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Pathway-Based Analysis for Genome-Wide Association Studies
Using Supervised Principal Components

Xi Chen,1� Lily Wang,2 Bo Hu,3 Mingsheng Guo,1 John Barnard,3 and Xiaofeng Zhu4

1Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
2Department of Biostatistics, Vanderbilt University, Nashville, Tennessee

3Department of Quantitative Health Science, Cleveland Clinic, Cleveland, Ohio
4Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio

Many complex diseases are influenced by genetic variations in multiple genes, each with only a small marginal effect on
disease susceptibility. Pathway analysis, which identifies biological pathways associated with disease outcome, has become
increasingly popular for genome-wide association studies (GWAS). In addition to combining weak signals from a number of
SNPs in the same pathway, results from pathway analysis also shed light on the biological processes underlying disease. We
propose a new pathway-based analysis method for GWAS, the supervised principal component analysis (SPCA) model. In
the proposed SPCA model, a selected subset of SNPs most associated with disease outcome is used to estimate the latent
variable for a pathway. The estimated latent variable for each pathway is an optimal linear combination of a selected subset
of SNPs; therefore, the proposed SPCA model provides the ability to borrow strength across the SNPs in a pathway. In
addition to identifying pathways associated with disease outcome, SPCA also carries out additional within-category
selection to identify the most important SNPs within each gene set. The proposed model operates in a well-established
statistical framework and can handle design information such as covariate adjustment and matching information in GWAS.
We compare the proposed method with currently available methods using data with realistic linkage disequilibrium
structures, and we illustrate the SPCA method using the Wellcome Trust Case-Control Consortium Crohn Disease (CD) data
set. Genet. Epidemiol. 34:716–724, 2010. r 2010 Wiley-Liss, Inc.
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INTRODUCTION

With the rapid development of genotyping technology,
genome-wide association studies (GWAS) have become a
popular approach for the identification of genes and
genetic variants involved in complex diseases. A series of
published results have demonstrated successful identifica-
tion of SNPs involved in complex traits [Manolio et al.,
2009; McCarthy et al., 2008; Wellcome Trust Case Control
Consortium, 2007]. While the standard approach for
GWAS has been single SNP analysis, recently, pathway-
based analysis methods have also been proposed
[Chasman, 2008; Schwarz et al., 2008; Wang et al., 2007].
These methods allow the integration of gene annotation
databases such as Gene Ontology (GO) [Ashburner et al.,
2000] to formally test for subtle but coordinated effects of
the genetic variants in each pathway. Pathway analysis has
been used widely in the analysis of gene expression data

and has been shown to be an effective tool for delineating
the underlying biological processes (BPs) involved in
transcriptome changes [Chen et al., 2008; Goeman and
Buhlmann, 2007; Subramanian et al., 2005; Wang et al.,
2008].

Integrating prior biological knowledge into association
studies and identifying pathways with disease association
also can be valuable for GWAS for several reasons: (1)
because the underlying biological mechanism for complex
diseases is likely to be dependent on perturbation of
different biological pathways, pathway analysis may
approximate the true disease process more closely and
shed biological insight; (2) while SNPs that are truly
associated with disease but have only mild effects will
likely be missed by single SNP analysis, pathway-based
analysis provides a way to combine weak signals from the
individual variants in each pathway to improve power;
and (3) as the number of genomic markers on high-density
SNP chips increases, brute-force searching for groups of
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SNPs that jointly affect disease outcome is becoming less
feasible. Gene annotation databases, however, provide an
automatic way of grouping SNPs on functionally related
genes.

Several recent papers have explored the feasibility of
pathway analysis for GWAS. In an interesting paper,
Chasman [2008] evaluated the utility of gene set analysis
methods based on Fisher’s exact test, which tests for
overrepresentation of SNPs associated with disease within
a pathway. Along the same lines, Wang et al. [2008]
adapted the gene set enrichment analysis (GSEA) method
of Subramanian et al. [2005] to GWAS, to test the
distribution of association between outcome and genes
within a pathway versus that between outcome and other
genes using a modified Kolmogorov–Smirnov test.
Goeman and Buhlmann [2007] classified pathway analysis
into two categories: competitive and self-contained tests.
A competitive test compares test statistics for genes in the
pathway to a background defined by the complement of
that pathway. Both Fisher’s exact test and GSEA are
competitive tests. A self-contained test, in contrast,
compares the gene set to a fixed standard that does not
depend on the measurement of genes outside the pathway.

In this article, we propose a new, self-contained test for
testing association between a group of SNPs in a pathway
with qualitative and quantitative traits using a modified
principal component analysis (PCA) approach. PCA, a
popular method for reducing high dimensionality to
capture variations in gene expression or SNP markers,
has been applied to gene expression pathway analysis,
multi-locus association studies, and population structure
correction [Gauderman et al., 2007; Tomfohr et al., 2005;
Wang and Abbott, 2008; Zhu et al., 2002]. In the analysis of
GWA studies, PCA is an effective approach for testing
association of the joint effects of genetic variations in
genes/SNPs with phenotypic variations while accounting
for correlations between the SNPs due to linkage dis-
equilibrium (LD). However, one limitation of PCA is that
the latent variable identified by the PCs may or may not be
related to clinical phenotypes [Bair and Tibshirani, 2004;
Bair et al., 2006].

To address this difficulty, Bair and Tibshirani [2004] and
Bair et al. [2006] proposed the supervised PCA (SPCA)
method, which estimates PCs from a selected subset of
genes most associated with outcome, instead of perform-
ing PCA on all genes. Because initial screening of the
variables uses outcome (e.g. disease status) information,
this method is referred to as supervised. In the context of
prediction analysis, SPCA has been shown to have
excellent performance at predicting survival and contin-
uous outcomes using gene expression data [Bair and
Tibshirani, 2004; Bair et al., 2006].

In this article, we adapt the SPCA model to pathway-
based SNP association analysis to test the association
between a group of SNPs and variation in disease
outcome. In the section Methods, we first give an overview
of the proposed method. Then, using genotype data with
realistic patterns of LD and allele frequencies, we conduct
a simulation study that compares our method with an
unsupervised PCA method, Fisher’s exact test, GSEA, and
the sum statistic [Hoh et al. 2001]. In the section Results,
we describe the details of the simulation study results and
illustrate the SPCA model using a real Crohn’s disease
case-control GWAS data set. Finally, we provide some
concluding comments in the section Discussion.

METHODS

AN OVERVIEW OF THE PROPOSED SUPERVISE
PRINCIPAL COMPONENT ANALYSIS (SPCA)
METHOD

The idea behind the SPCA model is that within a
biological pathway, genetic variations in a subset of SNPs,
each contributing a modest amount to disease predisposi-
tion, work together to disrupt normal biological process.
For simplicity, we use the terms ‘‘gene category’’, ‘‘path-
way’’, and ‘‘gene set’’ interchangeably, although they may
not be strictly equivalent. Given a gene category defined a
priori (e.g. categories from the GO or KEGG database), we
first map SNPs on an array to groups of genes within each
category. Then we select a subset of SNPs most associated
with disease outcome and estimate the latent variable
through PCA of this subset. Finally, to identify gene
categories associated with disease outcome, we test for
association between the estimated latent variable and
disease outcome using a linear model. SPCA uses outcome
information in the initial SNP screening; to account for this
step, we propose an approximation to the sampling
distribution of the test statistic in the linear model, which
uses a Gumbel extreme value mixture distribution. In
addition, to account for the effect of pathway size, we
propose a simulation-based standardization procedure.

In the proposed model, the estimated latent variable is
an optimal linear combination of a selected subset of SNPs;
therefore, the proposed SPCA model provides the ability
to borrow strength across both disease-predisposing and
disease-protective SNPs in a pathway. In addition to
identifying SNP pathways associated with disease out-
come, SPCA also carries out within-category selection to
identify the most important SNPs within each gene set (see
details in the section Results). Finally, the proposed model
operates in a well-established statistical framework and
can handle design information such as covariate adjust-
ment and matching information in a GWAS.

SUPERVISED PCA MODEL

The SPCA model is discussed in detail in Bair and
Tibshirani [2004], Bair et al. [2006], and Chen et al. [2008].
In this article, we discuss the application of a SPCA model
to pathway-based analysis of association studies. The
SPCA model estimates and tests disease association with
principal component scores that account for correlations in
the SNPs due to LD. The assumption behind the
supervised PCA model is that within a gene set defined
a priori, genetic variations in a subset of the SNPs are
associated with a latent variable, which then varies with
the outcome. Our objective is then to select the subset of
relevant SNPs, estimate the latent variable, and assess its
statistical association with outcome. To this end, we used
the following supervised PCA model:

Model 1: log
pj

1� pj

� �
¼ b0 þ b1PC1j ð1Þ

where pj 5 Pr (Patient j has disease phenotype | PC1), and
PC1 is the first principal component score estimated from
the selected subset of relevant SNPs in a predefined gene
set G and represents the latent variable for the underlying
BP associated with this group of genes. Magnitude of
loadings for the first principal component score can be
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viewed as an estimate of the amount of contribution from
different genetic variants. Statistical significance of b̂1
indicates a significant association between SNPs in gene
set G and outcome. In theory, in addition to PC1, it is also
possible to include additional PC scores in Model 1;
however, we have found that models with PC1 as the only
predictor have worked well in practice (see results on
simulation and real data analysis in the section Results)
because of the LD among SNPs in the same pathway.

For each pathway, we follow these steps:

(1) For each SNP, compute an association measure by fitting
a logistic regression model with disease status as the
outcome variable and genotype (0, 1, 2) as the predictor.
For the ith SNP, let the association measure pi be the
single SNP P-value (i.e. P-value corresponding to
regression coefficient for genotype in the logistic model).

(2) Given all SNPs in the gene set G, pre-determine a set of
m threshold values for the association measures: we let
fr1; r2; . . . ; rmg be a linearly ordered subset of real
numbers such that r1or2 . . .orm. In this paper, for
the simulation study and real data set analysis, we
used m 5 20 thresholds by placing the thresholds at
each increment of 5 percentiles of the association
measures (single SNP P-values in (1)).

(3) For a given threshold value rk, let Lk ¼

fSNPi � G : piork; i ¼ 1; . . . ; nSNPsg be the subset of
SNPs with association measures below the threshold.
Compute the first principal component score PC1
using only SNPs in Lk and fit Model 1.

(4) Let Tk ¼ b̂1k=s:e:ðb̂1kÞ be the t-statistic corresponding to
PC1 (computed using SNPs corresponding to thresh-
old Lk) in Model 1. Therefore, for the m threshold
values, we have m t-statistics fT1;T2; . . . ;Tmg. Let
Mm ¼ fTk : jTkj ¼ max1�k�m jTkjg, in the next section,
we derive the asymptotic distribution of this statistic.

ASYMPTOTIC DISTRIBUTION OF Mn

Without the gene selection process, when all genes in a
gene set defined a priori are included in analysis, the test
statistic T ¼ b̂1=s:e:ðb̂1Þ in Model 1 follows a t-distribution.
However, after the SNP selection step in the section
Supervised PCA Model, the test statistic can no longer be
approximated well using a t-distribution.

Given a set of normal random variables fT1; . . . ;Tng, let
Mn ¼ fTk : jTkj ¼ max1�k�n jTkjg. In this section, first we
describe the Gumbel extreme value distributions for
modeling the maximum and minimum of a set of n
normal random variables, then we show the distribution of
Mn follows a two-component mixture distribution based
on the Gumbel extreme value distributions. In the section
Application of the Theory to Significance Testing in Gene
Set Analysis, we discuss practical applications of the
theory to the analysis of gene sets.

Given a set of normal random variables fT1; . . . ;Tng,
under regularity conditions [Leadbetter et al., 1982], the
maximum M1n ¼ max1�k�n Tk can be shown to follow the
Gumbel maximum distribution:

PrfM1n � ung ¼ expð�e�t1 Þ ð2Þ

where t1 5 an(un�bn), an 5 (2 log n)1/2 and bn 5 (2 log n)1/2
�

0.5(2 log n)�1/2 (log log n1log 4p).

Here, the normalizing constants an and bn serve as scale
and location parameters of the distribution. In gene set
analysis, given a set of t-statistics from fitting Model 1 at
different thresholds, an and bn help normalize the effect of
gene set size n. In the section Application of the Theory to
Significance Testing in Gene Set Analysis, we show this
important property of the extreme value distribution helps
to increase the computational efficiency dramatically, by
allowing us to pool Mn values for gene sets with different
gene set sizes in a given study. Next, the corresponding
density function for the maximum is

f1ðunÞ ¼ expð�e�t1 Þ � ðe�t1 Þ � qt=qunðanðun � bnÞÞ

¼ an expf�e�t1 � t1g: ð3Þ

Similarly, let M2n ¼ min1�k�n Tk ¼ �max1�k�nð�TkÞ ¼

�M0n the distribution function for the minimums can be
derived as

PrfM2n � ung ¼ Prf�M0n � ung

¼ PrfM0n4� ung

¼ 1� PrfM0no� ung

¼ 1� expð � et2 Þ: ð4Þ

The density function for the minimum is then

f2ðunÞ ¼ expð�et2 Þ � ðet2 Þ � qt=qunðanðun þ bnÞÞ

¼ an expf � et2 þ t2g ð5Þ

where t2 5 an(un1bn).
Now, for a given gene set, let Mn ¼ fTk : jTkj ¼

max1�k�n jTkjg, and p 5 Pr(Mn40), then the distribution
function for Mn can be approximated as a two-component
mixture distribution:

PrðMnounÞ ¼ PrðMnounjMn40ÞPrðMn40Þ

þ PrðMnounjMno0ÞPrðMno0Þ

¼ p PrðM1nounjM1n40Þ

þ ð1� pÞPrðM2nounjM2no0Þ

¼ pfexpð�e�t1 Þg þ ð1� pÞf1� expð�et2 Þg: ð6Þ

The conditioning argument in the third line above
follows because if Mn is positive, then Mn must be the
maximum of all t-statistics fTk; k ¼ 1; . . . ; ng, so Mn ¼M1n

and can be approximated with a Gumbel maximum
distribution. Similarly, if Mn is negative, then Mn must be
the minimum of all fTk; k ¼ 1; . . . ; ng, so Mn ¼M2n and can
be approximated with a Gumbel minimum distribution.
The corresponding density function for the mixture
distribution is then

fðunÞ ¼ pan expf � e�t1 � t1g þ ð1� pÞan expf � et2 þ t2g:

ð7Þ

APPLICATION OF THE THEORY TO SIGNIFI-
CANCE TESTING IN GENE SET ANALYSIS

When applying the theory in the section Asymptotic
Distribution of Mn to gene set analysis, we note that
several assumptions are violated: for each gene set, to keep
the amount of computation manageable, only a finite
number (m 5 20) of t-statistics can be computed. Let
n 5 pathway size or the number of SNPs, m 5 number of
thresholds of association measures in step (2) of the section
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Supervised PCA Model. Note that when the thresholds are
placed at small intervals (e.g. at every increment of 5
percentiles of the t-statistics), limD!1 Mm ¼Mn where
D5 interval length, or the number of SNPs within the
interval. In addition, from fitting Model 1 using SNPs
corresponding to each threshold, we have a set of t-scores
instead of normal scores, and the t-scores are correlated by
construction. Therefore, the approximation in Equation (6)
and (7) may not be precise.

Given a large number of gene sets, to estimate P-values
for each gene set accurately, our strategies are to use the
theory in the section Asymptotic Distribution of Mn to
account for different gene set sizes, and then model the
null distribution of Mm by generating random outcomes
for each gene set, pooling Mm values for all gene sets, and
estimating (additional) parameters of the mixture distribu-
tion. More specifically, we follow these steps:

(i) Generate random outcomes for each gene set. For
each gene set, fixing the genotype data set, we
generate disease status for each sample from a
Bernouli distribution with parameter q, where q is
the proportion of case samples.

(ii) For each gene set, fit Model 1 for SNPs corresponding
to each of the m 5 20 thresholds, and compute Mm.

(iii) Pooling Mm values from all gene sets, we then have
the null distribution for Mm. Because the disease
outcomes were generated randomly, without looking
at the SNP values, the resulting Mm values represent a
random sample from the null distribution of Mm.

(iv) However, the P-values estimated directly using the
null distribution in (iii) will often be coarse, when the
number of gene sets tested in the study is only
moderately large (a few hundreds to a thousand). To
further improve accuracy in estimation of gene sets
P-values, we add additional location and scale
parameters to Equation (7), by letting t01 ¼ d1anðun �

bn � g1Þ and t02¼d2anðun þ bn þ g2Þ for the parts corre-
spond to maximum and minimum in Equation (7),
respectively.

So, the density function (7) then becomes

fðunÞ ¼ pd1an expf�e�t01 � t01g þ ð1� pÞd2an expf�et0
2 þ t02g:

ð8Þ

Given a set of Mm values for the null gene sets (from
(iii)) and the mixture density function (8), the parameters
p, d1, d2, g1, g2 can then be estimated easily. We used the R
function optim for the analysis in this study. To estimate
P-values for each gene set, we then substitute these
estimated parameters into the distribution function with
the additional parameters:

PrðMmounÞ ¼ pfexpð�e�t01 Þg þ ð1� pÞf1� expð�et02 Þg:

DESIGN OF A SIMULATION EXPERIMENT

We compared the performance of the supervised PCA
model for pathway analysis of SNP data with several
popular pathway analysis methods: Fisher’s exact test,
GSEA [Holden et al., 2008], sum statistic [Hoh et al., 2001],
and an unsupervised PCA model. First, from the GO
database, we randomly selected 50 gene categories. For
each gene category, we obtained the list of SNPs within
5KB up- or downstream from genes in the gene set using

the Ensembl database. Among the 50 selected gene sets,
the number of SNPs per gene set varied from 11 to 295. We
limited these SNPs to those from the Perlegen GV4 SNP
chip, resulting in a total of 4,035 SNPs across the selected
50 gene sets.

To generate samples of genotype data with realistic
allele frequencies and LD patterns, we used the web-based
simulation tool HAP-SAMPLE [Wright et al., 2007]. HAP-
SAMPLE simulates genotype data sets by resampling
chromosome-length haplotypes from existing phased data
sets, such as the HapMap data set, thus preserving realistic
data structure in association studies. In this simulation, the
SNP IDs of the 4,035 SNPs from the selected 50 gene sets
across different chromosome were entered into HAP-
SAMPLE, and the Caucasian cohort (CEU) (parent data
from phase II) was used as the source data. The haplotypes
for each chromosome were generated from HapMap
samples, and haplotypes between chromosomes were
assumed to be independent. A total of 20,000 genotype
samples were generated. This represents the genotype
data set for an artificial but realistic finite population of
patients from which we can sample.

To construct causal gene sets, fixing the genotype data,
for each gene set, we next simulated case-control status for
the patients according to the multiplicative disease model.
More specifically, for the first five gene sets (sorted by GO
ID) with SNP set sizes 138, 145, 216, 254, and 262,
respectively, we generated disease outcome for each patient
based on the multiplicative disease model. Let gi 5 0 and 1.2
represent the number of copies of the risk allele for SNP i
(i 5 1,y, D), where D is the number of SNPs in the gene set
associated with disease, and let f 5 Pr (affected | g1; . . . ; gD)
be the penetrance for genotype fg1; . . . ; gDg. Then, assuming
the multiplicative genetic model logð f=ð1� f ÞÞ ¼ b0þ

b1g1 þ b2g2 þ � � � þ bDgD, we independently generated
biði ¼ 1; . . . ;DÞ from a N(m, s2) where m5 log(1.1) and
s2 5 0.15, 0.2, 0.25, 0.3. We assumed the number of SNPs
associated with disease to be D 5 5, 8, and 10 within each
pathway, resulting in 12 5 3 (D)� 4 (s2) simulation scenar-
ios (Table I). For each causal pathway, the causal SNPs were
selected randomly without using any SNP-to-Gene map-
ping information, so that the causal SNPs were located on
different genes. Each scenario was replicated 50 times,
resulting in, by design, a total of 250 ( 5 5� 50) causal
disease gene sets among a total of 2,500 ( 5 50� 50) gene
sets. Under this setup, bi can be positive or negative;
therefore, each gene set includes SNPs with a minor allele
that either increases or decreases risk of disease relative to
the major allele. To estimate b0, we assumed disease
prevalence K to be 5%. Given prevalence K and
biði ¼ 1; . . . ;DÞ, b0 can then be estimated by maximizing
the equation K ¼

P
g1
. . .
P

gD
Prðg1; . . . ; gDÞfðg1; . . . gDÞ; see

details in Li and Li [2008]. Finally, for each gene set, given
values for b0, fb1; . . . ; bDg, and genotype data fg1; . . . ; gDg,
we computed f using the multiplicative genetic model
above and sampled genotype data for 500 cases and 500
controls from the pool of 20,000 patients.

To construct null gene sets, for the remaining 45 gene
sets, we generated outcome status for each sample from
Bernouli (K 5 0.05) without looking at genotype data.
Therefore, these are the null gene sets. For each simulation
scenario, genotype data for the first 500 cases and 500
controls were next selected from the pool of 20,000 patient
samples.
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To implement the analysis of SPCA, unsupervised PCA,
and Fisher’s exact test, we used the R packages (http://
www.r-project.org/) superpc (with modification for binary
outcomes), lm, and fisher.test, respectively. For Fisher’s test,
which compares the proportion of causal SNPs from a
gene set to the proportion of causal SNPs in other genes,
a univariate test must first be conducted for each SNP, and
a significance threshold pre-specified. We used logistic
regression with case-control status as outcome, and SNP
status as predictor for the univariate SNP analysis. Two
significance cutoff levels were used: at Bonferroni-
adjusted P-values of 0.05 or false-discovery rate (FDR)-
adjusted P-values of 0.05.

We used the javaGSEA implementation (http://www.
broadinstitute.org/gsea/) for GSEA analysis. Briefly, the
SNPs were pre-ranked by Chi-square test statistic from the
Cochran-Armitage Trend test and this ranked list was then
used for the GSEA ‘‘Pre-ranked’’ algorithm. This is the
algorithm implemented in GSEA-SNP software [Holden
et al., 2008]. For the sum statistic, we used the program
downloaded from the author’s website (http://linkage.
rockefeller.edu/ott/sumstat.html).

RESULTS

RESULTS OF SIMULATION EXPERIMENT

To estimate type I error rate and power of the methods,
we pooled gene sets from the 50 replications, among which
250 ( 5 5 gene sets� 50 replications) were causal gene sets
and 2,250 ( 5 45 gene sets� 50 replications) were null gene
sets by design of the experiment.

For all scenarios, all methods had preserved type I error
rate at the 0.05 significance level. In particular, Supple-
mentary Figure 1 shows the distributions of P-values from
the SPCA model for each scenario. Figure 1 and Table I
compare the power of the methods for testing the null
hypothesis H0: a gene set is not associated with disease.
Across all scenarios, the SPCA model consistently per-
formed best with the highest power among all methods.
On the other hand, the unsupervised PCA model, which
uses all SNPs in the gene set to estimate the underlying

latent variable, had the lowest power among all methods.
This suggests that, with the SNP selection step, supervised
PCA removes some of the irrelevant SNPs before extract-
ing the desired latent variable, thereby improving perfor-
mance in discriminating causal gene sets from null gene
sets. Another self-contained test (Section Introduction) that
also uses only SNPs in the pathway, the sum statistic, also
performed well with good power for all scenarios.
Supplementary Table 1 further compares the average
P-values (over 50 replications) of the sum statistic and
SPCA model for each causal gene set with different gene
set sizes. Across rows of this table, as expected, when the
number of causal SNPs in the gene set is large
(N_SNP 5 10), both methods performed well with small
average P-values for each causal gene set. However, when
the number of causal SNPs in the gene set is small
(N_SNP 5 5), SPCA model had smaller average P-values.
Across the columns of this table, while P-values from
SPCA model were similar for causal gene sets with
different sizes, the average P-values for sum statistics
increased for larger gene sets, suggesting the results of
sum statistic are affected by gene set sizes. In this
simulation study, because we have selected the causal
SNPs randomly, most of pairwise LDs between casual
SNPs were less than 0.01. Note that when the causal SNPs
display stronger LD pattern, the power of proposed
method will be even higher.

Compared to the self-contained tests (SPCA and sum
statistic), the competitive tests (Fisher’s exact test and
GSEA), which compare test statistics for SNPs in the gene
set to other SNPs not in the gene set, had less power for
detecting causal gene sets. This suggests that when SNPs
in multiple pathways are associated with disease, compe-
titive tests which compare association signals in a
particular gene set vs. association signals from all other
gene sets, may result in loss of power.

APPLICATION TO THE CROHN DISEASE (CD)
GWA DATA

To further validate the proposed methodology, we next
applied the methodology to a real GWAS data set: the

TABLE I. Results of simulation studies comparing SPCA, PCA, Fisher’s exact tests, GSEA, and the sum statistic (SUMSTAT)

Power at false-positive rate 5 0.05

Scene N_SNP Variance SPCA PCA Fisher (Bonferroni 0.05) Fisher (FDR 0.05) GSEA SUMSTAT

1 5 0.15 0.42 0.10 0.06 0.07 0.19 0.35
2 5 0.20 0.64 0.17 0.22 0.24 0.23 0.51
3 5 0.25 0.72 0.21 0.34 0.36 0.27 0.65
4 5 0.30 0.81 0.25 0.46 0.48 0.32 0.76
5 8 0.15 0.53 0.11 0.10 0.13 0.22 0.40
6 8 0.20 0.74 0.14 0.24 0.28 0.28 0.67
7 8 0.25 0.88 0.24 0.46 0.50 0.37 0.84
8 8 0.30 0.92 0.29 0.63 0.67 0.40 0.90
9 10 0.15 0.58 0.18 0.15 0.18 0.27 0.51
10 10 0.20 0.80 0.25 0.36 0.40 0.33 0.72
11 10 0.25 0.90 0.27 0.55 0.61 0.39 0.88
12 10 0.30 0.96 0.30 0.75 0.79 0.47 0.95

Fisher (Bonferroni 0.05) 5 Fisher’s exact test using 0.05 Bonferrioni level as threshold for declaring single SNP significance; Fisher (FDR
0.05) 5 Fisher’s exact test using 0.05 FDR level as threshold for declaring single SNP significance. N_SNP, number of causal SNPs in the
gene set; variance, variance of the beta coefficients in the multiplicative genetic model; see text for details of the simulation experiments.
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Wellcome Trust Case Control Consortium (WTCCC) CD
case-control data.

Crohn’s disease, a typical complex disease affected by
multiple genetics factors and environmental exposures
[Podolsky, 2002], is a form of inflammatory bowel disease
most commonly affecting the small intestine and/or colon,
in which an overactive immune response leads to chronic
inflammation. Although the genetic architecture of CD is
still incomplete, recent candidate gene and GWAS
[Mathew, 2008; Xavier and Podolsky, 2007] suggest three
major BPs related to CD: innate immunity, adaptive
immunity (regulation of IL23), and autophagy. These
processes are closely associated. Autophagy can mediate
innate immune responses by targeting intracellular bacter-
ia and parasites, and connects with adaptive immunity
through presenting antigen via MHC class II [Schmid and
Munz, 2007]. Innate immune responses are necessary to
activate adaptive immunity, leading to inflammation
[Xavier and Podolsky, 2007].

We chose the WTCCC CD data to test our proposed
methodology because of the relatively clear understanding
of the above-summarized biological mechanisms involved
in the development of Crohn’s disease, including more
than 30 susceptibility loci for CD found and replicated in
different GWAS [Barrett et al., 2008]. WTCCC GWA
samples were genotyped using Affymetrix GeneChip
500 K arrays. After data quality control, 1,748 cases and
2,953 controls remained, with 469,557 SNPs for each
sample [WTCCC, 2007].

To conduct gene set analysis, we used gene sets from the
canonical pathway (CP) and BP collections of the Mole-
cular Signatures Database (MSigDB), a public database
created by the Broad Institute (http://www.broadinstitute.
org/gsea/msigdb/). The CP gene sets are canonical
representations of BPs compiled by domain experts, from
online databases such as BioCarta (http://www.biocarta.
com/), KEGG (http://www.genome.jp/kegg/), and others.
The BP collection consists of gene sets derived from the

controlled vocabulary of the GO project, in particular the
ontologies in the ‘‘BP’’ category. Because of the hierarchical
structure of GO, to reduce redundancy, MSigDB prepro-
cesses gene sets to remove highly similar GO categories. To
reduce the amount of multiple testing and avoid testing
overly broad gene sets, we further removed gene sets with
more than 250 genes. The remaining 762 GO categories and
638 CPs were used for subsequent data analysis.

To assign SNPs to pathways, we used ENSEMBL
database (version 51) annotation. First, SNPs mapped
within 5 KB of a gene were assigned to the corresponding
gene. A total of 207,907 SNPs were mapped to 17,203
genes. Next, the genotype data in the CD case-control data
set were linked to the gene sets using identifiers for the
genes. We conducted gene set analysis using the proposed
methodology as outlined in the section Methods. Based on
the SPCA model, nominal P-values were estimated for all
gene sets. To control for FDR, we also estimated adjusted
P-values based on the method of Benjamini and Hochberg
[1995], using the multtest package in the R statistical
software.

At FDR levels of 0.05 and 0.1, we identified 50 and 72
significant gene sets, respectively, in the CD data set. The
top 40 gene sets are listed in Table II; a large proportion of
these statistically significant gene sets are involved with
BPs related to the immune system, a reasonable result
given the proposed biological mechanisms for CD sum-
marized above.

Two groups of gene sets identified as statistically
significant are closely related to innate immunity; one
group includes gene categories related to detection and
response to stimuli (bacteria), such as GO:0009595,
GO:0051606, GO:0009581, and GO:0009617. The genes
identified from these categories include NOD2 (CARD15),
RP1, IFNGR1, CCL4, IL10, IL12B, and others. The second
group of innate immunity gene sets is involved with
cytokine secretion and production, activation, or regulation
of the nuclear factor-kB (NF-kB) transcription factor. The

Fig. 1. Comparison of power for six gene set analysis methods at 0.05 significance level, for 500–500 case-control samples with disease

prevalence 0.05. The number of disease causal SNPs were chosen to be 5, 8, and 10 and the variances of the normal distributions for
coefficients beta of causal SNPs were 0.15, 0.2, 0.25, and 0.3. SPCA is the proposed Supervised PCA model; Fisher Bonferroni 0.05 and

Fisher FDR 0.05 are Fisher’s exact test using Bonferroni 0.05 and FDR 0.05, respectively, as the threshold for declaring single SNP

significance; PCA is the standard PCA regression; GSEA is the gene set enrichment analysis, and SUMSTAT is the sum statistic as

described in Hoh et al. [2001]. PCA, principal component analysis; FDR, false-discovery rate
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important genes in these sets are NOD2, TNFB2, MAP3K7,
ABCA1, CARD11, PRKCQ, and others. Among these
genes, NOD2, the first discovered CD susceptibility gene,
plays a central role in immune response pathways. By
recognizing bacterial molecules that possess a muramyl
dipeptide with a leucine-rich repeat domain, NOD2
activates NF-kB and mitogen-activated protein kinase
signaling pathways through a receptor-interacting serine-
threonine-dependent signaling pathway [Kobayashi et al.,
2002]. This triggers the production and secretion of a series
of pro-inflammatory cytokines, such as tumor necrosis
factor-a (TNF-a), interleukin 12, and interleukin 23 (IL23),
to enhance innate immunity.

Other major pathways identified as statistically signifi-
cant are involved with adaptive immunity, in particular,
the regulation of IL23. These pathways are the cytokine-
cytokine receptor interaction pathway (KEGG 04060,
including genes IL23R, IR12RB2, IL18RAP, IL6R, IL28A,
ARFRAP1, CCL18, IFNGR1, TNFSF15, TNFRSF1B) and the

JAK-STAT signaling pathway (KEGG 04630, including
genes IL23R, STAT3, IL28A, IFNGR1, GRB2, SPRED1,
SPRED2). IL23 has been shown to be the ‘‘master
regulator’’ of Crohn’s disease, through activating a subset
of T-cells (TH-17) to produce cytokine IL17 to promote
inflammation. The STAT3/STAT4-dependent pathway is
also required for IL23 to activate TH-17 through phosphor-
ylation [Neurath, 2007].

Finally, statistically significant gene sets related to
autophagy include GO:0006914, GO:0009991, GO:0031668,
and others. The most important genes in these gene sets are
autophagy-related 16-like 1 (ATG16L1) and the IRGM
gene. These two genes are responsible for intracellular
responses required for autophagy and are associated with
Crohn’s disease risk [Hampe et al., 2007; Parkes et al., 2007;
Rioux et al., 2007]. Although our top pathways are not
identical to the top hits in GESA analysis by Wang et al.
[2009], the significant genes identified by SPCA, especially
those in pathways related to the regulation of IL23, were

TABLE II. The most significant pathways identified by SPCA analysis in the WTCCC CD GWA data set

Gene set No. of genes No. of SNPs P value Function

GO:0009595 9 74 9.71E�06 Detection of biotic stimulus
GO:0009991 88 774 1.04E�05 Response to extracellular stimulus
KEGG: 04060 215 1,992 1.04E�05 Cytokine cytokine receptor interaction
GO:0031668 34 216 1.21E�05 Cellular response to extracellular stimulus
GO:0006914 27 188 1.49E�05 Autophagy
GO:0016236 10 59 2.01E�05 Macroautophagy
GO:0051606 46 804 2.03E�05 Detection of stimulus
GO:0050715 8 114 2.18E�05 Positive regulation of cytokine secretion
GO:0050701 8 112 2.20E�05 Interleukin-1 secretion
GO:0000045 7 42 2.66E�05 Autophagic vacuole formation
GO:0043122 84 563 2.70E�05 Regulation of I-kB kinase/NF-kB cascade
GO:0043123 78 509 2.74E�05 Positive regulation of I-kB kinase/NF-kB cascade
GO:0009966 198 2,365 3.09E�05 Regulation of signal transduction
GO:0009967 114 1,400 3.35E�05 Positive regulation of signal transduction
KEGG: 04630 132 1,187 3.50E�05 JAK-STAT signaling pathway
GO:0051239 139 1,992 3.73E�05 Regulation of multicellular organismal process
GO:0051259 36 699 4.28E�05 Protein oligomerization
GO:0050707 14 130 4.47E�05 Regulation of cytokine secretion
GO:0001819 14 126 4.51E�05 Positive regulation of cytokine production
GO:0050714 9 123 4.54E�05 Positive regulation of protein secretion
GO:0051240 60 522 5.02E�05 Positive regulation of multicellular organismal process
GO:0045087 115 1,108 5.07E�05 Innate immune response
GO:0006461 151 2,332 5.19E�05 Protein complex assembly
GO:0009581 22 180 5.28E�05 Detection of external stimulus
GO:0051704 141 1,172 6.36E�05 Multi-organism process
GO:0051707 68 443 6.70E�05 Response to other organism
GO:0006952 218 1,989 6.94E�05 Defense response
GO:0009607 97 660 7.25E�05 Response to biotic stimulus
GO:0051099 25 289 7.45E�05 Positive regulation of binding
GO:0043388 23 271 7.49E�05 Positive regulation of DNA binding
GO:0051091 21 266 7.51E�05 Positive regulation of transcription factor activity
GO:0050708 19 219 7.54E�05 Regulation of protein secretion
GO:0009617 23 174 7.83E�05 Response of bacterium
GO:0051047 17 166 7.89E�05 Positive regulation of secretion
GO:0001817 23 232 7.93E�05 Regulation of cytokine production
GO:0050663 16 187 8.12E�05 Cytokine secretion
GO:0051092 15 233 9.30E�05 Activation of NF-kB transcription factor
GO:0032940 97 1,657 9.47E�05 Secretion by cell
GO:0001816 63 570 9.54E�05 Cytokine production
GO:0042742 18 143 1.00E�03 Defense response to bacterium

722 Chen et al.

Genet. Epidemiol.



also included in the most significant pathways in GSEA
analysis. This indicates important association signals for
CD were picked up by both methods. In summary, results
of the proposed SPCA model agreed well with recent
findings in multiple GWA studies and animal experiments,
further validating the proposed methodology.

DISCUSSION

Many complex diseases are influenced by joint effects of
genetic variations in multiple genes and environmental
factors [Manolio et al., 2009]. In this paper, we have
outlined a general strategy for conducting pathway
analysis for GWAS data using the supervised PCA model.
In addition to combining weak signals from a number of
SNPs in a pathway, results from pathway analysis also can
shed light on the BPs underlying disease. Typically, only a
subset of SNPs within a gene set defined a priori are
associated with disease outcome. Hence, without a SNP
screening step, using all SNPs to summarize information
from a pathway can result in reduced test power for
pathway analysis, because of the inclusion of SNPs
unrelated to disease. In contrast, the proposed SPCA
model, which is a semi-supervised testing procedure that
combines feature selection and dimension reduction
techniques, removes some of the irrelevant SNPs before
extracting the principal components. Using GWAS data
with realistic LD structures, we have shown that this
approach compares favorably with currently available
pathway testing methods.

The proposed method can be further improved in
several ways: (1) Assigning SNPs to genes in the pathway.
In this study, we have used physical annotations to assign
SNPs within 5 KB of each gene in a pathway to that gene,
to capture the proximal functional elements of most genes;
more distant SNPs and SNPs in LD with the included
SNPs were ignored. We believe that there is a balance to be
struck here: adding SNPs mapped farther away from
genes will likely cover more completely the regulatory
regions, but will also include more irrelevant SNPs and
increase the computational burden dramatically because of
the large number of genes in most pathways. A previous
study [Holmans et al., 2009] found no apparent improve-
ment in results when different window sizes were used for
a pathway-based analysis method; however, more studies
on this issue are clearly warranted, with functional studies
that assess the impact of SNPs on gene expression likely to
be particularly helpful. (2) Accounting for the hierarchical
structure of GO. The GO terms used in this study are
highly structured and ordered in a directed acyclic graph:
the set of genes annotated to a certain term (node) is a
subset of those annotated to its parent nodes. To reduce
redundancy, we used collections of gene sets based on GO
from the MSigDB database, which had been preprocessed
to exclude extremely similar GO terms. Even after pre-
processing, however, the results of gene set analysis may
still include closely related processes; therefore, careful
interpretation of functionally related gene sets is needed.
In this study, we have taken the approach of grouping
gene sets and interpreting functionally related groups of
gene sets to further reduce redundancy.

Although these and other issues make pathway-based
analysis of GWAS especially challenging, we believe
pathway-based approaches that model joint effects of

genetic variations in multiple functionally related genes is
a major step forward in improving the power of GWAS
and understanding molecular mechanisms of disease. In
addition, the power and potential of these methods will
increase as the coverage and quality of gene annotation
databases improve.
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