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Supplementary Methods 

Simulate Disease Associated Markers 

We use the following procedure to simulate genotypes at k disease associated markers:  

1. Specify the MAF of each disease locus in controls; 

2. Under the independence and HWE assumption, calculate the genotype vector 

frequencies uΘ of disease loci in controls, where the frequency for each of 3k  

possible genotype vectors is the product of the corresponding marginal genotype 

frequency of each disease locus; 

3. Calculate the genotype vector frequencies cΘ  of disease loci in cases, by 

Β⋅Θu , where B is a 3k  dimensional vector;  

4. Determine the conditional probability }{ ijQ of the allele (j=0,1) of the associated 

marker given the allele (i=0,1) of each disease locus, such that a specified LD is 

obtained (either measured by r
2
 or by D’);  

5. Simulate genotypes in cases and controls according to cΘ , uΘ , }{ ijQ , for each 

disease associated marker respectively. 

 

In step (3), B is proportional to the risks of genotype vectors, and the risks are 

represented as functions of θ  in Table 1. We numerically solveθ , and thus B, so as to 
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obtain a desired marginal effect sizeλ  per disease locus. Β  is normalized such that 

1=Β . Let A/a denote the major/minor allele of a SNP, and let D/D  denote the 

affected/unaffected status. The effect size of a disease locus is defined as 
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which can be derived from uΘ and cΘ . For example, if we use Model 2 with the MAFs 

of the two disease loci fixed at 0.1, we obtain the values of θ  as 0.95, 1.40, 2.25, and 

3.04 for λ = 0.2, 0.3, 0.5, and 0.7, respectively. In comparison, if we fix the MAFs at 

0.5, the corresponding values of θ  become 0.19, 0.28, 0.45, 0.61, respectively. 

 

In step (4), we numerically determine }{ ijQ  so that a desired D’ (or 2r ) is obtained. For 

dataset in Figure 2, we fixed the MAFs at the disease loci and the associated markers. For 

other simulation datasets, we only fixed the MAFs at disease loci, but restricted }{ ijQ to 

be symmetric. In either case, we only need to find 00Q  such that }{ ijQ can be 

determined for a specific D′  (or 2r ) value for each disease locus. We start randomly and 

iteratively modify 00Q  by a small amount towards the desired D′  (or 2r ) value. The step 

size was reduced to half whenever two adjacent updates yielded one larger LD and one smaller 

LD with respect to the desired LD. The iterative update of 00Q  is terminated when a certain 

precision (0.001) is achieved. 

 

Model Linkage Disequilibrium 
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A first-order Markov model is used to account for LD between adjacent markers. With 

transition probabilities , 1,2,3{ }ij i jp =  between two adjacent markers, the likelihood of 

genotypes at the second marker conditional on the first marker is 
3 3
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is the number of transitions from genotype i of the first marker to genotype j of the 

second marker. We assign a Dirichlet prior to { }ijp  with parameter , 1,2,3{ }ij i jγ = =0.5, and 

integrate out { }ijp  to obtain the likelihood function
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We further introduce a binary label 0,1ϕ =  indicating whether or not markers in group 

2 are truly associated with the disease. We iteratively update the value of ϕ  and record 

markers in group 2 only when 1=ϕ . Let 2D  and 2U  denote the genotypes of markers 

in group2, in cases and controls, respectively. Using the Bayes rule, we have 
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Since 0ϕ =  indicates that the dependence between markers in group 2 is non-specific to 

the disease population, we have 
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Here, 2l denotes the number of markers in group2, ll mn ,  denotes the number of 

genotype vector l in cases and controls, respectively, and { }lβ  are Dirichlet parameters 

with 23,...,1,5.0
l

l l =∀=β . If 1ϕ = , the dependence between markers in group 2 is 

associated with the disease, and we define )()()1|,( 2222 UPDPUDP ==ϕ , where 
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)( 2DP , )( 2UP  are given in formula (2) and formula (3) in Methods, respectively. 

Finally, we set the prior for 0,1ϕ =  by 0.5 each. 

 

The Null Distribution of the B-statistic and the Conditional B-statistic 

Under the null hypothesis that a set M of k markers are not associated with the disease, 

we prove that the asymptotic distribution of 2 MB  is a shifted chi-square with ( 13 −k ) 

degrees of freedom. In general, under the null hypothesis that markers in M\T are not 

associated with the disease, we can show that |2 M TB  follows asymptotically a shifted 

chi-square distribution with ( tk 33 − ) degrees of freedom. 

 

We first consider MB . For conciseness, we only show here the case where markers are 

unlinked in controls. The linked case can be proved similarly and more easily. When 

markers in controls are unlinked, we have  
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As the sample size increased, it is standard to show that 
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markers are truly unlinked. Thus, the second term in (S1) converges to zero, whereas the 

first term in (S1) can be further written as 
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where lx  denotes the number of diplotypes l  observed at the k markers in cases, 

 and ij ijn m  denote the number of allele j observed at marker i  from cases and controls, 

respectively, , ,α β γ  are the Dirichlet parameters, and c  is a generic constant, which 

may take different values in different formulas. Let  and d uN N  denote the numbers of 

cases and controls, respectively. Let ,d

d u
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ijijij qpp ˆ)1(ˆ~ ωω −+= . Using Stirling’s formula, we can approximate (S2) by  
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Under the null hypothesis, the allele frequency is ijij qp =  for cases and controls. Since 

markers are unlinked, the expectation of η̂  is simply ∏
=

=
k

i

ijl q
1

η , where j  is the allele 

of marker i , and j  at each disease marker is uniquely determined by the diplotype l . 

 

By further Taylor-expanding (S2) with respect to ijijl pq ~,~,η̂  around their means, i.e., 

using the formula 
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Note that since the markers are unlinked under the null, the estimated diplotype 

frequency ˆlη  is very close to 
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we have cYXBM ++≈2 . 

 

Under the null, X’s asymptotic distribution is clearly a chi-square with 123 −− kk  df. It 

is also easy to follow a standard proof used for contingency tables to show that Y has the 

asymptotic chi-square distribution with 2k df. Furthermore, since the asymptotic 

distribution of X conditional on the marginal frequencies ijp̂  and ijq̂  is always the 

same chi-square distribution, X must be independent of ijp̂  and ijq̂ . On the other hand, 

Y is a function of ijp̂  and ijq̂ . Thus, X  must be independent of Y. This shows that the 

asymptotic distribution of X+Y is chi-square with 3 1k −  df. 

 

Following similar arguments, we can show that the conditional B-statistic TMB |  also has 

the stated asymptotic distribution. The shift parameter can be calculated as 12c c= , 

where 
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for linked markers, and c= 12c + (3 2 1) ln(1 )k k ω− − −  for unlinked markers. If we set 

kjikji ,,,5.0 ∀=== γβα , the shift parameter is unrelated with allele frequencies. 

Whether or not the markers in M are linked can be determined by the posterior 

probability 
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An alternative and asymptotically equivalent approach to the above B-statistic is to first 

determine whether or not markers in controls are linked according to either a 

log-likelihood ratio test or some Bayesian test, and then model the controls accordingly 

and use another log-likelihood ratio test to further test for associations. A comparison of 

the two methods is under investigation. 

 

A Hierarchical Procedure to Declare Significance 

We developed a hierarchical approach to evaluate the statistical significance for 

interactions of various sizes. Given a case-control dataset, significant markers were 

detected as follows. (1) We report all markers with significant marginal associations after 

a Bonferroni correction for the total number of markers, L. (2) We report all novel 2-way 

interactions (i.e., neither markers has been reported earlier) that are significant after the 

Bonferroni correction for ( 1) / 2L L −  tests. For those significant 2-way interactions of 

which one marker has been reported earlier, we compute its conditional B-statistic (or the 
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conditional log likelihood ratio (LLR) for logistic regression), estimate the p-value, and 

report the interaction if significant after a Bonferroni correction. We ignore the case when 

both markers have been reported significant because this will not affect the detection 

power. (3) We report all novel 3-way interactions that are significant after a Bonferroni 

correction for 6/)2)(1( −− LLL  tests, If t=1 or 2 markers in a significant 3-way 

interaction were already found significant, we calculate the conditional B-statistic (or the 

conditional LLR), estimate the p-value, and report the interaction if it is still significant 

after a Bonferroni correction. All p-values were estimated by a chi-square distribution 

with d= tk 33 −  degrees of freedom, for k=1,2,3, t=0,1,2, t<k, and adjusted by Bonferroni 

corrections. The asymptotic null distribution of the conditional B-statistic is indeed the 

stated chi-square. Thus, the hierarchical procedure controlled the type I errors under the 

expected level. 

 

A Hidden Markov Process to Simulate Descendants of the 146 individuals in the 

AMD Dataset 

To simulate genotypes of the 100K SNPs for one diseased descendent (patient) according 

to model 2, for example, we 1) randomly select two SNPs in the AMD dataset as disease 

SNPs (dSNPs); 2) compute the joint genotype frequency vector for the dSNPs according 

to the model; 3) sample a genotype configuration for the dSNPs according to the 

calculated frequencies and assign it to the patient; 4) generate genotypes of the remaining 

SNPs of the patient according to a hidden Markov process. As shown in Supplementary 

Figure 4, each SNP locus has a hidden state that follows a Markov chain (the bottom 

chain). The state of chain indicates one of the 146 individuals in the original AMD 
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dataset, and the transition probability to another individual chosen at random is 0.3 per 

Mb. The two red circles represent the two disease loci, with its genotype data inherited 

from individual #3. This individual is randomly chosen among those in the AMD dataset 

who carry the selected genotype configuration at the disease loci. If no individuals carry 

the selected genotype configuration at the disease loci, we return to step (1) and choose 

another set of disease loci 

 

Since the disease loci (with their states pre-selected) partition the genome into intervals, 

within each interval, either both ends are disease loci or one end is a disease locus. We 

first perform forward summation to calculate the probability of states at each marker 

from left to right. By default, the initial distribution of forward summation is uniform. 

However, if the left-most marker is a disease marker, the initial probability is 1 for the 

disease state, and 0 for other states. We then perform backward sampling to sample the 

states of each marker from right to left, and if the right-most marker is a disease marker, 

its state is the pre-determined value. Once the hidden chain is generated, we just copy 

down the genotypes from the individuals indicated by the chain to the patient. The same 

procedure, but with different joint genotype frequencies in step 2, is used to simulate 

individuals in controls. Finally, we remove the disease SNPs from the simulated dataset 

as if they are unobserved. 
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Supplementary Notes 

Simulation Results for the Null Distribution of B-statistics 

We conducted simulation studies to verify our chi-square approximation. We randomly 

selected 3000 sets of k-markers, for k=1, 2, 3, from a null dataset (without disease 

markers) and compared the empirical distribution of 2 MB c−  to a )13( −k -df 

chi-square distribution in a quantile-quantile plot (QQ-plot). We simulated datasets with 

different numbers of cases and controls: 500 cases against 1000 controls, 1000 cases 

against 1000 controls, and 1000 cases against 500 controls. As shown in Figure A1, the 

empirical distributions of B-statistics agreed well with the chi-square distributions. 

Alternatively, we can use a histogram to visualize the estimated p-values of the B-statistic 

based on its asymptotic chi-square distribution, which should be uniform between [0,1] if 

the asymptotics kicks in early enough. Figure A2(a) shows that our approximated 

p-values for 3-way interactions was conservative when sample sizes are 1000; whereas 

these p-values became very well behaved when the sample size was increased to 10000 

for both cases and controls (Fig A2(b)).  
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Figure A1. QQ-plots for the simulated B-statistics against chi-square distributions. In 

each plot, results for three different sample sizes are shown. ‘ο ’: (500 cases, 1000 

controls); ‘× ’: (1000 cases, 1000 controls); and ‘∆ ’: (1000 cases, 500 controls). For 

clarity, we arbitrarily shifted data of each sample size by a step size of 5 along the y-axis. 

   
            (a)             (b) 

Figure A2. Histogram of p-values estimated for 3-way B-statistics. (a) Results from 1000 

cases and 1000 controls; (b) results from 10000 cases and 10000 controls. 

 

Next, we check the empirical distribution of the conditional B-statistic, which has been 

used in a hierarchical approach to identity interactions. In particular, when a subset T of 

t(<k) markers in a set M of k markers are significantly associated with the disease, we 

demonstrate that the null distribution of |2 M TB c−  can be approximated by a ( tk 33 − )-df 

chi-square distribution. We first simulated a dataset containing a 2-way interaction 

according to disease Model 2, with marginal effect size 5=λ  and MAF=0.4 per 

marker. We then randomly selected 3000 sets of k markers. In each set, t markers were 

selected from the disease markers. We chose a large sample size of 10000 cases and 

10000 controls. For each set, we calculated TMB | , and then used a QQ-plot to compare 
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|2 M TB c−  with a ( tk 33 − )-df chi-square distribution. The constant c is computed from 

using (S5) as the difference between constants for M and T. We did this for 

(k,t)=(2,1),(3,1),(3,2), respectively, and the results are shown in Figure A3. The empirical 

distributions agreed very well with chi-square distributions. 

 

Figure A3. QQ-plots of empirical distributions of TMB |  versus their approximating 

chi-square distributions, 10000 cases and 10000 controls. Left: k=2, t=1; Middle: k=3, 

t=1; Right: k=3, t=2. 

 

Type I Error Rates 

Here we examined the type I error rates of BEAM, stepwise B-stat, and stepwise Logistic 

Regression based on datasets shown in Figure 1, at the significance level 0.1 after 

Bonferroni corrections. The type I error rates for each method and each interaction size k 

can be calculated as the number of significant k-way interactions that contain at least one 

unassociated marker, divided by the number of datasets tested. The results calculated in 

the unit of interaction were summarized in Table A1. An alternative way to calculate type 

I error rates is to count the number of unassociated markers being significant either 
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marginally or jointly with others, divided by the number of datasets tested. The results 

calculated in the unit of marker were summarized in Table A2. Since there are only 50 

datasets for each disease model under each setting, the type I error rates were averaged 

over various settings for each disease model. 

Table A1. Type I Error Rates of BEAM (B), stepwise B-stat (S), and stepwise Logistic 

Regression (L), calculated in the unit of interaction. 

1=k  2=k  3=k   

B S L B S L B S L 

Model 1 .100 .100 .104 .018 .018 .025 .000 .000 .000 

Model 2 .114 .114 .115 .013 .008 .026 .000 .000 .000 

Model 3 .103 .103 .103 .010 .004 .010 .000 .000 .000 

Model 4 .094 .094 .095 .019 .008 .029 .003 .003 .006 

Model 5 .113 .113 .114 .020 .023 .041 .016 .045 .020 

Model 6 .093 .093 .098 .015 .021 .019 .044 .023 .005 

Average .103 .103 .105 .016 .014 .025 .010 .014 .005 

 

Table A2. Type I Error Rates of BEAM (B), stepwise B-stat (S), and stepwise Logistic 

Regression (L), calculated in the unit of marker. 

1=k  2=k  3=k   

B S L B S L B S L 

Model 1 .100 .100 .104 .030 .031 .046 .000 .000 .000 

Model 2 .114 .114 .115 .024 .014 .045 .000 .000 .000 

Model 3 .103 .103 .103 .018 .005 .020 .000 .000 .000 

Model 4 .094 .094 .095 .034 .013 .054 .008 .008 .016 

Model 5 .113 .113 .114 .039 .041 .075 .019 .053 .049 

Model 6 .093 .093 .098 .029 .040 .033 .044 .029 .013 

Average .103 .103 .105 .029 .024 .045 .012 .015 .013 

 

 

We observe that BEAM, stepwise B-stat, and stepwise Logistic Regression all produced 

similar amount of type I errors for datasets in Figure 1. In particular, the type I error rates 

for single markers were about 10%, as expected at the 0.1 significance level. For 

interactions, however, all methods produced fewer type I errors, which may be due to the 

fact that the Bonferroni correction is too conservative especially for the highly correlated 

k-way interaction statistics. Interestingly, under Model 5 and Model 6, the type I errors of 
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BEAM and stepwise B-stat for 3-way interactions were relatively large. We manually 

checked those false positives. Most of the false positive 3-way interactions contained 

exactly two true disease markers! This is perhaps a desirable feature since it can help get 

back some weakly associated markers even if they do not really interact. Similar increase 

of type I errors were also found for stepwise Logistic Regression, but more so from 

2-way interactions. The overall type I error rate measured in the unit of marker, summed 

over all interaction sizes and averaged over all datasets, was 0.143 for BEAM, 0.141 for 

stepwise B-stat, and 0.163 for stepwise Logistic Regression. 

 

Since it is a possibility that our under-commitment of type-I errors is caused by the 

methods’ not being able to exhaustively search all possible interactions, we performed 

additional simulation studies in which we exhaustively examined all interaction 

combinations. We simulated 500 datasets without associations. Each dataset contains 100 

markers in 1000 cases and 1000 controls. We exhaustively tested all 100 one-way, 4950 

two-way, 161700 three-way interactions in each dataset at the significance level of 0.1 

after Bonferroni corrections using both the B-statistic and the log-likelihood ratio statistic 

in Logistic Regression. The type I error rates for each interaction size (k) were calculated 

in the unit of interaction and summarized in Table A3. For marginal associations, both 

B-statistics and Logistic Regression have type-I error rates slightly lower than 10%. For 

2-way and 3-way interactions, both methods appeared to be very conservative, further 

confirming our intuition that the Bonferroni correction is too conservative. 
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Table A3. Type I error rates for B-statistics and Logistic Regression, calculated in the 

unit of interaction. 

Type I Error Rate Single Marker 2-Way Interaction 3-Way Interaction 

B-Statistic 0.084 0.039 0.023 

Logistic Regression 0.088 0.047 0.043 

 

 

MCMC Convergence 

A simple diagnostic of the convergence of BEAM is to run multiple MCMC chains 

independently, and monitor the ratio between the within-chain variance and the 

between-chain variance of the log-posterior probability
1
. In our experience, for datasets 

with 1000 markers, the MCMC chains mix well after the first few thousands of iterations. 

In general, the number of burn-in iterations for each chain in BEAM should be a few 

times the total number of markers (L) considered. After burn-in, running BEAM for 2cL  

iterations, with c between 1-5, is often sufficient to obtain accurate estimates of posterior 

distributions. We also observe that the auto-correlation time
2
 of the log-posterior 

probability is in the order of L, which intuitively means that one obtains the equivalence 

of one independent posterior sample for every cL iterations. Supplementary Figure 2 

displays the trace and autocorrelation plots of the log-joint posterior probability for a 

simulated data and the AMD data. 

 

Posterior Distributions 

BEAM outputs posterior probabilities for each marker and/or set of markers to be 

associated with the disease. To illustrate, we used the same dataset as shown in 

Supplementary Figure 2, which contained 1000 markers in 1000 cases and 1000 controls. 

Three markers were selected to be interacting among the cases (Model 4), each with 
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disease MAF=0.1 and marginal effect size 4.0=λ . Based on 3 independent chains with 

35,000 iterations each, we show in Supplementary Figure 3(a) the posterior probability 

for each marker to be associated with the disease, either independently or jointly with 

some other markers. Supplementary Figure 3 also shows the posterior distributions for 

the number of marginal associations (b) as well as the interaction size (c). Furthermore, 

when we down-tune the prior probability for association from 1/3 to 1/300, we observe in 

Supplementary Figure 3(d,e,f) that those sporadic “wrong” markers with high posterior 

probabilities disappeared. Although the prior effect will diminish as sample sizes 

increases, in practice it is often insightful to examine the effects of priors and other 

critical model assumptions.  
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Supplementary Table 1: Simulated disease models 

Model 1 

Risk A/A A/a a/a 

B/B 1 1+θ (1+θ)
2
 

B/b 1+θ (1+θ)
2 

(1+θ)
3
 

b/b (1+θ)
2
 (1+θ)

3
 (1+θ)

4
 

 

Model 2 

Risk A/A A/a a/a 

B/B 1 1 1 

B/b 1 (1+θ)
2 

(1+θ)
3
 

b/b 1 (1+θ)
3
 (1+θ)

4
 

 

Model 3 

Risk A/A A/a a/a 

B/B 1 1 1 

B/b 1 1+θ
 

1+θ 

b/b 1 1+θ 1+θ 

 

Model 4 

A/A A/a a/a  

Risk C/C C/c c/c C/C C/c c/c C/C C/c c/c 

B/B 1 1 1 1 1 1+θ 1 1+θ 1 

B/b 1 1 1+θ 1 1+αθ 1 1+θ 1 1 

b/b 1 1+θ 1 1+θ 1 1 1 1 1 

 

Model 5 

Risk A/A A/a a/a Risk C/C C/c c/c 

B/B 1 1 1 D/D 1 1 1 

B/b 1 1
 

1+θ D/d 1 1 1+θ 

b/b 1 1+θ 1 d/d 1 1+θ 1 
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Table legend: Each table cell lists the relative risk of the corresponding genotype 

combination. Genotypes with risks equal to 1 have no effects to the disease (phenocopies). 

The parameter θ is computed conditional on specified marginal effects and disease MAFs. 

For Model 4, we choose α=10, 4, 1.5, 0.5 when MAF=0.05, 0.1, 0.2, 0.5, respectively. 

Since there were no marginal effects in Model 4 when MAF=0.5, we chose θ=7 

arbitrarily. Model 5 is a 4-locus model consisting of two 2-way interactions. Each of the 

2-way interaction contributes to the disease risk but the effects of two interactions do not 

add. We further constructed a 6-way interaction model (Model 6) as follows: denote the 

genotypes of each SNP by 0, 1, and 2 and code each genotype combination over 6 disease 

loci by integers between 0~728; assign disease effect θ= 50 to genotype combinations 4, 

5, 7, 111, 114, 253, 254, 360, 387, 603, and 630.  We chose θ = 50 so that these 

genotype combinations can explain a non-trivial portion (>10%) of cases. 
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Supplementary Figure 1: Prior calibration 

 

Figure legend: Posterior probability of associations for each marker in the AMD dataset. 

From upper left to bottom right clockwise: p=0.0033, p=0.001, p=0.0001, and p=0.00001, 

where p=p1=p2 are the priors for each marker to belong to group 1 and group 2, 

respectively. With decreasing priors, the posterior distribution shrinks to zero, but the 

relative order of markers ranked by posterior probabilities remains almost the same. In 

the upper-left panel, markers A and B corresponds to rs380390 and rs1329428, the two 

markers previously reported by Klein et al. Marker C (rs1296210) is located 2Mb 

downstream of A and B, while marker D (rs3775640) is on chromosome 4. Marker C’s 
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marginal significance is partly due to a joint effect it has with its preceding marker. 

Although the prior effect will diminish as sample sizes increases, in practice it is often 

insightful to examine the effects of priors and other critical model assumptions. 
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Supplementary Figure 2: Trace and autocorrelation plots 

 

Figure legend: Trace plots and autocorrelation plots for the log-joint posterior probability 

for a simulated dataset and the AMD dataset. The simulated dataset contains 1000 

markers from 1000 cases and 1000 controls. The disease model is Model 4, with MAF 

0.1 and marginal effect size 0.4 per locus. Trace plots are obtained from three 

independent chains, and the autocorrelation plots are obtained from the first chain. We 

ran BEAM for 150,000 burn-ins plus 200,000 samplings in three chains for the simulated 

dataset, with prior 3/121 == pp . We ran BEAM for 2,000,000 burn-ins plus 
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10,000,000 samplings in three chains for the AMD dataset, with prior 001.021 == pp . 

(a) & (b): trace and autocorrelation plots for the simulated data, respectively; (c) & (d): 

for the AMD data. Autocorrelation plots are generated using samples from every L 

iterations, where L=1000 for the simulated dataset, and L=96,932 for the AMD dataset. 

Part of trace plots are amplified in order to show three chains. 
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Supplementary Figure 3: Posterior distribution of associations 

 

Figure legend: Posterior probability of associations for each marker estimated from the 

same dataset used in Supplementary Figure 2(a). Circles denote the overall posterior 

probabilities of associations, with marginal and joint associations combined. Plus signs 

denote posterior probabilities of marginal associations. Three circles on the top of (a) and 

(d) correspond to the three simulated disease markers having interaction effects. (a) 

posterior probability of associations for each marker; (b) posterior distribution for the 

number of marginally associated markers in the dataset, where 0 is the true value; (c) 

posterior distribution for the interaction size, where 3 is the true value. Plots (a,b,c) are 

obtained using ),,( 210 ppp = )
3

1
,
3

1
,
3

1
( , where pi is the prior probability for each marker 

to belong to group i. Plots (d,e,f) are the corresponding results using 
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Supplementary Figure 4: HMM process for simulating descendants from the 

AMD dataset 

 

Figure legend: The hidden Markov chain used to simulate descendants of the 146 

individuals in the AMD dataset. Each SNP locus has a hidden state that follows a Markov 

chain (bottom). The state of chain indicates one of the 146 AMD individuals (top). The 

two red circles represent the two disease loci, with its genotype data inherited from 

individual #3. The states of the two disease loci are selected before determining the states 

of other loci. 

 


