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ABSTRACT

Motivation: ChIP-seq is becoming the main approach to the
genome-wide study of protein–DNA interactions and histone
modifications. Existing informatics tools perform well to extract
strong ChIP-enriched sites. However, two questions remain to be
answered: (i) to which extent is a ChIP-seq experiment able to reveal
the weak ChIP-enriched sites? (ii) are the weak sites biologically
meaningful? To answer these questions, it is necessary to identify
the weak ChIP signals from background noise.
Results: We propose a linear signal–noise model, in which a noise
rate was introduced to represent the fraction of noise in a ChIP library.
We developed an iterative algorithm to estimate the noise rate using a
control library, and derived a library-swapping strategy for the false
discovery rate estimation. These approaches were integrated in a
general-purpose framework, named CCAT (Control-based ChIP-seq
Analysis Tool), for the significance analysis of ChIP-seq. Applications
to H3K4me3 and H3K36me3 datasets showed that CCAT predicted
significantly more ChIP-enriched sites that the previous methods did.
With the high sensitivity of CCAT prediction, we revealed distinct
chromatin features associated to the strong and weak H3K4me3
sites.
Availability: http://cmb.gis.a-star.edu.sg/ChIPSeq/tools.htm
Contact: sungk@gis.a-star.edu.sg; asflin@ntu.edu.sg
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
With the advances of ultra-high-throughput sequencing technologies
in the past 3 years, ChIP-seq is becoming the main approach to
the genome-wide study of protein–DNA interactions and histone
modifications (Barski et al., 2007; Johnson et al., 2007). In ChIP-seq
analysis, the biologically interesting sites are identified by searching
for the genomic loci where the reads sequenced from ChIP DNA
are over-represented. A number of ChIP-seq analysis tools have
been developed for this purpose (Ji et al., 2008; Jothi et al., 2008;
Robertson et al., 2007; Rozowsky et al., 2009; Valouev et al., 2008;

∗To whom correspondence should be addressed.

Zang et al., 2009; Zhang et al., 2008). All these tools perform
well to extract strong ChIP-enriched sites. However, two questions
remain to be answered: (i) to which extent is a ChIP-seq experiment
able to reveal the weak ChIP-enriched sites? (ii) are the weak sites
biologically meaningful? To answer these questions, it is necessary
to establish a signal–noise model to separate the weak ChIP signals
from background noise.

In a ChIP-seq experiment, majority of the unbound DNA
fragments are washed out in the immune-precipitation procedure.
The ChIP-processed library is enriched by the fragments pulled
down from the genomic loci with high chance of protein–DNA
interactions or histone modifications. However, considerable ‘non-
useful’ fragments remain in the library due to the random protein–
DNA or antibody–DNA contacts that are not position-specific.
Reads sequenced from these fragments are widely spread in the
genome, and are considered background noise in addition to the real
signal of ChIP enrichment. In early ChIP-seq application without
a negative control, distribution of the noise was assumed to be
uniform (Robertson et al., 2007). However, recent studies showed
that the uniform model is too ideal due to the existence of sequencing
and mapping biases, chromatin structure and genome copy number
variations (Vega et al., 2009; Zhang et al., 2008). Adjustment of
these intrinsic biases requires a negative control, which could be
generated using non-specific antibody or input DNA.

To utilize a negative control in ChIP-seq analysis, Ji et al.
(2008) suggested normalizing the control to a level equivalent to
the background noise of the ChIP library. They incorporated the
normalization factor into the Bernoulli probability of a binomial
distribution for statistical test, and computed false discovery rate
(FDR) by P-value correction. We extended their idea to a linear
signal–noise model, in which a noise rate was introduced to represent
the fraction of noise in the ChIP library. We developed an iterative
algorithm to estimate the noise rate using a control library, and
derived a library-swapping strategy for the FDR estimation. With
spike-in simulation datasets, we showed the proposed iterative
algorithm can well estimate the noise rate with relative error <5%
under practical sequencing depth. Moreover, spike-in simulation
also indicated that the library-swapping approach outperformed the
P-value correction method in FDR estimation.

We integrated our approaches in a general-purpose framework,
named CCAT (Control-based ChIP-seq Analysis Tool), for the
significance analysis of ChIP-seq. The CCAT framework was
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applied to the H3K4me3 and H3K36me3 datasets (Mikkelsen et al.,
2007), and identified significantly more ChIP-enriched sites than
previous methods did. Quantitative RT–PCR and comparison to gene
annotation validated the reliability of CCAT predictions. With the
high sensitivity of CCAT prediction, we revealed distinct chromatin
features associated to the strong and weak H3K4me3 sites. In
summary, our results imply that the weak sites detectable in a ChIP-
seq experiment were under-estimated in previous studies, and the
identification of these weak sites may lead to novel discoveries of
biological interest.

2 METHOD

2.1 The signal–noise model of ChIP-seq
Considering a control library with M uniquely aligned reads that were
mapped to a genome of length L, the control profile can be represented as a
vector of independent observations [c+

1 ,c−
1 ,...,c+

L ,c−
L ]T , where cθ

x refers to
the number of control reads mapped to the genomic location x in direction
θ (x∈[1,L];θ∈{+,−}). Due to the random sampling process in ChIP-seq
experiment, cθ

x approximately follow a Poisson distribution (Robertson et al.,
2007; Zhang et al., 2008):

cθ
x ∼Poisson(uθ

xM)

where uθ
x is a normalized factor such that

∑
x,θ uθ

x = 1.
Next, we consider a ChIP library with N uniquely aligned reads. Similarly,

the number of ChIP reads mapped to the genomic location x in direction θ,
denoted dθ

x , follows a Poisson distribution:

dθ
x ∼Poisson(vθ

xN)

We modeled vθ
x to be the linear combination of the signal sθ

x and the noise
nθ

x , such that:
vθ

x = (1−α)sθ
x +αnθ

x

where
∑

x,θ sθ
x =1 and

∑
x,θ nθ

x = 1.
To employ the control library as independent observations of background

noise, we made an assumption that the normalized control vector
[u+

1 ,u−
1 ,...,u+

L ,u−
L ]T and the noise vector [n+

1 ,n−
1 ,...,n+

L ,n−
L ]T follow the

same multivariate hyper distribution π, which models the intrinsic read bias
of ChIP-seq. The variation of π reflects slight differences of read bias between
ChIP and control libraries, which could be introduced to the experiment prior
to random sampling. Note that π is conditional on the chromatin structure,
mapping bias and copy number variations. Therefore, the ChIP and control
libraries need to be generated on the same cell type, with the same chromatin
preparation procedure and identical configurations of alignment software.
A line of evidence supporting the above assumption was given by Rozowsky
et al. (2009). They generated scatter-plot of ChIP and control read counts on
a list of genomic regions with no detectable ChIP enrichment. As the result,
a linear and nearly symmetric scatter pattern was observed.

For the convenience of description, we denote E to represent the set of
genomic locations with real ChIP signal, hence E refers to the background
with s+

x =0 and s−
x =0. Based on the signal–noise model and the assumption

of intrinsic read bias, we have the following proposition:

Proposition 1. Given a genomic region r =[a,b], and r ⊂E, the observation
vectors cr =[c+

a ,c−
a ,...,c+

b ,c−
b ]T and dr = [d+

a ,d−
a ,...,d+

b ,d−
b ]T follow the

same multivariate distribution under the hyperprior π, if M = αN .

Proof of Proposition 1 is given in Supplementary Material of this article.
This proposition indicates that the read counts from the control library
provide unbiased measurements of the noise level in the ChIP library when
the sample sizes satisfy the condition M = αN . In this context, the parameter
α is called noise rate, which ranges from 0 to 1 and refers to the fraction of
noise in the ChIP library. Theoretically, the noise rate is associated with the
normalization factor r0 in Ji et al.’s approach (2008), such that α = r0M/N .

Generally speaking, a smaller noise rate implies better ChIP quality in the
experiment. In the worst situations where the noise rate approaches 1.0,
all the ChIP reads are noise hence no ChIP-enriched site is detectable.
Therefore, estimation of the noise rate provides an assessment of the data
quality (see Supplementary Material for more details), and further facilitates
the subsequent significance analysis.

2.2 Estimating noise rate
If a set of background regions R is known in prior and there is sufficient reads
in R, the noise rate can be approximated as the ratio of ChIP read counts
to control read counts in these regions, normalized against the sequencing
depths:

α≈
∑

r⊂R

∑
x∈r,θ dθ

x∑
r⊂R

∑
x∈r,θ cθ

x
× M

N
(1)

Unfortunately, a predefined background region set is unavailable for most
ChIP-seq applications. Ji et al. (2008) selected the background to be the
regions with small read counts. However, due to the intrinsic bias of ChIP-
seq, the read counts may also be small for some ChIP-enriched regions and
may be relatively large for some background regions. Therefore, a better
solution is to determine the background by comparing the ChIP and control
libraries, rather than by using the absolute read counts. In our approach,
we first partitioned the whole genome into non-overlapping 1 kb bins. The
background regions were then selected to be the bins with ChIP read counts
less than the expected noise read counts estimated from the control. That is:

R∗ =
{

r :
∑

x∈r,θ
dθ

x <αN
(∑

x∈r,θ
cθ

x

)
/M

}
(2)

Based on Equations (1 and 2), we propose an iterative algorithm for
estimating noise rate. In our algorithm, the ChIP and control data were
divided into two subsets: D+ consisting of sense reads, and D− consisting of
antisense reads.All the reads were shifted by l/2 bp towards their orientations,
where l is the average DNA fragment length and could be approximated
either experimentally or computationally (Robertson et al., 2007; Zhang
et al., 2008). In each step of iteration, a set of background regions were
selected using D+, followed by updating noise rate using D−. The iterative
algorithm is described as follows.

Initialization: divide the datasets into D+ and D−; partition the whole
genome into non-overlapping 1 kb bins; set α0 = 1.0.

The i-th iteration: (i) count the reads from D+ for the bins, and select a
set of background bins R∗

i based on Equation (2), where α0 = αi−1; (ii) count
the reads in D− for the bins in R∗

i and compute αi based on Equation (1).
Termination: αi > αi−1 or i larger than a threshold.
In our test with real datasets, the above algorithm converged very fast

within 10 iterations (Supplementary Fig. S1).

2.3 FDR estimation by library swapping
Several tools have been proposed in the literature for ChIP-seq analysis with
negative control (Ji et al., 2008; Nix et al., 2008; Rozowsky et al., 2009;
Valouev et al., 2008; Zhang et al., 2008). In general, these tools perform three
steps: (i) select candidate sites; (ii) rank sites based on certain significance
measurement; and (iii) determine the cutoff threshold. Most methods predict
ChIP-enriched sites based on the read counts in a local region. For these
cases, steps (i) and (ii) can be represented as a function f that maps the read
count vectors of a local region to a significance measure. Preferentially,
the threshold in step (iii) is determined with FDR control. In this article,
we take the form of pFDR (also called Bayesian FDR) proposed by Storey
(2003). Given a significance function f , and a list of non-overlapping regions
determined based on a threshold t, the pFDR is represented as:

pFDR(t)=Pr(r ⊂E|f (cr ,dr )> t) (3)

In Equation (3), r represents a genomic region, and cr and dr are the
corresponding read count vectors, as defined in Proposition 1.
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Based on Proposition 1 and Equation 3, we have:

Proposition 2. Under the conditions:

(a) Pr (f (dr ,cr )> t|r �⊂E)<<Pr(f (cr ,dr )> t|r �⊂E), and

(b) M = αN ;

The pFDR for a threshold t can be approximated by:

pFDR(t)= #{f (dr ,cr )> t}
#{f (cr ,dr )> t}

where the operator #{�} is defined to be the total number of regions satisfying
the condition �.

For the proof of Proposition 2, readers may refer to Supplementary
Material of this article. Proposition 2 underlies a library-swapping strategy of
FDR estimation, in which the null distribution of significance measurement
is empirically estimated by exchanging the ChIP and control libraries, i.e.
control versus ChIP. The library-swapping strategy was first introduced by
Zhang et al. (2008) in the software MACS (Model based Analysis for
ChIP-Seq). However, as mentioned by Zhang et al., the estimated FDR would
be biased if the read sample size from ChIP and control are not balanced.
In Proposition 2, we give two necessary conditions for the correctness of
library-swapping strategy.

The first condition indicates that the significance function f need to
be defined such that the distributions of f (cr ,dr ) and f (dr ,cr ) are well-
separated for the ChIP-enriched regions. For example, if we define f (cr ,dr )=
‖cr‖+‖dr‖ (‖.‖ is the magnitude operator), the library-swapping strategy is
not applicable since the distributions of f (cr ,dr ) and f (dr ,cr )are identical.
On the other hand, if we define f (cr ,dr )=‖dr‖−‖cr‖, library-swapping
is applicable for t >0 since we expect f (cr ,dr )>0> f (dr ,cr )for most
ChIP-enriched regions.

The second condition, M = αN , applies a constraint of sample size for
ChIP and control, which explains the estimation bias with unbalanced sample
size. When M �= αN , the constraint condition can be simply satisfied after a
re-sampling procedure by which a subset of reads were randomly retrieved
for processing. In detail, if αN > M, we retrieve M/α ChIP reads and M
control reads; otherwise, N ChIP reads and αN control reads are retrieved.

2.4 The CCAT framework
In this section, we propose a general-purpose framework, named CCAT
(Control based ChIP-seq Analysis Tool), for the significance analysis of
ChIP-seq with negative control. The CCAT framework started with the
estimation of noise rate α using the iterative algorithm, followed by a random
re-sampling procedure to retrieve a subset of data that satisfies the condition
M = αN , as described in Section 2.3. Next, we exchanged the ChIP and
control libraries of the re-sampled data to generate a swapped dataset. Both
the re-sampled dataset and the swapped dataset were processed by a region
identification module and a region scoring module (see below). A ranking
list of candidate ChIP-enriched sites and a list of control sites were generated
from the re-sampled dataset and the swapped dataset, respectively. Following
Proposition 2, FDRs were estimated for the candidate sites using the control
sites as reference. The flowchart of CCAT is shown in Figure 1.

In our implementation of region identification module, the ChIP-seq reads
were first shifted by l/2 bp toward their orientations, where l is the average
DNA fragment length. A sliding window was then applied to scan the whole
genome. The size of the window was set to be 2l for applications to motif-
specific transcription factors, and ranged from hundreds to thousands base
pairs for histone modification study. The shifted ChIP reads and control
reads were counted within the window in each step of sliding. We flagged
the genomic position at the center of the window if the ChIP read count
was more than twice the control read count, corresponding to a minimum
expected signal–noise ratio of 1.0. Consecutive flagged positions were
merged into non-overlapping candidate regions. Although the ChIP-enriched
sites were defined in term of regions in CCAT, we also applied a peak-finding
algorithm (Chen et al., 2008) to each candidate region for a high-resolution

a

Original dataset 

Noise Rate Estimation 

Re-sampled dataset Swapped dataset 

Region identification 

Control 
site list 

ChIP 
site list 

FDR estimation and thresholding 

Predicted sites 

Region scoring 

Fig. 1. The flowchart of CCAT. Ovals refer to computational steps;
rectangles with solid lines refer to the input and output data; rectangles with
dash lines refer to the intermediate data.

representation of ChIP enrichment site, which facilitates the motif study in
some applications. The region scoring module in CCAT supports multiple
options of significance scores, including fold-change, binomial P-value
(Ji et al., 2008; Rozowsky et al., 2009), Poisson P-value (Zhang et al.,
2008), and normalized difference score (Nix et al., 2008). Details of these
scores are given in the Supplementary Material.

3 RESULTS

3.1 Spike-in simulation
To define a standard that is comprehensive enough for the evaluation
of computational approaches, we generated spike-in datasets to
assess the accuracy of noise rate estimation and FDR estimation. The
idea of ‘spike-in’ here is to computationally add ChIP-enrichment
signal to a control background, so that the spike-in loci can be
referred as standard in the evaluation (Nix et al., 2008). Two Nanog
ChIP-seq datasets published by different groups (Chen et al., 2008;
Marson et al., 2008) were included for generating spike-in ChIP
library. These datasets can be treated as biological replicates. We
defined the spike-in regions as the binding sites predicted from
Marson et al.’s dataset, and retrieved spike-in reads for those
regions from Chen et al.’s dataset. By this, 16 688 spike-in regions
were defined, corresponding to 464 757 reads. Due to the variation
between replicates, we found reads are not over-represented in some
of the spike-in regions, which assembles the false negatives in
real datasets. The background reads in the spike-in ChIP library
were retrieved from a GFP dataset (Chen et al., 2008) prepared
with non-specific antibody. The noise rate of the spike-in ChIP
library was adjustable by merging different proportion of the GFP
reads with the spike-in reads. For the control, we generated a
WCE (whole-cell extract) dataset, available at http://cmb.gis.a-
star.edu.sg/ChIPSeq/tools.htm. Note that the background reads in

1201

 at O
hio S

tate U
niversity on M

ay 4, 2010 
http://bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://cmb.gis.astar.edu.sg/ChIPSeq/tools.htm
http://bioinformatics.oxfordjournals.org


[12:20 13/4/2010 Bioinformatics-btq128.tex] Page: 1202 1199–1204

H.Xu et al.

the spike-in ChIP and control libraries were retrieved from different
sources in order to better simulate the real ChIP-seq experiment, in
which the control was prepared with a different antibody or simply
input DNA without antibody. All the libraries used for the spike-in
dataset were prepared on mESC (mouse embryonic stem cell), and
were mapped by Eland software with identical configurations (26 bp,
2 mismatches). In addition to the Nanog data, we also generated
H3K4me3 spike-in data in the same manner. A total of 19 631 spike-
in regions were defined based on Marson et al.’s H3K4me3 dataset
(2008), and 3 171 004 spike-in reads were retrieved from another
dataset published by Mikkelsen et al. (2007). A summary of the
libraries included for the spike-in data generation is provided in
Supplementary Table S1.

To assess the accuracy of noise rate estimation, different
proportions (10%, 20%, … ,100%) of GFP library were used as the
background for spike-in. Therefore, the real noise rate equals to the
fraction of GFP reads in the spike-in ChIP library. In Figure 2a,
the relative estimation error of the iterative algorithm was plotted
against the actual noise rate. We found the errors are positive in
most of the cases, implying over-estimation of noise rate. The
explanation is that some of the background regions determined by
Equation (2) contain weak but undetectable signal due to the issue of
sequencing depth. Nevertheless, the relative errors are <5% under
the practical sequencing depth, indicating the proposed iterative
algorithm reasonably estimated the noise rate. Comparing to the
noise rate derived from Ji et al.’s normalization factor, our estimation
also achieved better accuracy (Supplementary Fig. S2).

Next, we compared the library-swapping based FDR estimation
with previous methods. To date, the approaches of FDR estimation
for control-based ChIP-seq data mainly fall into two categories:
(i) correcting binomial P-values using Benjamini–Hochberg (B–H)
correction (Benjamini and Hochberg, 1995; Rozowsky et al.,
2009) or Storey’s method (Nix et al., 2008; Storey, 2002);
(ii) estimating expected fraction of false positives by generating
empirical background. The library-swapping approach mentioned
in Section 2.3 belongs to the latter. Another example of the second
category is the eFDR proposed by Nix et al. (2008). To calculate
eFDR, control library were randomly split in two halves. The
eFDR was estimated as the ratio of the number of control-enriched
regions (control 1 versus control 2) to the number of experimentally
observed enriched regions (ChIP versus control2).

To assess the accuracy of FDR estimated by different approaches,
we employed a spike-in datasets configured as follow: 3 million GFP
reads were randomly retrieved and were merged with the Nanog or
H3K4me3 spike-in reads to generate ChIP library; 3 million WCE
reads were used as control (for eFDR, additional 3 million WCE
reads were used as an alternative control). By this configuration, the
sample sizes of ChIP and control were balanced. The whole genome
was partitioned into 1 kb non-overlapping regions and the FDR
were calculated on the region basis. For a fair comparison, we used
binomial P-values as the significance score for all methods. Prior to
calculating P-value, we followed Nix et al.’s (2008) suggestion to
exclude the regions with read counts smaller than 10. This filtering
step is necessary for P-value correction methods, which assume that
the P-values are uniformly distributed under null hypothesis.

The accuracy of FDR estimation was compared in a dynamic
range from 0.001 to 0.2. The results are largely consistent for
Nanog (Fig. 2b) and H3K4me3 (Fig. 2c) spike-in datasets. We
found that the empirical approaches significantly outperformed the

Fig. 2. (a) The relative error of noise rate estimation by proposed iterative
algorithm; (b) and (c) comparison of FDR estimation methods using (b)
Nanog and (c) H3K4me3 spike-in datasets.

P-value correction methods, for which the FDR was constantly
overestimated. Although both empirical approaches performed well
when FDR >0.01, eFDR appeared a non-linear characteristic of
estimation bias, and under-estimated when FDR <0.01. This may
ascribe to slight bias between GFP and WCE libraries prior to
random sampling. Such bias could not be modeled using the
empirical background that was generated by control splitting. On
the contrary, the library-swapping approach seemed to reasonably
compensate this type of bias and achieved satisfactory performance
both in accuracy and linearity.

3.2 Application to histone modification datasets
We applied CCAT to the mESC H3K4me3 (K4) and H3K36me3
(K36) histone modification datasets (Mikkelsen et al., 2007).
The GFP library published by Chen et al. (2008) was used as the
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Fig. 3. (a and b) Venn diagram comparing the predictions by three methods
for (a) H3K4me3 and (b) H3K36me3 dataset; (c) distinct chromatin features
associated with strong and weak H3K4me3 sites. The histone modification
intensities are measured with count per million reads per kilobasepair
(cpmpkb). The curves were smoothed by a sliding window of length 1000.

negative control. In literature, K4 was known to be a promoter
marker and K36 has been shown to occupy the gene region as a
hallmark of elongation (Guenther et al., 2007). Our previous study
also showed the gene expression is potentially predictable from K4
and K36 marks (Xu et al., 2008). Based on a better measurement of
ChIP-seq background level and more reliable FDR estimation, the
purpose of our application is to study the weak K4 and K36 sites that
may not be predictable by previous methods. In CCAT configuration,
we used the normalized difference score (Nix et al., 2008) as the
significance measure. The FDR cut-off was set to be 0.05. The size
of sliding window was set to be 500 bp for K4 and 2 kb for K36. This
setting was determined due to the fact that K4-enriched sites usually
appear peak patterns, while K36 signals spread broader regions. As
the result, we identified 64 012 K4 regions, corresponding to 75 620
individual peaks (Supplementary Table S2). For K36, 19 042 K36
regions were identified (Supplementary Table S3).

To assess the sensitivity, we overlapped CCAT identified regions
with the UCSC histone modification track (http://genome.ucsc.edu/)
predicted by Mikkelsen et al. (2007), as well as the predictions by
a recently published tool PeakSeq (Rozowsky et al., 2009), with
FDR = 0.05. As shown in Figure 3a and b, CCAT predicted 100%
more K4 sites and 70% more K36 sites than these two methods did.
We further extended our comparison to include MACs (Zhang et al.,
2008) and SICER (Zang et al., 2009). Again, pair-wise comparison
showed that the CCAT prediction is highly sensitive and almost
forms a superset of the predicted sites by the other methods, for both

K4 and K36 datasets (Supplementary Fig. S3 and Supplementary
Material).

Next, we tested the reliability of our predictions, i.e. specificity.
For K4, we randomly selected 15 sites from 32 600 regions
exclusively identified by CCAT in Figure 3a, and validated them
using quantitative real-time PCR (qPCR). Ten negative control
sites were selected from the genomic regions outside the predicted
K4 regions. The qPCR validation results showed that 14 out of
15 predicted sites are ChIP-enriched with >3-fold-change against
the median value of controls (Supplementary Fig. S4). For K36,
we employed annotated gene regions as reference since K36 is
known to mark transcription elongation. A total of 8176 K36
regions exclusively identified by CCAT in Figure 3b, which are
mostly weak in intensity, were compared to three gene annotation
databases: RefSeq, Ensembl and MCG. We found 7556 (92.4%)
of these regions overlap with the genes annotated by at least one
database (Supplementary Fig. S5), implying that the weak K36
signal is biologically meaningful and may reflect low-abundant gene
expression.

By traditional arguments, H3K4me3 sites are markers of
promoters. Surprisingly, only 26 902 (35.6%) out of 75 620 predicted
K4 peaks overlap with known promoters (±1 kb from TSS), and
majority of the promoter-associated K4 peaks are in the top 20 k of
the ranking list. To understand the chromatin features associated
with weaker K4 sites, we ranked the K4 peaks in descending
order of intensity (ChIP read counts within 1 kb), and compared
the list to other two histone modification types: H3K27me3 and
H3K4me1 (Fig. 3c). The ChIP-seq datasets published by Mikkelsen
et al. (2007) and Meissner et al. (2008) were employed for the
comparison. We found H3K27me3 signals are enriched for the
K4 peaks ranked from 10 to 20 k, corresponding to the K4–K27
bivalent domains that have been proven to be crucial to maintain to
pluripotency of ESC (Zhao et al., 2007). Meanwhile, H3K27me3
intensities of the top 10k peaks are relatively low in average. We
also observed that H3K4me1, an enhancer marker in mammalian
cells (Heintzman et al., 2007), is enriched for the peaks ranked after
20 k, and is almost depleted for the top-ranking peaks. Therefore,
in addition to the traditional arguments on H3K4me3, these lines
of evidence suggest distinct chromatin features associated with
strong and weak K4 sites. As a hypothesis, the weak K4 signals
in the enhancer regions may ascribe to the DNA-loop-mediated
interactions of enhancers and promoters.

4 DISCUSSION
The goal of the research work presented in this article is to
investigate the extent to which the weak ChIP signals are detectable
in a ChIP-seq experiment. For this purpose, we proposed a linear
signal–noise model for ChIP-seq analysis with negative control.
The noise rate defined in the model provides a measurement of the
data quality, which determines the capability of ChIP-seq to detect
weak ChIP-enriched sites. We developed an iterative algorithm
to estimate the noise rate using control library, and derived a
library-swapping approach for FDR estimation. The performance of
the proposed approaches was demonstrated with spike-in datasets.
These approaches, integrated in the CCAT framework, were further
applied to H3K4me3 and H3K36me3 datasets, and identified
significantly more weak sites than previous predictions. Two reasons
count for the improvement of sensitivity: first, the estimation of noise
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rate led to a better measurement of background noise level, which
was overestimated by commonly used approach of ‘normalization
against sequencing depth’; secondly, as shown in the spike-in
simulation, the library-swapping approach improved the accuracy of
FDR estimation, for which the previous P-value correction methods
are too conservative.

Our results showed that the weak ChIP-seq signals may
correspond to different genomic features from that of strong
signals. Therefore, studying the weak signals could extend the
scope of biological discoveries made from ChIP-seq data. Besides
our example on histone modifications, another interesting topic
is to study the weak transcription factor binding sites (TFBS),
which possibly implicate the indirect binding mediated by TF–TF
interactions. We expect the CCAT framework would facilitate such
study in the future.

A major drawback of CCAT is that only a portion of the original
dataset was utilized due to the re-sampling procedure. One solution
to this problem is to use a bootstrapping strategy in the region scoring
module. The option of bootstrapping is provided in the software
package of CCAT. In detail, the original dataset is re-sampled using
different random seeds, and the scores of candidate regions are re-
computed for a number of bootstrapping passes. The final score for a
region is the median of the scores computed in all the bootstrapping
passes. By this, the sensitivity and specificity of the ranking list
can be improved. A point of note is that the FDR could be slightly
over-estimated when the bootstrapping strategy is used.
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