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Epistatic interactions among multiple genetic variants in the
human genome may be important in determining individual
susceptibility to common diseases. Although some existing
computational methods for identifying genetic interactions
have been effective for small-scale studies, we here propose
a method, denoted ‘bayesian epistasis association mapping’
(BEAM), for genome-wide case-control studies. BEAM treats
the disease-associated markers and their interactions via a
bayesian partitioning model and computes, via Markov
chain Monte Carlo, the posterior probability that each
marker set is associated with the disease. Testing this on an
age-related macular degeneration genome-wide association
data set, we demonstrate that the method is significantly
more powerful than existing approaches and that
genome-wide case-control epistasis mapping with
many thousands of markers is both computationally and
statistically feasible.

In the past century, scientists have made great progresses in mapping
genes responsible for mendelian diseases. However, genetic variants
underlying most common (or ‘complex’) diseases are non-mendelian.
These variants are typically not rare in the population (42%). They
show very little effect independently with low penetrance, but they
may interact with each other in complex ways. The joint behavior of
genetic variants is often referred to as epistasis or multilocus interac-
tion. It has been speculated that epistasis ubiquitously contributes to
complex traits partly because of the sophisticated regulatory mechan-
isms encoded in the human genome1. An increasing number of reports
have indicated the presence of multilocus interactions in many human
complex traits, such as breast cancer2, post-PTCA stenosis3, essential
hypertension4, atrial fibrillation5 and type 2 diabetes6.

As the number of possible interaction combinations among the
genotyped markers is astronomical for a large-scale case-control
genetic association study, it is a daunting task to ‘catch’ one or a
very few disease-related interactions among all these combinations.
Several approaches have been developed to detect epistasis, including
the combinatorial partitioning method (CPM)7, the restricted parti-
tioning method (RPM)8, multifactor-dimensionality reduction
(MDR)2, multivariate adaptive regression spline (MARS)9, the logic

regression method10 and backward genotype-trait association
(BGTA)11. Although these methods all showed promise, they have
been tested only on small data sets. For example, logic regression and
BGTA have been tested on data sets with 89 and 80 biallelic markers,
respectively; and methods based on brute-force searches such as CPM
and MDR are impractical for large data sets. Recently, a simulation
study12 explored the use of a stepwise logistic regression approach to
identify two-way and three-way interactions. The authors demon-
strated that searching for interactions in genome-wide association
mapping can be more fruitful than traditional approaches that
exclusively focus on marginal effects.

Here we introduce the bayesian epistasis association mapping
(BEAM) algorithm for identifying both single-marker and epistasis
associations in population-based case-control studies. Our method
uses Markov chain Monte Carlo (MCMC) to ‘interrogate’ each
marker conditional on the current status of other markers iteratively
and outputs the posterior probability that each marker and/or
epistasis is associated with the disease. Using extensive simulations,
we demonstrate that BEAM is considerably more powerful than
existing methods for epistasis mapping. We also applied BEAM to
an association study of age-related macular degeneration (AMD)13,
which included B100,000 SNP markers. Although BEAM did not find
significant interactions in the AMD data set, it was able to discover
two-way or three-way interactions among the B100,000 SNPs simu-
lated based on the AMD data. Our study indicates that a genome-scale
epistasis mapping is both feasible and desirable: it does not lose much
power when epistasis is not present and can often be more powerful
than the single-marker approach.

RESULTS
The BEAM algorithm
The BEAM algorithm takes case-control genotype marker data as
input and produces, via MCMC simulations, posterior probabilities
that each marker is associated with the disease and involved with other
markers in epistasis. The input genotyped markers should be in their
natural genomic order when there is linkage disequilibrium (LD)
among some of them. The method can be used either in a ‘pure’
bayesian sense or just as a tool to discover potential ‘hits’. For the
former, one relies on the reported posterior probabilities to make
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inferential statements; as for the latter, one can take the reported hits
and use another procedure to test whether these hits are statistically
significant. The latter approach is more robust to model selection and
prior assumptions (such as Dirichlet priors with arbitrary parameters)
and is less prone to the slow mixing problem in the MCMC
computational procedure. We also propose the B statistic to facilitate
the latter approach and show that it is more powerful than the
standard w2 statistic for epistasis detections.

Epistasis models and simulations
There is a wide spectrum of interaction models in which the
disease risks at single markers are small14. Here we consider six
models with different characteristics (see Supplementary Table 1

online for details). Model 1 contains two
disease loci, each of which contributes to
the disease risk independently (that is,
their effects are additive). Model 2 is similar
to model 1, but the disease risk is present
only when both loci have at least one
disease allele. Model 3 is a threshold model
in which additional disease alleles at each
locus do not further increase the disease
risk. Model 4 contains three disease loci.
Increased disease risk is assigned to certain
genotype combinations, and marginal effect
of each disease locus ranges from very
small to zero. The interaction effects in
these models are determined such that the
marginal effect, measured by the effect size
(defined as the odds ratio minus 1) of each
disease locus, equals a specified value. Model
5 is constructed to mimic multiple causal
epistasis by a mixture of two two-way inter-
actions. Each two-way interaction can
increase the disease risk, but the disease risk
is not further increased when both two-way
interactions are present. Model 6 is designed
to have a six-way interaction. Unless specified
otherwise, 50 data sets for each disease
model were simulated under each setting,
with marker minor allele frequencies (MAF)
chosen uniformly in [0.05, 0.5]. Each un-
typed disease locus is linked to one genotyped
marker, and the remaining markers are

unlinked. More simulation details can be found in Supplementary
Methods online.

Comparison with stepwise logistic regression
The stepwise logistic regression approach of ref. 12 works as follows:
(i) all markers are individually tested and ranked for marginal
associations with the disease; (ii) the top 10% of markers are selected,
among which all k-way (k ¼ 2 or 3) interactions are tested and ranked
for associations. The authors of ref. 12 also proposed an exhaustive
logistic regression testing approach, which we choose not to consider
in this study because of its prohibitive computational cost. Note that
even their stepwise approach can become computationally intractable
for high-order interactions. As a benchmark, we also implemented a
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Figure 1 Comparison between BEAM (B), the

stepwise B-stat (S), the stepwise logistic

regression (L) and the 2-d.f. w2 test (C) on six

disease models. Under each setting, the power is

calculated as the proportion of 50 data sets in

which all associated markers are identified at a

significance threshold of 0.1 after Bonferroni

correction. Each data set contains 1,000

markers. Black bars represent the power for

1,000 cases and 1,000 controls, and gray bars

represent the power for 2,000 cases and 2,000

controls. The absence of bars indicates zero

power. LD between each unobserved disease

locus and the associated genotyped marker is

measured by r2. The marginal effect per disease
locus is measured in effect size l. For model 6,

the interaction effect size y ¼ 50.
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w2 test with two degrees of freedom (2 d.f.; for three possible
genotypes of a biallelic marker) to test for single-marker associations.

We used both BEAM and stepwise logistic regression to search for
significant associations of up to three-way interactions and used the
2-d.f. w2 test to search for marginal associations among 1,000 markers.
To better compare the MCMC and the stepwise searching strategies,
we further implemented a stepwise method called ‘stepwise B-stat’,
which uses the same search strategy as stepwise logistic regression but
uses the B statistic proposed in this article for testing significance. We
used Bonferroni correction to account for multiple comparisons. We
define the power of each method as the proportion of 50 data sets in
which all truly associated markers are identified and show statistically
significant associations (adjusted P values below 0.1) with the disease.

For the non-epistasis model (model 1), all three epistasis mapping
methods performed similarly to the single-marker w2 test (Fig. 1),
indicating that the power for detecting marginal associations was not
compromised by using the more complex models. For epistasis models
(models 2–6), BEAM (and often the stepwise B-stat) significantly
outperformed the stepwise logistic regression, which in turn out-
performed the single-marker w2. The difference was most notable
when either disease allele frequencies or marginal effects were small,
consistent with the observation that some single-marker association
mapping studies were not reproducible. Notably, results for model 4
suggest that stepwise methods can miss markers with small or no
marginal effects, whereas BEAM can get these markers back through
iterations. Although the power of all methods decreases with the decay
of the LD (measured in r2) between disease loci and associated
markers, doubling the sample size can significantly increase the power.

The extra power gained by BEAM relative to that of the stepwise
logistic regression is attributable to two factors incorporated in BEAM:
the MCMC sampling recipe and the B statistic. The stepwise B-stat
achieved a better power than the stepwise logistic regression (Fig. 1).
We also observed that the stepwise B-stat was less powerful than
BEAM, particularly for detecting high-order interactions, indicating
the benefit of using an MCMC scheme to search for interactions.

All three epistasis mapping methods made similar amounts of
type I errors. At the 0.1 significance level, they all made B10% type I
errors (after Bonferroni correction) when searching only for margin-
ally significant markers. All methods made much fewer than 10%

type I errors when searching for interactions. Type I error results and
detailed analyses are presented in the Supplementary Note online.

Impact of mismatch in allele frequencies and LD
The power of association mapping can be greatly hampered by the
discrepancy of allele frequencies between unobserved disease loci and
associated genotyped markers15. We investigated the impact of such a
discrepancy on epistasis mapping by simulating data sets based on
model 2, where MAFs at two interacting disease loci were both 0.1,
and the marginal effect size per disease locus was 0.5. Two genotyped
markers were linked with the two disease loci. One linked marker had
the matched MAF, whereas the other had an MAF ranging from 0.05
to 0.5. The LD between disease loci and associated markers was
controlled to range from D¢ ¼ 0.7 to D¢ ¼ 1.

BEAM and the stepwise B-stat achieved the highest power for data
sets with small frequency mismatch (MAF ¼ 0.05, 0.1 and 0.2) and
high LD between disease loci and associated markers (D¢ Z 0.8)
(Fig. 2). For data sets with large MAF discrepancies and moderate LD,
the power of all methods suffered. BEAM and the stepwise B-stat were
clearly more robust to MAF discrepancy and LD decay compared with
the other two methods. At the extreme case when the MAF discrepancy
was maximized (that is, MAF ¼ 0.5), all methods had little power in
detecting interaction associations. The impact of LD on power seemed
to be less profound than the effect of MAF discrepancy. Given a small
MAF discrepancy and moderate to high LD, epistasis can generally be
identified, and the power can be further increased using larger, but
feasible, sample sizes (for example, B1,000 cases and controls).

Genome-wide association study of AMD
Studies have shown that a real genome-wide case-control association
study may require genotyping of 30,000–500,000 common SNPs16,17.
To our knowledge, epistasis mapping at such a scale has yet to become
practical, owing to computational and statistical issues. We demon-
strate the potential of BEAM in genome-wide association studies by
analyzing an AMD data set13. The data set contains 116,204 SNPs
genotyped for 96 affected individuals and 50 controls. We removed
nonpolymorphic SNPs and those that significantly deviated from
Hardy-Weinberg Equilibrium (HWE), as suggested in ref. 13. We
removed additional SNPs containing more than five missing geno-
types. After the filtration, 96,932 SNPs remained.
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Figure 2 Impact of MAF discrepancy and LD on the powers of BEAM (B),

the stepwise B-stat (S), the stepwise logistic regression (L) and the 2-d.f. w2

test (C). The comparison is based on model 2, where the allele frequencies

of the second disease locus are unmatched by that of the associated marker.

The marginal effect size per disease locus is 0.5. Under each setting, the

power is calculated from 50 data sets containing 1,000 markers genotyped

from 1,000 cases and 1,000 controls. The power is the proportion of 50

data sets in which all associated markers are identified at a significance

threshold of 0.1 after Bonferroni correction.
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Figure 3 Posterior probabilities of association for each marker in the AMD

data set, obtained by running BEAM for 108 iterations and taking samples

at every 105 iterations. Priors for each marker to belong to group 1 (markers

contributing independently to the disease risk) and group 2 (markers that

jointly influence disease risk) were 0.001 each. Only one marker, rs380390

(reported in ref. 13), has a posterior probability above 0.5.
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The authors of ref. 13 found a significant association between AMD
and SNP rs380390, with a P value of 0.004 based on a Bonferroni-
corrected 1-d.f. w2 test under the assumption of HWE. BEAM
identified rs380390 (Fig. 3) with posterior probability above 0.5 (the
prior probability was 1/1,000). The other reported marker (rs1329428)
did not reach our posterior probability cut-off. As a calibration, we
also computed various Bonferroni-corrected P values for marker
rs380390. The P value based on our B statistic and its asymptotic
w2 distribution is 0.06. Using permutations instead of the asympto-
tic distribution, we obtained a P value of 0.047. The P value based on
the logistic regression (the log-likelihood-ratio test) is 0.059, and that
based on the standard w2 is 0.156. These P values differ significantly
from those of ref. 13 because the methods we used here do not assume
HWE. In addition, we observed that with only 146 individuals and
B100,000 SNPs, the posterior probability of associations for each
marker is strongly influenced by the choice of priors, although the
order of these probabilities is nearly invariant (Supplementary
Fig. 1 online).

BEAM found no significant interactions
associated with AMD from this data set. It
is possible that the small sample size of 146
individuals is insufficient for detecting subtle
epistasis interactions. To demonstrate the
feasibility of BEAM in genome-wide epistasis
mapping, and to provide an example on how
to trade off sample sizes and genetic effect
sizes, we performed a simulation study based
on the AMD data set. We simulated 20 data
sets, each containing B100,000 SNPs geno-
typed from 500 cases and 500 controls, under
model 2 and under model 4. SNPs simulated
in each data set have similar genotype dis-
tributions and LD structures as in the original
AMD data set. For model 2, the MAFs at the
two interacting disease loci were both 0.1,
and the marginal effect size per disease locus
was 0.7. For model 4, the MAFs at the three
interacting disease loci were 0.5, 0.5 and
0.4, respectively, and the effect size y of

interactions was set as 7 so that the third locus had a marginal effect
of 0.67, and the other two loci had no marginal effects. We ran BEAM
for 5 � 107 iterations for each data set. The iteration number is the
same as the number of all possible two-way interactions among 10%
of B100,000 SNPs. Therefore, BEAM and the stepwise logistic
regression took approximately the same computational time to detect
two-way interactions, but BEAM took much less computational time
to detect three-way interactions.

BEAM and the stepwise B-stat achieved higher power than the
stepwise logistic regression and the single-marker w2 test for model 2
(Fig. 4), and BEAM achieved significantly higher power than all other
methods for model 4 in identifying three-way interaction among the
B100,000 SNPs. In both cases, the single-marker w2 test performed the
worst. The result for model 4 demonstrates that BEAM can make use
of weak marginal effects or low-order interactions to gradually work its
way toward the correct solution. Intuitively, BEAM starts by biasing in
favor of SNPs that show weak marginal or low-order interaction effects.
Once it has obtained more disease-associated SNPs by chance, BEAM
immediately ‘crystallizes’ on the true interaction set.

Comparison with other epistasis mapping approaches
We compared the performance of BEAM with those of three other
recently developed epistasis mapping algorithms: MDR2, logic regres-
sion10 and BGTA11. MDR identifies k-way interactions through an
exhaustive search and evaluates the association between each inter-
action and the disease by cross-validations. Logic regression infers a
tree-based relationship between the disease status and a set of markers.
It evaluates the detected associations by permutation tests. BGTA uses
a bootstrap-type resampling screening procedure to select markers,
and those markers with return frequencies greater than the third
quartile plus 1.8 times the interquartile range are deemed disease-
associated markers.

The comparison was based on simulated data sets under model 4, in
which each of the three disease loci is perfectly linked to one
genotyped marker, and the marginal effect size per disease locus is
0.5 (except for MAF ¼ 0.5, in which case the marginal effect size is 0).
As MDR is computationally expensive, we simulated genotypes at only
40 markers for 400 cases and 400 controls. We also ran the 2-d.f. w2

test for each marker as a benchmark of single-marker methods.
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Figure 4 Comparison of BEAM (B), the stepwise B-stat (S), the stepwise

logistic regression (L) and the 2-d.f. w2 test (C) on the B100,000-SNP

data sets. (a) Model 2, with MAF ¼ 0.1 and l ¼ 0.7. (b) Model 4, with

MAF ¼ {0.5,0.5,0.4} at three disease loci and y ¼ 7. For each disease

model, the power is calculated as the proportion of 20 B100,000-SNP

data sets in which x ¼ 1, 2 or 3 associated markers are identified at a

statistical significance threshold of 0.1 after Bonferroni correction. Each

data set contains 500 cases and 500 controls simulated from the original

AMD data set.
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identified among the top five candidate markers reported by each method. Each data set contains 40

markers genotyped from 400 cases and 400 controls.
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Because these methods output differently and have different ways of
assessing significance, we calculated the proportion of 50 data sets in
which x ¼ 1,2,3 associated markers were among the best models
output by MDR and logic regression and among the top five ranked
markers by BGTA, the single-marker w2 test and BEAM, respectively.
Based on this criterion, each method will yield the same number of
falsely associated markers in worst-case scenarios.

BEAM outperformed all other methods significantly (Fig. 5),
especially for data sets with small disease allele frequencies (for
example, MAF ¼ 0.05 and 0.1). MDR performed better than logic
regression for common disease alleles but had little power when
disease allele frequencies were small. The power loss for MDR may
be due to the large proportion of phenocopies (up to 95%) when
disease alleles are rare. Logic regression had a much reduced power
when several genotype combinations contributed equally to the
disease risk with a small effect. BGTA performed similarly to logic
regression, except that it was less powerful when the model was purely
epistatic. We were surprised that the w2 test performed similarly to all
methods but BEAM.

DISCUSSION
The BEAM algorithm has two essential components: a bayesian
epistasis inference tool implemented via MCMC and a novel test
statistic for evaluating statistical significance. Although these two parts
come from opposing schools of statistics, they can provide comple-
mentary statistical insights to the scientist and help reconfirm each
other. A natural advantage of the bayesian approach is its ability to
incorporate prior knowledge about each marker (for example, whether
it is in a coding or regulatory region) and to quantify all information
and uncertainties in the form of posterior distributions. However,
evaluating the statistical significance of a candidate finding via
P values is more robust to model choice and prior assumptions and
can give the scientist peace of mind. It is worth mentioning that the
new test statistic we developed is particularly suitable for detecting
epistasis associations, as it is adaptive to the correlation structure of
the candidate markers.

We have shown not only that BEAM performs uniformly better
than all the existing epistasis mapping methods tested but also that
genome-scale epistasis mapping is feasible with BEAM. Consistent
with previous reports15,18, our study demonstrates that, given limited
resources and knowledge about the disease of interest, statistical
approaches that account for epistasis can greatly increase the chance
to identify significant associations. However, the power of such
mappings depends critically on sample size, effects of disease muta-
tions and any discrepancy in allele frequencies between disease loci
and associated markers.

There are several issues that we have not addressed that may affect
the accuracy of our method, such as population substructures,
genotyping errors and disease heterogeneities. In principle, the popu-
lation substructure may be either accommodated directly in our
bayesian model or corrected a priori, but disease heterogeneities can
severely affect any population-based genetic study. In addition, further
generalizations and improvements of the bayesian model as well as the
MCMC algorithm used here are needed to effectively handle the
B500,000-SNP data sets commonly found in recent genome-wide
association studies.

METHODS
Notations. Suppose Nd cases and Nu controls were genotyped at L SNP

markers. Let case genotypes be D ¼ ðd1; :::; dNd
Þ with di ¼ ðdi1; :::; diLÞ repre-

senting genotypes of patient I at L markers, and let control genotypes be

U ¼ ðu1; :::; uNu Þ with ui ¼ ðui1; :::; uiLÞ. The L markers are partitioned into

three groups: group 0 contains markers unlinked to the disease, group 1

contains markers contributing independently to the disease risk and group 2

contains markers that jointly influence the disease risk (interactions). Let I ¼
(I1,y, IL) indicate the membership of the markers with Ij ¼ 0, 1 and 2,

respectively. Our goal is to infer the set of markers that are associated with the

disease (that is, the set { j : Ij 4 0}). Let l0, l1, l2 denote the number of markers

in each group (l0 + l1 + l2 ¼ L), and let D0, D1 and D2 denote case genotypes of

markers in group 0, 1 and 2, respectively.

The bayesian marker partition model. Case genotypes at associated markers

should show different distributions when compared with control genotypes.

For simplicity, we describe the likelihood model assuming independence

between markers in the control population (see Supplementary Methods for

a generalized model to account for LD). Let Y1 ¼ fðyj1; yj2; yj3Þ : Ij ¼ 1g be

the genotype frequencies of each biallelic marker in group 1 in the disease

population; we write the likelihood of D1 as

PðD1jY1Þ ¼
Y
j:I¼1

Y3

k¼1

y
njk
jk ;

where {nj1, nj2, nj3} are genotype counts of each marker j in group 1. Assuming

a Dirichlet(a) prior for {yj1, yj2, yj3}, where a ¼ (a1, a2, a3), we integrate out Y1

and obtain the marginal probability:

PðD1jIÞ ¼
Y
j:I¼1

Y3

k¼1

Gðnjk+akÞ
GðakÞ

 !
Gð aj jÞ

GðNd+ aj jÞ

 !
ð1Þ

Here the notation |a| represents the sum of all elements in a.

Markers in group 2 influence the disease risk through interactions. Thus,

each genotype combination over the l2 markers in this group represents a

potential interaction. There are 3l2 possible genotype combinations with

frequency Y2 ¼ ðr1; :::; r3l2 Þ in the disease population. Let nk be the number

of genotype combination k in D2. Again, with a Dirichlet(b) prior distribution

of Y2, b ¼ ðb1; :::; b3l Þ, we integrate out Y2 so that

PðD2jIÞ ¼
Y3l2
k¼1

Gðnk+bkÞ
GðbkÞ

 !
GðjbjÞ

GðNd+jbjÞ ð2Þ

The remaining data D0 consist of markers that follow the same distributions as

in the control population. Let Y ¼ (y1,y, yL) denote the genotype frequencies

of the L markers in the control population, and let njk and mjk be the number of

individuals with genotype k at marker j in D and U, respectively. Assuming

Dirichlet priors with parameters g ¼ (g1, g2, g3) for y j, j ¼ 1,y,L, we integrate

out Y and obtain

PðD0;U jIÞ ¼
YL
j¼1

Y3

k¼1

Gðnjk+mjk+gkÞ
GðgkÞ

 !
GðjgjÞ

G
P3
k¼1

ðnjk+mjkÞ+jgj
� �

0
BBB@

1
CCCA ð3Þ

Combining formulas (1), (2) and (3), we obtain the posterior distribution

of I as

PðIjD;UÞ / PðD1jIÞPðD2jIÞPðD0;UjIÞPðIÞ ð4Þ

Note that I determines the configuration of Di. We let PðIÞ / pl11 p
l1
2

ð1 � p1 � p2ÞL�l1�l2 which may be modified to reflect our prior knowledge

of each marker being associated with the disease. As sample sizes dictate our

capability in identifying high-order interactions, we restrict that l2 r log3 (Nd)

– 1. By default (in the available software), we set p1 ¼ p2 ¼ 0.01. When BEAM

is used as a search tool, these priors can be set quite liberally without affecting

the results. For example, Figures 1, 2, 4 and 5 resulted from using p1 ¼ p2 ¼ 1
3

However, if we need to use the posterior probabilities for decision making, the

priors need to be calibrated with our prior knowledge. We further set the

parameters for the Dirichlet priors as ai ¼ bj ¼ gk ¼ 0:5; 8i; j; k:

MCMC sampling. Our goal is to draw the indicator I from distribution (4). We

initialize I according to the prior P(I) and use the Metropolis-Hastings (MH)
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algorithm19 to update I. Two types of proposals are used: (i) randomly change a

marker’s group membership, or (ii) randomly exchange two markers between

groups 0, 1 and 2. The proposed move is accepted according to the MH ratio,

which is just a ratio of Gamma functions. The output is the posterior

distribution of makers and interactions associated with the disease. To improve

the sampling efficiency, we first set a lower bound on the number of markers in

group 2 and gradually reduce this bound to 0 during burn-in. This forces the

algorithm to explore the space of high-order interactions. We also used an

annealing strategy in burn-in iterations with a temperature set high initially and

gradually reduced to 1. The trace and autocorrelation plots shown in Supple-

mentary Figure 2 online for our analyses of a simulated data set and the AMD

data set demonstrate that the MCMC chains attained their respective

stationary distributions after first few thousand iterations. An example of

posterior estimation is shown in Supplementary Figure 3 online. More

details about MCMC convergence and posterior analysis can be found in the

Supplementary Note.

B statistic and conditional B statistic. Although we can make statistical

inferences directly from the posterior probabilities of associations output by

BEAM, we can also analyze the results in a frequentist way. We developed a

hypothesis-testing procedure to check each marker or set of markers for

significant associations, where the marker set is selected based on ‘hits’ output

by BEAM. This validation procedure yields results that are more robust to

model selection and prior misspecifications and avoids the slow mixing

problem often encountered in MCMC.

For each set M of k markers to be tested, the null hypothesis is that markers

in M are not associated with the disease. Here, k ¼ 1,2,3,y represents single-

marker, two-way and three-way interactions, etc. We define the B statistic for

the marker set M as:

BM ¼ ln
PAðDM ;UMÞ
P0ðDM ;UMÞ

¼ ln
PjoinðDMÞ½PindðUMÞ+PjoinðUMÞ�
PindðDM ;UMÞ+PjoinðDM ;UMÞ

Here, DM and UM denote the genotype data for M in cases and controls, and P0

(DM, UM) and PA (DM, UM) are really the Bayes factors (that is, the marginal

probabilities of the data with parameters integrated out from our bayesian

model, under the null and the alternative models, respectively). Under the null

model, genotypes in both cases and controls follow a common distribution,

whereas under the alternative model they follow different distributions. We

choose both P0 (DM, UM) and PA (UM) as an equal mixture of two distribu-

tions: one that assumes independence among markers in M, Pind (X), of which

the form is given in equation (1), and the other a saturated joint distribution of

genotype combinations across all markers in M, Pjoin (X), as in equation (2).

Under the null hypothesis that M is not associated with the disease, the B

statistic is asymptotically distributed as a shifted w2 with 3k – 1 degrees of

freedom (Supplementary Methods). The shifting parameter of the distribution

can be computed explicitly. Simulations confirm that this asymptotic approx-

imation is quite accurate for reasonably sized data sets (Supplementary Note).

A notable feature of the B statistic is its use of a mixture distribution to

accommodate the possibilities that the markers in the controls may or may

not be in linkage equilibrium. The use of the Bayes factors instead of the

typical maximum likelihood function is that the former can automatically

penalize the larger model when the smaller model is true. An alternative, and

asymptotically equivalent, approach is to first determine whether markers in

controls are linked, and then use a corresponding log likelihood ratio test to test

for associations.

When testing for interaction associations, a set of k (¼ 2,3,y) markers may

include t(ok) markers that are significant through either marginal or partial

interaction associations. In this case, we want to test for the additional

association effects conditional on the t associated markers. Let T denote the t

associated markers in a set M of k markers; then, the conditional B statistic for

the marker set M is defined as

BMjT ¼ ln
PjoinðDM jDTÞ½PindðUMnTÞ+PjoinðUM jUTÞ�
PindðDMnT ;UMnTÞ+PjoinðDM ;UM jDT ;UTÞ

Here, DX and UX denote the genotype data for the marker set X in cases and

controls, respectively. Note that the nonconditional B statistic BM corresponds

to the conditional B statistic BM | T when T is an empty set. We can also show

that the asymptotic null distribution of BM | T is a shifted w2, with 3k – 3t

degrees of freedom.

Power calculation. To evaluate the statistical significance of interactions, we

used the B statistic for BEAM and the stepwise B-stat, and the log-likelihood

ratio for the stepwise logistic regression. Under the null hypothesis, both

statistics have the same asymptotic w2 distribution. Based on this, we

developed a hierarchical approach to evaluate the statistical significance

for interactions of various sizes. Details of the hierarchical significance

declaration procedure can be found in Supplementary Methods. Power

results shown in Figures 1, 2 and 4 represent the percentage of data sets in

which all disease markers were identified at the significance level 0.1 after

Bonferroni corrections.

For results shown in Figure 5, we calculated the number of truly disease-

associated markers in the top five candidates selected by each method. For

BEAM, BGTA and the 2-d.f. w2 test, markers were ranked by their posterior

probabilities, backward selection frequencies and w2 statistics, respectively, for

each program. For MDR, the best models of one-, two- and three-way

interactions were used and overall included up to six different markers. For

logic regression, we specified a search for at most three trees consisting of five

leaves. We then took the five leaves in the best logic regression model as the top

five candidate markers. Because every marker in logic regression was repre-

sented by two variables, it is possible that we underestimated the power of logic

regression (but the amount of underestimation should be very small).

Simulation of B100,000 SNPs from the AMD data set. Intuitively, our

procedure simulates fictitious sets of descendents of the 146 individuals in

the original AMD data set. To simulate genotypes for one diseased descendent

(patient) according to model 2, for example, we (i) randomly selected two

SNPs in the AMD data set as disease SNPs (dSNPs), (ii) computed the joint

genotype frequency vector for the dSNPs according to the model, (iii) sampled

a genotype configuration for the dSNPs according to the calculated frequencies

and assign it to the patient and (iv) generated genotypes of the remaining SNPs

of the patient according to a hidden Markov process. Details of the hidden

Markov process are presented in Supplementary Methods, and a depiction of

the simulation process is shown in Supplementary Figure 4. We used the same

procedure, but with different joint genotype frequencies in step (ii), to simulate

individuals in controls. Finally, we removed the disease SNPs from the

simulated data set as if they were unobserved.

Computation time. The computation time of BEAM depends on the number

of MCMC iterations and the number of individuals genotyped. For a data set of

1,000 markers in 1,000 cases and 1,000 controls, BEAM took 4 min to run

500,000 MCMC iterations on a Pentium M 1.6GHz laptop with 512 Mb

memory. When the sample size was halved or doubled, the computation times

were 2 min and 8 min, respectively. For the AMD data set containing 96,932

markers genotyped from 146 individuals, BEAM ran for about 5 h, for a total of

108 iterations.

URLs. BEAM: http://www.fas.harvard.edu/~junliu/BEAM/. MDR (version

1.00rc1): http://www.epistasis.org/mdr.html. Logic regression (version 1.41

for R): http://bear.fhcrc.org/~ingor/logic.

Note: Supplementary information is available on the Nature Genetics website.
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