chosen from the data, as per the original code
from David Edwards (supplied in personal communication). The quantile of the difference
between foreground and background in each channel which was 10% above the number of
negative background corrected values was chosen when negatives were present. If there
were no negative values, the minimum value was used. Adjustments as per Equation 2
were made using GenePix data with local median estimates of the background for Rb and
Gb by the backgroundCorrect function in limma with method=“edwards”.

Normexp: The normexp convolution model which has been used to background correct
Affymetrix data (Irizarry et al., 2003) will be derived here. Further detail is given in Bolstad
(2004) (Chapter 2) and McGee and Chen (2006). The motivation comes from looking at
the distribution of the observed foreground signals (X) in each channel for a given array
(Figure 1). Assume that the foreground Xf , true signal X and background signal Xb are
additive (Xf = X + Xb), independent, and that X is exponentially distributed with mean
α, and Xb is normally distributed with mean µ and standard deviation σ.

The joint density of X and Xb is
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for x > 0. The joint density of Xf and X is therefore
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Figure 1: Smoothed histograms of the red (Cy5) and green (Cy3) foreground intensities for
an array from the Mixture experiment.
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so we can re-write the joint density as
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with µx.xf
= xf − µ− σ2/α.

The marginal distribution of Xf arises from integrating with respect to x as follows
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(3)

where Φ is the cumulative normal distribution. The parameters α, µ and σ can be estimated
via maximum likelihood (ML) using the log likelihood

log f(xf ;µ, σ, α) = − log α− (xf − µ)/α +
1
2
σ2/α2 + log

(
1− Φ(0; µx.xf

, σ2)
)

.
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The conditional distribution of X given Xf is the truncated normal distribution

f(x|xf ;µ, σ, α) =
f(x, xf ;µ, σ, α)
f(xf ;µ, σ, α)
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for x > 0. Now
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which gives

E(X|Xf = xf ) = µx.xf
+ σ2 φ(0;µx.xf

, σ2)
1− Φ(0; µx.xf

, σ2)

where φ is the normal density function.
The first distinction between the convolution model in Irizarry et al. (2003) and our

model, is the incorporation of the observed background in the calculations. For the ith
spot we observe the foreground (xf,i) and background (xb,i) intensities. Assuming that
Xb,i|xb,i ∼ N(µi, σ

2) and Xi ∼ exp(α), where µi = β + xb,i and µx.xf,i
= xi − µi − σ2/α,

then the parameters α, β and σ need to be estimated in each channel, on each array.
A second distinction is that we use a saddle-point approximation to simplify the math-

ematical form of the likelihood function to make ML numerically feasible. Let f̃ be the
saddle-point approximation to the density function f , also called the tilted Edgeworth ex-
pansion. Following Barndorff-Nielsen and Cox (1989), the saddle-point approximation to
f(xf ;µ, σ, α) can be written as

log f̃(xf ;µ, σ, α) = −1
2

log{2πK ′′(θ̃)} − xf θ̃ + K(θ̃)

where K() is the cumulant generating function of the convolution and θ̃ satisfies

K ′(θ̃) = xf .

The cumulant generating function is the sum of the normal and exponential cumulant
generating functions,

K(θ) = µθ +
1
2
σ2θ2 − log(1− αθ).

Write κk = K(k)(θ̃), k = 0, 1, . . ., for the derivatives of the cumulant generating function at
θ̃. We use the second-order saddle-point approximation, which can be written as

log f̃(xf ;µ, σ, α) = −1
2

log{2πκ2} − xf θ̃ + κ0 −
1
8
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2
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24

κ2
3
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2

. (4)
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The Nelder-Mead simplex algorithm was used to obtain ML estimates of α̂, β̂ and σ̂ from
the saddle-point approximation to the log likelihood (Equation 4). These estimates are
used to obtain adjusted signals according to

E(Xi|Xf,i = xf,i) = µx.xf,i
+ σ2 φ(0;µx.xf,i

, σ2)
1− Φ(0; µx.xf,i

, σ2)
. (5)

Data can be corrected in this way using the limma function backgroundCorrect with
method=“normexp”.

Vsn: The variance stabilisation method of Huber et al. (2002) measures differential
expression using a ‘difference statistic’

∆h = arcsinh(zR)− arcsinh(zG)

= log zR+
√

z2
R+1

zG+
√

z2
G+1

(6)

where zR = aR + bRR and zG = aG + bGG, with calibration parameters aR, aG, bR and
bG estimated for each channel from an array in an experiment. Since the arcsinh func-
tion is defined for negative values, corrected signals (R, G) which are negative do not
pose a problem. At high intensities, the arcsinh transform is equivalent to the regular
log-ratio, whereas at low intensities it is close to the difference zR − zG. This method is
implemented in the vsn software and can be accessed in limma using the function normal-
izeBetweenArrays by choosing the method=“vsn” option. Note that the returned intensity
and expression measures from this function are log base 2, to allow comparability with
the other methods. In contrast to the other 7 methods in this study, vsn background cor-
rects and normalises/calibrates the data together. For the other alternatives, a separate
normalisation step is neccesary.
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