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Reliable statistical validation of peptide and protein identifications is a top priority in large-scale mass
spectrometry based proteomics. PeptideProphet is one of the computational tools commonly used for
assessing the statistical confidence in peptide assignments to tandem mass spectra obtained using
database search programs such as SEQUEST, MASCOT, or X! TANDEM. We present two flexible
methods, the variable component mixture model and the semiparametric mixture model, that remove
the restrictive parametric assumptions in the mixture modeling approach of PeptideProphet. Using a
control protein mixture data set generated on an linear ion trap Fourier transform (LTQ-FT) mass
spectrometer, we demonstrate that both methods improve parametric models in terms of the accuracy
of probability estimates and the power to detect correct identifications controlling the false discovery
rate to the same degree. The statistical approaches presented here require that the data set contain a
sufficient number of decoy (known to be incorrect) peptide identifications, which can be obtained using
the target-decoy database search strategy.

Keywords: mass spectrometry • peptide identification • protein sequence database searching • statistical
validation • semisupervised modeling • decoy sequences

Introduction

Mass spectrometry has become the method of choice for
high-throughput protein identification and quantification in
most large-scale studies.1 Technological advances in this area
brought new opportunities for protein analysis, including
protein quantification, characterization of post-translational
modifications, and protein–protein interactions. In tandem
mass spectrometry (MS/MS) based proteomics, sample pro-
teins are first enzymatically digested into shorter fragments,
or peptides, and the peptide mixtures are separated by reverse-
phase capillary liquid chromatography (LC) or other separation
techniques. The separated peptides are ionized and fragmented
in the mass spectrometer to produce signature MS/MS spectra.
The computational analysis is then carried out to identify the
peptides that generated the spectra and to infer the identities
of proteins present in the original sample.2

The most commonly used method for peptide identification
from MS/MS spectra is database searching. In this approach,
experimental MS/MS spectra are queried against theoretically
derived spectra predicted for peptides contained in a protein
sequence database. A number of database search tools are
available such as, e.g., SEQUEST,3 MASCOT,4 and X! TANDEM5

(see, e.g., ref 2 for a recent review). Database peptides assigned
to experimental spectra are filtered based on search scores
generated by the search algorithm, and then filtered data are
reported as a list of proteins present in the sample. However,
not all peptide assignments are correct. Incorrect identifications
result from many reasons, e.g., the peptide sequence is not in
the search database or low-quality MS/MS spectra are used
for the database search. Regardless of the source of false
identification, it is important to be able to assess the statistical
significance of individual peptide identifications as well as the
composite error rates associated with filtering the data using
various thresholds.6
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Several approaches have been developed for assessing the
confidence in peptide identifications. These can be roughly
divided into single-spectrum and global (whole data set)
modeling approaches. The most commonly used single-
spectrum statistical measure is the expectation value, which
refers to the expected number of peptides with scores equal
to or better than the observed search score under the assump-
tion that the peptide was assigned to the experimental spec-
trum by random chance.7,8 The expectation values are less
dependent on the details of the scoring method used to
compare experimental and theoretical spectra, which gives a
clearer interpretation of goodness of match across different
instrument platforms and search algorithms. However, the
conversion of a raw search score into an expectation value does
not control the overall identification error rates, since its
construction does not specifically involve steps for multiple
testing correction. Thus, when dealing with large-scale data sets
of peptide assignments to MS/MS spectra, additional analysis
has to be carried out that would allow filtering the data with a
desired false discovery rate (FDR).

One of the global statistical approaches, implemented in the
commonly used computational tool PeptideProphet, is to model
the observed distribution of scores (raw search scores or expecta-
tion values) and auxiliary properties (e.g., peptide molecular
weight measurement from the first stage of the MS analysis and
information from the protein digestion and peptide separation
steps) as realizations from a mixture distribution of scores
representing correct and incorrect peptide assignments.9,10 In this
method, maximum likelihood estimation of distribution param-
eters using the expectation-maximization (EM) algorithm11 leads
to mixture deconvolution, and the posterior probability of correct
identification is calculated for each assignment from the decon-
voluted mixture distribution by Bayes rule. Using this scale-free,
univariate probability score, one can call peptide assignments
correct if posterior probability is above a certain threshold. This
posterior probability is directly related to local false discovery rate
(fdr) discussed in Efron et al.12 and Newton et al.,13 and thus
specifying the minimum probability threshold automatically
controls global FDR to a desired degree.

Recently, this approach was extended by incorporating
information from decoy assignments in the mixture estimation
algorithm.10 Decoys are peptide identifications that are known
to be incorrect. They can be obtained using the target-decoy
database search strategy, in which the protein database for the
organism of interest (target database) is appended with a decoy
database (e.g., reversed, randomized, or shuffled sequences
from the target database). For a recent review, see ref 14. The
distribution information from decoys is exploited by allowing
their scores to contribute to the estimation of negative distribu-
tion only. The decoy distribution effectively yields a stable
reference distribution of incorrect assignments, resulting in
more reliable control of false discovery rates across many
challenging examples. In this method, the likelihood to be
maximized (in the M-step of the EM algorithm) is decomposed
as a product of the following two distributions: a two-class (e.g.,
Gumbel/Normal in MASCOT, Gamma/Normal in SEQUEST)
mixture distribution for peptide assignments from the original
search database, and a fixed distribution (e.g., Gamma in
SEQUEST, Gumbel in MASCOT, TANDEM) for decoy assign-
ments. In the E-step, the probability of correct identification
is then calculated for target assignments only, and the mixture
proportion is also estimated using target assignments. The use
of a decoy peptide makes the classification problem semisu-

pervised, in the sense that the known class labels for decoy
assignments are used but the class labels for all other assign-
ments are not known a priori. In what follows, we call the
parametric mixture model the unsupervised parametric model
if the database search was performed without decoys and the
semisupervised parametric model otherwise. Several data
analysis examples using the semisupervised parametric model
are presented in ref 10, where the impact of the information
from the decoys on the accuracy of statistical modeling was
assessed in comparison with the unsupervised parametric
model.

In the parametric methods, however, the reliability of
validation depends on proper parametric specification of the
probability model for the search scores. One of the limitations
of PeptideProphet is that it is difficult to find a default
probability model (i.e., shape of the score distribution) since
the appropriate choice depends on the scoring algorithm and,
to some degree, on the choice of various database search
parameters. As a result, adoption of the computational ap-
proach to each new database search tool requires analysis of
the database search score distributions and investigation of
various score transformations. Even then, deviations from the
parametric assumptions can sometimes be observed in prac-
tice, in which case computed probabilities may be less accurate.
One such example, a SEQUEST search of a data set of MS/MS
spectra generated using a linear ion trap Fourier transform
(LTQ-FT) mass spectrometer, is shown in Figure 1.

To improve the accuracy of statistical validation and simplify
the application of the method to model the output of new
search tools, we describe two flexible mixture models that avoid
restrictive model specification in the estimation of mixture
distribution. In the first, variable component approach, para-
metric specification of continuous mixture components is
replaced by a mixture of Gaussian mixtures of an unknown
number of subcomponents. The second method is an iterative
weighted kernel density estimation, where the parameters of
the positive distributions and the mixture proportion are
estimated using a semiparametric density estimation method
similar to that of Robin et al.15 Both methods require decoy
peptides since they tend to prevent the identifiability problem
in the variable component approach, and the negative distribu-

Figure 1. Histogram of SEQUEST discriminant search score S
plotted separately for incorrect and correct peptide assignments
to doubly charged spectra (solid lines). Also shown are the
distributions learned by the semisupervised parametric model
(dashes). See Data section for a description of the data set.
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tion cannot be obtained at all without decoys in the semipara-
metric model. Using the data set shown in Figure 1, we
demonstrate that the information from decoy peptides signifi-
cantly contributes to more reliable estimation of the negative
distribution (score distribution of incorrect assignments), that
relaxing parametric model assumption allows accurate model
fits even in the most challenging cases, and that the power to
detect true positives is improved compared to the parametric
model given a fixed cut point for posterior probability of correct
identification.

Methods

Data. MS/MS spectra used in this work were generated using
a linear ion trap Fourier transform (LTQ-FT) instrument using
a mixture of purified proteins.16 Prior to MS/MS analysis,
proteins were digested with trypsin and separated using
reversed-phase LC coupled online to the mass spectrometer.
The spectra (mixture 3, 10 LC-MS/MS runs in total) were
searched using SEQUEST against the sequences of proteins
known to be present in the sample (target database) appended
with a much larger database of reversed protein sequences
extracted from the Human IPI database (decoys). The search
was conducted allowing peptides that are not tryptic at no more
than one of the termini (partially constrained mode), with two
missed cleavages or less, using 3 Da monoisotopic mass
tolerance and no modifications. Note that the large 3 Da mass
window was used to illustrate the ability of the methods to
accurately capture the distribution of mass accuracy scores and
may not be optimal. The resulting data set contained a total
of 21 821 peptide assignments. Among them, 8323 were as-
signments to sequences of the proteins known to be in the
sample, and 13 498 were matches to sequences from the decoy
database. Because the size of the decoy database was much
larger than the size of the target database, all assignments to
target sequences in this data set were assumed to be correct.

Discriminant Features. Database search tools compare each
MS/MS spectrum against all candidate peptides in the searched
protein sequences database that satisfy a certain set of user-
defined criteria (precursor mass tolerance, digestion constraint,
etc.).17 The highest scoring peptide is assigned to each experi-
mental spectrum based on database search score. In addition to
the database search score S (in this work, SEQUEST discriminant
search score9,10), further useful information may be available
regarding the quality of peptide assignments depending on the
search options, serving as independent discriminating features
for peptide identification. A more detailed discussion of various
discriminant features can be found in ref 10. A peptide assigned
to an experimental spectrum is more likely to be correct if it
conforms to the specificity of the enzyme used to digest the
proteins. In the case of trypsin digestion, the confidence in
assigned peptides that have less than two tryptic termini, and/or
missed internal cleavage sites, should be downweighted. These
sequence properties are quantified using the number of tryptic
termini parameter, NTT, and the number of missed cleavages,
NMC, respectively. Furthermore, the molecular weight of the
assigned peptide can be computed theoretically and compared
to the observed precursor ion mass (information available from
the first stage of mass spectrometry, MS1 spectrum). A large
difference between the two weights, denoted here by dM, reduces
the confidence in the peptide assignment. While only these four
scores are used in this work given the nature of the data, this
framework can host other information on the features of peptide

matches as long as it is legitimate to assume conditional inde-
pendence among the information variables given identification
class.

Probability Model. Given the four scores, search score S and
auxiliary information NTT, NMC, and dM (collectively desig-
nated as E), the task is to model the joint distribution of these
scores as a two-component mixture, where the components
represent the score distributions of incorrect and correct
identification classes. On the basis of the deconvoluted mixture,
the posterior probability of correct identification for individual
peptide assignments can be determined, leading to a classifica-
tion rule that calls peptide assignments correct if probability
is above the threshold probability pT, where 1 – pT corresponds
to the local false discovery rate (fdr).

The joint distribution of scores, f (S, E) is specified as
previously described.9,10 For a peptide assignment to the ith
spectrum in the data set with the scores (Si, Ei)

f (Si, Ei))π0f0(Si, Ei)+π1f1(Si, Ei) (1)

where π0 + π1 ) 1 and fk is the joint distribution of the scores
in incorrect identifications if k ) 0 and correct identifications
otherwise. It is also assumed that

f0(S, E)) f 0
S(S)f 0

NTT(NTT)f 0
NMC(NMC)f 0

dM(dM) (2)

and the same for f1, where f k
x(x) is the marginal distribution of

individual score x in each identification class k. The additional
key assumption of the parametric mixture model was that the
distributions (f 0

S(S), f 1
S(S)) are modeled using a certain fixed

shape, e.g., (Gamma, Normal) or (Gumbel, Normal). This
limitation, as well as the requirement for discretization of the
mass accuracy variable dM, will be removed in the models
described below. The assumption that the distributions of
individual scores are mutually independent conditional on the
identification class remains unchanged. Thus, it follows that
all the scores interact with one another through the overall
proportion of incorrect and correct identifications (π0, π1) only.
In practice, this assumption is not severely violated in typical
data sets. As in ref 9, peptide assignments to spectra of different
charge state are modeled separately.

Model 1: Variable Component Approach. The key improve-
ment that this work aims to achieve is that there is no need to
specify a particular family of distributions for the marginal
distribution of continuous scores in each identification class. One
way to achieve this is to perform Bayesian estimation on the
variable component mixture model. Integrating eq 1 over all
possible values of (E) and modeling f k

S(•) as a mixture of an
unknown number of Gaussian subcomponents for both k ) 0
and k ) 1, it is assumed that {Si}i)1

n are iid (independent and
identically distributed) draws from

where (π0, π1) are mixture weights of incorrect and correct
identifications from eq 2, respectively; triplet (w, µ, σ2) denote
mixture weights, means, and variances for subcomponents; and
φ denotes Gaussian density. This specification allows a smooth
model fit not bound by a particular shape restriction. We call φ’s

(3)
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subcomponents in the sense that a collection of φ’s comprises a
mixture component representing the score distribution of either
correct or incorrect identifications. Most importantly, the numbers
of subcomponents in each class (k0 and k1) are assumed to be
random, and the model is therefore called the variable component
model.

We also assume the mass accuracy scores {dMi}i)1
n are iid

draws from the distribution of the form in eq 3, where the
mixture weights (π0, π1) remain the same from the integration
of eq 1 over all possible values of (S, NTT, and NMC). Modeling
dM with a continuous distribution is an important difference
from parametric models, where dM is discretized into a certain
number of bins and modeled as a mixture of two multinomial
distributions.

The other two scores (NTT, NMC) are modeled as realiza-
tions from a mixture of two multinomial trials of size 1. That
is, {NTTi}i)1

n are iid draws from the discrete mixture

f NTT(NTT))π0f 0
NTT(NTT)+π1f 1

NTT(NTT)
≡ π0M(NTT; p0, p1, p2)+π1M(NTT; q0, q1, q2)

(4)

where M denotes the multinomial distribution. The same form
of a marginal mixture distribution is defined for NMC.

Model estimation is performed using reversible jump Markov
chain Monte Carlo (MCMC) devised for the variable component
mixture model.18,19 Although MCMC is computationally heavy
relative to the parametric model estimation, the variable
component model thus acquired tends to be more robust since
the sampling algorithm explores a wide range of possible
models that could have generated the data. See Supplemental
Methods for a more detailed account of the prior elicitation
and the sampling algorithm used here.

Model 2: Semiparametric Approach. As an alternative to the
variable component approach, we also examine a semipara-
metric density estimation method similar to that of Robin et
al.15 In this approach, decoy peptides play a more important
role since the negative distributions for all four scores (S, NTT,
NMC, dM) are obtained solely from decoy peptides. Thus we
assume that the negative distribution is known (estimated
nonparametrically from decoys) and iterate EM-like steps with
fixed negative distribution. In the iterative algorithm, the
conditional probability of each observation belonging to the
positive component is calculated in the E-step and the positive
distribution is re-estimated by weighted kernel estimation with
weights being the aforementioned conditional probability for
each observation.

In this approach, the first step is to estimate the negative
distributions from the decoy peptides. By applying kernel
density estimation with a Parzen window, we obtain f 0

S(•) and
f 0

dM(•) as follows. First, an equally spaced, dense grid of
100-500 points is fixed on the domain of continuous discrimi-
nant search scores S, and the Gaussian kernel density estimate
is calculated at each grid

f 0
S(S|hS)) 1

n0hS
∑
i)1

n0

K(S- Si

hS
) (5)

where K is the Gaussian density function and n0 is the number
of decoy assignments. Note that in this part of the estimation
only the decoy peptides are used. Then the same is applied to
mass accuracy dM. The bandwidths (hS, hdM) are selected only
once in the beginning of the algorithm and fixed throughout.
They are estimated by 5-fold cross-validation with log-likeli-
hood maximization criterion. f 0

NTT(•) and f 0
NMC(•) are easily

calculated by sample proportions.
In the E-step, the probability that spectrum i is correctly

assigned is calculated as

pi ≡ P(+|Si, Ei))
π1f1(Si, Ei)

f(Si, Ei)
. (6)

where + stands for the event that an assignment is correct. In
the next step, similar to the M-step in parametric models,
kernel density estimates are calculated

f 1
S(S|hS))

Σi)1
n piK(S- Si

hS
)

hSΣi)1
n pi

(7)

at all grid points. The same step is applied to mass accuracy
dM. For the other two discrete variables, the proportion of each
value weighted by probabilities is calculated for f 1

NTT(•) and
f 1

NMC(•). Finally, the mixture proportion π1 is estimated by the
average of the probability of correct identification, i.e.

π1 )
1
n∑

i)1

n

pi (8)

where n is the number of all target peptide assignments.
Posterior Class Probability and Classification. The goal of

this work is to accurately calculate the posterior probability of
correct identification, or class probability, for each peptide
assignment. In the semiparametric approach, this probability
can be directly calculated using eq 6 at the last step of iteration.
In the variable component approach, the same quantity can
be acquired by taking the sample average of the posterior
output. If we denote the overall model parameters by Θ ) (k0,
k1, π, w, µ, σ, p, q), then the probability that ith peptide is
correct is

P(+|Si, Ei))∫Θ
P(+|Θ, Si, Ei)dF(Θ|Si, Ei)

)∑
d

p(d)∫Θ (d)P(+|Θ(d), Si, Ei)dF(Θ(d), Si, Ei)

≈1
I∑

k)1

I

1(+|Θk, Si, Ei)

(9)

where I is the number of iterations in the Markov chain and d
is the varying number of mixture subcomponents in both
identification classes.

The resulting classification rule calls correct all assignments
with P(+) greater than the threshold probability pT. The
threshold probability can be selected with proper control of
error rates if we interpret it as the complement of the local
false discovery rate (see, e.g., Efron20 for a discussion in the
context of large-scale hypothesis testing). A classification rule
of this form controls the local false discovery rate at 100 × (1
– pT)%. The control of the local false discovery rate is generally
reliable as long as the mixture is properly deconvoluted. Further
discussions on the efficiency of false discovery rates based on
mixture modeling can be found in Newton et al.13

Results and Discussion

The performance of the flexible models described above, as
well as the parametric models, was evaluated using a control
protein mixture data set generated using an LTQ-FT mass
spectrometer (see Data). The accuracy and absolute number
of correct peptide identifications at a fixed FDR were calculated
across the four models: (1) parametric model with no decoy
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information9 (unsupervised parametric); (2) parametric model
with decoy information10 (semisupervised parametric); (3)
variable component mixture model; (4) semiparametric ap-
proach. As discussed above, both flexible models are semisu-
pervised (use decoy information). To allow objective evaluation
of the semisupervised models, half of the decoy peptide
matches were randomly selected and considered to be un-
known (all decoys are treated as unknown in the unsupervised
model). These peptides were used to evaluate the accuracy of
computed probabilities. The other half of the decoy peptides
was used by the models; i.e., they were forced to contribute to
the negative distributions only (variable component approach
and semisupervised parametric) or were directly used to
empirically estimate the negative distribution (semiparametric
approach). Both NTT and NMC parameters were used in the
analysis; however, the discussion below will focus on the results
with respect to the database search score S and the mass
accuracy dM, mostly because those two are generated from
continuous distributions, in which we seek improvements
compared to the parametric approach.

The results for the SEQUEST search of MS/MS spectra from
doubly charged precursor peptide–ions are shown in Figure 2a,b,
which plot the observed histograms of the discriminant database

search score S separately for correct and incorrect assignments
obtained using the variable component mixture and the semi-
parametric model, respectively. These plots should be compared
with Figure 1, which shows the results obtained using the
semisupervised parametric algorithm10 (the unsupervised solution
was close, if slightly worse, and not plotted). Clearly, in this data
set, the parametric model does not capture the positive distribu-
tion well due to the shape restriction of the Gamma/Normal
mixture (modeling using other distribution shapes produced
similar results). The flexible models show significant improvement
in modeling the observed distributions of scores.

The flexible models also allow accurate modeling of the
distributions of the mass accuracy score, dM. Since dM is
observed on a continuous scale, the ideal strategy is to model it
with a continuous distribution. In the parametric model, dM is
discretized into a certain number of bins and then modeled with
a mixture of two multinomial distributions. These two approaches
may in general give similar results when the distribution of dM is
sufficiently smooth. In more challenging cases, however, e.g., high
mass accuracy data used in this work, the distribution of dM in
correct identifications may be so concentrated on a few bins (this
is particularly apparent in the case of high mass accuracy data
searched with wide mass tolerance, see Figure 2c,d) that the

Figure 2. Histogram of SEQUEST discriminant search score S and mass accuracy score dM plotted separately for incorrect (solid
green) and correct (solid blue) peptide assignments to doubly charged MS/MS spectra. Also shown are the distributions learned by
the models (dashes) and the distribution of S plotted for decoy peptides used in the models (red dotted line). (a,c) Variable component
mixture model. (b,d) Semiparametric model. Observed distributions (solid lines) are identical between (a) and (b) and between (c) and
(d), but appear slightly different as plotted since each method may place break points differently. Insets in (c) and (d) show the region
of the mass accuracy dM distribution close to 0.
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probabilities can be overadjusted for peptides in those bins and
underadjusted for peptides elsewhere. In this case, the discrimi-
nation by the database search score can easily be dominated by
dM. Moreover, when the data set does not include enough correct
identification, excessive binning will make the maximum likeli-
hood estimation unstable. The flexible models tend to be free
from this behavior since the variable component model is based
on smooth distributions and the semiparametric model uses
smoothing in the estimation. We illustrate the model fits of dM
from the flexible models in Figure 2c,d, which plot the observed
distributions of the mass accuracy score among correct and
incorrect identifications as well as the model fit obtained using
the variable component and semiparametric models. These
figures also demonstrate the high mass accuracy (less than 5 ppm)
of the LTQ-FT mass spectrometer, which makes dM highly useful
for discriminating correct from incorrect identifications.

To quantify the accuracy of calculated class probabilities,
peptide assignments were first sorted in decreasing order of
estimated probabilities, and the average of the known class labels,
i.e., correct (1) and incorrect (0) identifications, was calculated
using a sliding window of size 100 (the size of the sliding window
had little impact on the shape of the accuracy curve). The average
in the sliding window is referred to as actual probability. If actual
probability is plotted against the average of model-estimated
probabilities within the same window, then a line close to the 45
degree line indicates good agreement between the estimated and
actual probabilities. In addition to the estimation accuracy, the
concordance between the complement of the probability 1 – pT

and the actual local false discovery rate can also be monitored.
The actual local false discovery rate can be calculated in a way
similar to the way the actual accuracy was computed. For a fixed
threshold point pT, all peptide assignments with estimated prob-
ability within a window of δ, say 0.95, are collected, and the
proportion of incorrect assignments among them reflects actual
local false discovery rate. As the local false discovery rate is
essentially complementary to the accuracy, we do not include
these plots in the following analysis. Consistent with the goodness
of model fit, Figure 3 shows that the accuracy of probability
estimates from the semiparametric and the variable component
mixture models is superior to that of parametric models (both
semisupervised and unsupervised), including the high probability
region 0.5 and above, that is of most relevance in practical terms.

The accuracy of the probabilities computed using parametric
models can be somewhat improved by implementing an empiri-
cal correction, e.g., by bounding the ratio between positive and
negative distributions in dM to be within a certain range (e.g.,
below 10), as shown in the Supplementary Figure S1. With the
flexible models, such empirical corrections become unnecessary.

In addition to the improved accuracy of modeling, the
flexible mixture models allow better separation between correct
and incorrect identifications. The improved sensitivity of
filtering the data at a fixed FDR is shown in Figure 4. Both the
variable component model and the semiparametric model
allow selection of a higher number of correct identifications
at all FDRs than the parametric models. This improvement,
however, is less significant than the 30% or more improvement9,10

that is typically observed between the probability-based filter-
ing in general and simple threshold-based methods that are
commonly applied in practice.

While both flexible models produce similar results, it is
important to discuss the differences between them. Despite the
flexibility and robustness of the variable component mixture
model, its success may be subject to proper prior elicitation
for some of its modeling components and also requires a
sufficient number of sampling steps from the posterior distri-
bution associated with the reversible jump Markov chain Monte
Carlo method and thus increased computational burden. These
drawbacks are important weaknesses from the practical point of
view if the goal of developing the method is to deliver a fast and
automated computational tool free from additional tuning of
parameters. If the practical implications of computational burden
and parameter tuning are critical, the semiparametric model has
an obvious advantage. Much of its computation is spent on
bandwidth selection, but the entire computation time is much
less than that for the Bayesian estimation procedure and com-
parable to that of parametric models. Furthermore, the semi-
parametric approach can be easily implemented in the existing
computational tools, e.g., PeptideProphet.

At the same time, it is important to point out that the
estimation of the negative distribution in the semiparametric
approach becomes completely dependent on the decoy pep-
tides, as in other similar strategies.21 An important issue that
has not been fully addressed yet is whether creating decoys by

Figure 3. Accuracy of estimated probabilities from the semipara-
metric (dashes) and variable component (solid) mixture models
and from parametric semisupervised (dash dot) and unsuper-
vised (short dashes) models. The results of an ideal model are
shown as a 45 degree dotted line.

Figure 4. Estimated number of correct peptide identifications as
a function of false discovery rate (FDR). Shown are the results
of the variable component model (solid), semiparametric model
(dashes), and semisupervised parametric model (dash dot). The
results from the unsupervised parametric model are similar to
those of the semisupervised parametric model and are not
shown.
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reversing or randomizing target protein sequences can provide
an accurate assessment of the negative distribution, since many
of the incorrect matches happen to be made to sequences
homologous to the true peptides,22–24 rather than completely
random. In that regard, the variable component model has the
same advantage as the parametric methods in that the distri-
bution of incorrect peptide identifications can deviate from the
distribution of decoy peptides. Additional discussion on the
use of decoys peptides within the mixture modeling approach
can be found in ref 10.

Finally, it is important to mention that in most studies
researchers are interested in identifying proteins present in the
original sample rather than peptides resulting from the pro-
teolytic digest of the sample. Thus, peptide identifications need
to be grouped according to their corresponding protein and
the statistical assessment performed at the protein level.23

Improved accuracy of computed probabilities should result in
more accurate estimation of protein-level probabilities by
computational tools such as ProteinProphet25 that take peptide
probabilities as input. Furthermore, the protein level modeling
can benefit from using the information from decoy protein
identifications in an analogous way. However, the protein level
analysis is further complicated due to the presence of homolo-
gous protein sequences. Thus, the distribution of protein level
scores computed for decoy protein identifications is unlikely
to be an accurate representation of the distribution of incorrect
identifications of proteins from the target database. This issue
should be carefully examined in future work.

Conclusions

In this paper, we have extended the mixture modeling ap-
proach of refs 9 and 10 for validation of peptide identification
using a wider class of mixture models. The variable component
mixture model with a minimal set of parametric model assump-
tions and the semiparametric mixture model lead to flexible and
robust model-based estimation of the classification error rates
associated with peptide identification through database searching.
In both alternatives, as a consequence of the precise estimation
capability of our method, the mixture modeling provides a reliable
gauge for controlling false discovery rates in real data analysis,
with the benefit of having a univariate score for goodness of match
for each peptide assignment. The particular advantage of the
method is its ability to model multiple sources of discriminant
information in addition to the database search score itself, which
improves the accuracy of probability calculation as well as the
statistical power of the method. The implementation of the
method in R programming language is available upon request
from the authors.
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