
Genetic Epidemiology 34 : 792–802 (2010)

Genotype-Based Association Mapping of Complex Diseases:
Gene-Environment Interactions with Multiple Genetic Markers

and Measurement Error in Environmental Exposures

Iryna Lobach,1 Ruzong Fan,2–4� and Raymond J. Carroll2

1Division of Biostatistics, New York University, School of Medicine, New York, New York
2Department of Statistics, Texas A&M University, College Station, Texas

3Department of Epidemiology, MD Anderson Cancer Center, University of Texas, Houston, Texas
4Division of Cancer Control and Population Sciences, Surveillance Research Program, National Cancer Institute, Rockville, Maryland

With the advent of dense single nucleotide polymorphism genotyping, population-based association studies have become
the major tools for identifying human disease genes and for fine gene mapping of complex traits. We develop a genotype-
based approach for association analysis of case-control studies of gene-environment interactions in the case when
environmental factors are measured with error and genotype data are available on multiple genetic markers. To directly use
the observed genotype data, we propose two genotype-based models: genotype effect and additive effect models. Our
approach offers several advantages. First, the proposed risk functions can directly incorporate the observed genotype data
while modeling the linkage disequilibrium information in the regression coefficients, thus eliminating the need to infer
haplotype phase. Compared with the haplotype-based approach, an estimating procedure based on the proposed methods
can be much simpler and significantly faster. In addition, there is no potential risk due to haplotype phase estimation.
Further, by fitting the proposed models, it is possible to analyze the risk alleles/variants of complex diseases, including
their dominant or additive effects. To model measurement error, we adopt the pseudo-likelihood method by Lobach et al.
[2008]. Performance of the proposed method is examined using simulation experiments. An application of our method is
illustrated using a population-based case-control study of association between calcium intake with the risk of colorectal
adenoma development. Genet. Epidemiol. 34:792–802, 2010. r 2010 Wiley-Liss, Inc.
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INTRODUCTION

Case-control studies are widely used to detect gene-
environment and gene-gene interactions in the etiology of
complex diseases, such as cancer, hypertension, and
diabetes. Many variables of interest to biomedical
researchers are very difficult to measure on the individual
level and oftentimes uncertainty associated with the
observed values cannot be avoided in practice. Measure-
ment error causes bias in gene-environment parameter
estimates, thus masking key features of data and leading
to loss of power and spurious/masked associations
[Lobach et al., 2008]. Loss of power prevents the ability
to detect important relationships among variables [Carroll
et al., 2006]. Nutrition—defined broadly to indicate diet,
body size, physical activity—is likely to be causally related
to cancer [Schatzkin et al., 2009]. Nevertheless, nutritional
epidemiology of cancer remains problematic, largely

because of persistent concerns that standard instruments
measure diet and physical activity with too much error.
For example, in large epidemiologic studies of impact of
diet on development of a disease, nutrient intake is
commonly measured using the food frequency question-
naire (FFQ). It is well known that the FFQ as a measure of
long-term diet is subject both to biases and random errors
[Subar et al., 2003].

With the advent of dense single nucleotide polymorphism
(SNP) genotyping, population-based linkage disequili-
brium (LD) mapping or case-control association studies
have become the major tools for identifying human disease
genes and for the fine gene mapping of complex traits
[Hinds et al., 2005; The International HapMap Consortium,
2003, 2005, 2007; The International SNP Map Working
Group, 2001]. LD information reflects structure of the
genome and hence provides valuable opportunity for
mapping genetic variants responsible for complex diseases.
The availability of millions of SNPs greatly facilitates
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detection of genetic variants of complex diseases using
case-control association studies and provides a unique
opportunity to increase resolution of the fine genotype
mapping. In the meantime, association studies are challen-
ging because of high false-positive rate and computational
demands needed to handle massive number of SNPs.
Moreover, it is believed that multiple genetic variants and
environmental factors interactively cause complex traits
[Chatterjee and Carroll, 2005; Lobach et al., 2008; Mukher-
jee and Chatterjee, 2008; Spinka et al., 2005]. We are
interested in building statistical models that relate genetic
variations to complex phenotypes and permit detection of
interaction between genetic variants and environmental
factors in the difficult but common situation when the
environmental factors are measured with uncertainty.

The following important issues are likely to arise in the
analysis of population-based case-control association
studies: (1) Genetic markers are usually typed locus by
locus and oftentimes moderate to high LD exists between
the observed markers. The available genetic data are in the
form of unphased genotypes and hence the haplotype-
based approach requires haplotype-phase estimation; (2)
Some of the environmental factors that are likely to
interact with the genetic traits cannot be measured directly,
and instead only surrogates are available; i.e. measure-
ment error exists in the environmental factors. To be
concrete, let us describe the association study of colorectal
adenoma that motivated development of our models. The
Colorectal Adenoma Study was designed to investigate
the interaction between the dietary calcium intake and
genetic variants in the calcium-sensing receptor (CaSR)
region [Peters et al., 2004]. In this study, the dietary
calcium intake is not measured directly. Instead, it is
estimated from a baseline FFQ. In addition, genotype
information is available on three non-synonymous SNPs in
the CaSR region. To detect the interaction of dietary
calcium intake and the CaSR genes, two challenges exist:
(1) to utilize the FFQ to measure dietary calcium intake is
prone to both bias and random error, what needs to be
corrected by building appropriate models and (2) to
effectively analyze the observed genotype data taking
into account LD information between the genetic markers.

The genotype-based and haplotype-based models are
the two major approaches widely used in association
studies in the presence of LD. The haplotype-based
method offers an advantage of modeling LD through the
construction of haplotype blocks at the price of computa-
tional expense. Lobach et al. [2008] proposed a pseudo-
likelihood method in the case when the environmental
factors are prone to error. The haplotype-based approach
can be computationally intensive in the case when the
number of genetic markers is large and the LD is
moderate. Hence, in these cases, the uncertainty associated
with the haplotype-based methods can lead to loss of
accuracy in risk coefficients estimation [Lin et al., 2002;
Marchini et al., 2006; Qin et al., 2002; Stephens et al., 2001;
Stephans and Donnelly, 2003].

We propose to develop a genotype-based approach for
analysis of case-control studies of gene-environment
interactions. A special feature of the proposed method is
that the observed genetic information enters the model
directly and the LD structure is captured in the regression
coefficients. As the basis for estimation and inference, we
will use the pseudo-likelihood function developed by
Lobach et al. [2008]. The form of this pseudo-likelihood

function offers several advantages. One is that it allows to
incorporate information about the probability of disease.
In epidemiologic studies, a good bound on the probability
of disease in a population is generally available. Further,
the formulation of the pseudo-likelihood function does not
require specification of the distribution of environmental
variables measured exactly. These variables include age,
ethnicity, BMI and other demographic and clinical mea-
surements. Thus gains in efficiency can be achieved by not
having to model a distribution of a multivariate vector
of these measurements. The pseudo-likelihood function
exploits the gene-environment independence assumption.
If the gene-environment independence is not valid in a
setting, then a distribution of genotype can be specified
within strata defined by the environmental covariate. We
propose a risk model that be incorporated in this pseudo-
likelihood function that captures the LD structure in the
regression coefficients. Hence, the haplotype phase needs
not to be estimated, thus reducing computational burden
and consequently reducing risk caused by potential bias
dueto haplotype-phase estimation.

The organization of the paper is as follows. First, we
describe the problem, our methodology and related
theoretical results. We then present the results of simula-
tion studies, and we analyze the example discussed above.
In Discussion Section, we give concluding remarks. All
technical derivations are given in the Appendix A and in
the Web Appendix.

METHODOLOGY AND MAIN
THEORETICAL RESULTS

MODEL AND NOTATION

Let D be the categorical indicator of disease status. We
allow D to have K11 levels with the possibility of KZ1 to
accommodate different subtypes and stages of a disease.
Let D 5 0 denote the disease-free (control) subjects and
D 5 k, kZ1 denote the diseased (case) subjects of the kth
subtype. Suppose the genetic region of interest is spanned
by I loci. Let (X,Z) denote all of the environmental (non-
genetic) covariates of interest, where X are the factors
susceptible to measurement error and Z are additional
environmental factors measured without error. Given the
environmental covariates X and Z and genotype data
G 5 (G1,G2,y,GI), the risk of the disease in the underlying
population is given by the polytomous logistic regression
model

prðD ¼ k � 1jG;X;ZÞ ¼
expfbk0 þmkðG;X;Z; bÞg

1þ
PK

j¼1 expfbj0 þmjðG;X;Z; bÞg
:

ð1Þ

Here, mk( � ) is a known function parameterizing the joint
risk of the disease from G, X, and Z in terms of the odds-
ratio parameters b. Assume that all markers are di-allelic,
e.g. SNPs. Under the Hardy-Weinberg equilibrium (HWE)
assumption, the distribution of the marker genotype can
be specified in a parametric form pr(G) 5 pr(G; Y), where
Y ¼ ðPMi

; i ¼ 1; 2; . . . ; IÞ are the allele frequencies. The
formulation of our model is general enough to account
for deviations from the HWE. For the ith marker, denote
the two alleles by Mi and mi, with frequencies PMi

and Pmi
.
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Define the following dummy variables

Ai ¼

1 if Gi ¼MiMi

0 if Gi ¼Mimi

�1 if Gi ¼ mimi

8<
: ; Bi ¼

�P2
mi

if Gi ¼MiMi

PMi
Pmi

if Gi ¼Mimi

�P2
Mi

if Gi ¼ mimi

8<
: :

ð2Þ

Notice that Ai11 is the number of allele Mi at the ith
marker, and hence Ai can be used to model the allele or
additive effect of Mi. In the following, we provide two
examples of function mk( � ) using the genotype informa-
tion G 5 (G1,G2,. . .,GI). Denote A ¼ ðA1; . . . ;AIÞ and
B ¼ ðB1; . . . ;BIÞ.

Genotype effect model (GEM). The following
specification of the risk function incorporates both
additive and dominance effects of genotype, as well as
the multiplicative gene-environment.

mkðG;X;Z; bÞ ¼ mkðA;B;X;Z; bÞ

¼ XbkX þ ZbkZ þ
XI

i¼1

AibkAi þ
XI

i¼1

XAibkAXi

þ
XI

i¼1

ZAibkAZi þ
XI

i¼1

BibkDi þ
XI

i¼1

XBibkDXi

þ
XI

i¼1

ZBibkDZi: ð3Þ

In this formulation, the regression coefficients bkAi
and

bkDi
model risk due to the additive and dominance

effect, respectively [Fan et al., 2006; Fan and Xiong,
2002]. The remaining terms capture the multiplicative
gene-environmental interaction.

Additive effect model (AEM). Suppose that the
dominance effect is not significantly present in the model (3).
In this situation, the risk function takes the following form.

mkðG;X;Z; bÞ ¼ mkðA;X;Z; bÞ ¼ XbkX þ ZbkZ þ
XI

i¼1

AibkAi

þ
XI

i¼1

XAibkAXi þ
XI

i¼1

ZAibkAZi: ð4Þ

The difference between ‘‘genotype effect model’’ (3) and
‘‘additive effect model’’ (4) is that dominance effect and
related gene-environmental interactions are not modeled
in (4). The number of parameters in function (3) can be
significantly larger than that of function (4). In practice,
additive effect model (4) can be advantageous over the
genotype effect model (3) because of the smaller number
of parameters in (4). This situation may occur when the
dominance effect is not significantly present or the
dominance effect cannot compensate for the increase in
the number of parameters in (3).

The model (1) cannot be used directly for analysis since
the covariate X is measured with error. Let W denote the
error-prone version of X. We assume a parametric model
of the form fmem(w|D, G, X, Z; x) for the conditional
distribution of W given disease-status D, marker genotype
G, the true exposure X, and additional environmental
factors Z. Measurement error can be modeled both as
differential and non-differential. If measurement error can
be assumed to be non-differential by disease status, then
one can simplify the model as fmem(w|D, G, X, Z;x) 5
fmem(w|G, X, Z; x), what does not depend on D. We

assume that the joint distribution of the environmental
factors in the underlying population can be specified according
to a semi-parametric model of the form fX,Z(x, z) 5
fX(x|z;Z)fZ(z), where fZ(z) is left completely unspecified.

Theoretical justification provided in the Appendix
proves that the risk functions (3) and (4) are valid for
analysis of case-control association studies in the case
when genetic markers are in the LD. Briefly, we illustrated
that (1) the LD is being modeled in the regression
coefficients, and (2) if there is no association between
observed genotype and trait locus, then all regression
coefficients of Ai and Bi are zeros and so the regression
does not depend on the markers.

SEMI-PARAMETRIC INFERENCE BASED ON A
PSEUDO-LIKELIHOOD

Let n0 be the number of control subjects; and for kZ1,
denote by nk the number of subjects in the sample with
disease at a stage k. Let n 5 n01n11� � �1nK be the total
number of subjects in the sample. In addition, let us denote
pk 5 pr(D 5 k), k 5 0,1, 2,y,K. Consider a sampling scenar-
io where each subject from the underlying population is
selected into the case-control study using a Bernoulli
sampling scheme, where the selection probability for a
subject given his/her disease status D 5 k is proportional
to mk 5 nk/pk. In addition, assume that the sampling only
depends on the disease status, and so the selection of a
subject is independent of the subject’s marker information
and environmental covariates.

Let R 5 1 denote the indicator of whether a subject is
selected in the sample. For the ith subject, let us denote by
(Di, Gi, Xi, Wi, Zi, Ri) the observed values of variables D,
G, X, W, Z and R. Let us denote kk ¼ bk01log(nk/n0)�

log(pk/p0) and ~k ¼ ðk1; . . . ; kKÞ
T. In addition, let ~b0 ¼

ðb10; . . . ; bK0Þ
T, O ¼ ð ~b

T

0 ; b
T;YT; ~kTÞ

T, B ¼ ðOT;ZTÞ
T and

v 5 (ZT, xT)T. Define

Sðk; g; x; z;OÞ ¼
exp½1ðk�1ÞðkÞfkk þmkðg; x; z; bÞg�

1þ
PK

j¼1 expfbj0 þmjðg; x; z; bÞg
prðg;YÞ:

We assume that G and (X, Z) are independently distributed
in the underlying population. Only changes in notation are
needed to model genotype and environment within strata
thus relaxing gene-environment independence assumption.
We suppose that the type of genetic covariate measured
does not depend on the individual’s true genetic covariate,
given disease status, environmental covariates, and the
measured genetic information. Further, we suppose that the
observed genetic variable does not contain any additional
information on disease status and true environmental
covariate given the genetic variable of interest.

Similarly to Lobach et al. [2008], we propose to use
the following pseudo-likelihood function in place of the
likelihood function to estimate the parameters. In the Web
Appendix A.1, the pseudo-probability is calculated as

LPseudoðk;g;w;z;O;Z;xÞ

�prðD¼ k;G¼g;W¼wjZ¼ z;R¼1Þ

¼

R
Sðk;g;x;z;OÞfmemðwjk;g;x;z;xÞfXðxjz;ZÞdxPK

k1¼0

P
g2G
R

Sðk1;g;x;z;OÞfXðxjz;ZÞdx
; ð5Þ

where G is the set of all possible genotypes in the population.
Lobach et al. [2008] proved that the maximization of
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LPseudo, although not the actual retrospective-likelihood for
case-control data, leads to consistent and asymptotically
normal parameter estimates. Observe that conditioning
on Z in LPseudo allows it to be free of the nonparametric
density function fZ(z), thus avoiding the difficulty
of estimating potentially high-dimensional nuisance
parameters.

ASYMPTOTIC THEORY IN CASE WHEN GENETIC
MARKERS ARE INDEPENDENT

In this section, we will provide asymptotic results along
the lines of Lobach et al. [2008]. These results are readily
applicable to the proposed model in the case when no LD
is present between the genetic markers.

Estimation With Known Measurement Error
Distribution. Assume that the parameter x controlling
the distribution of the measurement error is known. We
show that maximization of LPseudo leads to consistent and
asymptotically normal parameter estimates. Let C(k, g, w,
z; O, Z, x) be the derivative of logfLPseudo(k, g, w, z; O, Z, x)g
with respect to B. Then define

LnðO;Z; xÞ ¼
Xn

i¼1

CðDi;Gi;Wi;Zi;O;Z; xÞ;

I ¼ �n�1E½qfLnðO;Z; xÞg=qBT
�;

L ¼
X

k

nk

n
EfCðD;G;W ;Z;O;Z; xÞjD ¼ kg

� EfCðD;G;W ;Z;O;Z; xÞjD ¼ kgT

where all expectations are taken with respect to the case-

control sampling design. The estimation B̂ ¼ ðÔT
; ẐT
Þ
T of B

are the solution to

0 ¼ LnðO;Z; xÞ ¼ LnðB; xÞ: ð6Þ

In the Web Appendix A.2, we show the following
limiting properties of B̂.

Theorem 1. The estimating function LnðO;Z; xÞ is
unbiased, i.e. has mean zero when evaluated at the true
parameter values. In addition, under suitable regulatory
conditions, there is a consistent sequence of solutions
to (6), with the property that

n1=2ðB̂ � BÞ ) Normalf0; I�1ðI � LÞI�1g:

Remark 1. An EM algorithm for the estimating the
parameters, based along the lines of Lobach et al.
[2008] and Spinka et al. [2005], is given in the Web
Appendix A.3.

Estimated Measurement Error Distribution. In
practice, the parameter x controlling the measurement
error distribution will be unknown, and typically addi-
tional data are necessary to estimate it. Here, we consider
the case of additive mean-zero measurement error with
replications of W. Our convention is that there are at most
J replications of the W for any individual. Let Wi denote
this ensemble of the J replicates, and let ti be the number of

replicates we actually observe. Let fmem(w|k, g, x, z, j; x) be
the joint density of the first j replicates for j 5 1,y,J;
C(D, G, W, Z; O, Z, x, j), I j, and Lj be the matrices defined
above for the case with exactly j replicates for each
individual. Assume that ji is independent of (Di, Gi, Xi,
Wi, Zi) and that probability to observe j replicates is p(j).
Further, define I ¼

PJ
j¼1 pðjÞI j. The estimating function

for B ¼ ðOT;ZT; xÞT can be written [Lobach et al., 2008] in
the form

0 ¼
Xn

i¼1

XJ

j¼1

1ðti¼jÞðtiÞCðDi;Gi;Wi;Zi;O;Z; x; jÞ: ð7Þ

The parameter estimates have the following asymptotic
properties (Web Appendix A.4).

Theorem 2. The estimating function (7) is unbiased, i.e.,
has mean zero when evaluated at the true parameter
values. In addition, under suitable regulatory conditions,
there is a consistent sequence of solutions to (7), with the
property that

n1=2ðB̂ � BÞ ) Normal 0; I�1 I �
XJ

j¼1

pðjÞLj

8<
:

9=
;I�1

2
4

3
5: ð8Þ

ASYMPTOTICS IN CASE WHEN GENETIC
MARKERS ARE IN LINKAGE DISEQUILIBRIUM

Recall that in the case when genetic markers modeled in
the risk function are in the LD, the regression coefficients
capture both the association signal and the LD informa-
tion. In practice, if the LD is present in the genetic material,
we suggest to construct and investigate the model based
on genetic markers that are known to be associated
with disease. The association information can be obtained
either based on a priori knowledge (e.g. previously
reported studies, biological interpretation), or can be
inferred using the observed data (e.g. model selection
procedure).

The distribution of the genotype in the population for a
pair of markers that are in LD can be written as follows:

prðGjy;DÞ

¼

PðM1ÞPðM2Þ þ DM1M2; G ¼ ðM1M2Þ

f1� PðM1ÞgPðM2Þ � DM1M2; G ¼ ðm1M2Þ

PðM1Þf1� PðM2Þg � DM1M2; G ¼ ðM1m2Þ

f1� PðM1Þgf1� PðM2Þg þ DM1M2; G ¼ ðm1m2Þ:

8>>><
>>>:

Define

Sðk; g; x; z;O;DÞ

¼
exp½1ðk�1ÞðkÞfkk þmkðg; x; z; bÞg�

1þ
PK

j¼1 expfbj0 þmjðg; x; z; bÞg
prðg;Y;DÞ:

ð9Þ

We propose to estimate parameters (O, Z, x, D) based on
the pseudo-likelihood function that is of the same form as
(5), but is based on the S(k, g, x, z; O, D) function in the
form (9), specifically,

LPseudoðk; g;w; z;O; Z; x;DÞ � prðD ¼ k;G ¼ g;W ¼ wjZ ¼ z;R ¼ 1Þ

¼

R
Sðk; g; x; z;O;DÞfmemðwjk; g; x; z; xÞfXðxjz;ZÞdxPK

k1¼0

P
g2G
R

Sðk1; g; x; z;O;DÞfXðxjz;ZÞdx
:

ð10Þ
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Justification of the risk model and regression coefficients
presented in the first section of the Appendix A suggests that
the LD information between the observed genetic markers
and the trait locus is captured in the regression coefficients.

SIMULATION EXPERIMENTS

We performed a series of simulation experiments to
investigate the performance of the proposed procedure in
various settings. We consider a case when the disease
status D is binary (i.e. K 5 1). Note that

prðD ¼ 1Þ¼

Z X
g2G

prðD ¼ 1jg; xÞprðg;YÞfXðxjZÞdx

¼

Z X
g2G

expfb0þm1ðg; x; bÞg
1þexpfb0þm1ðg; x; bÞg

prðg;YÞfXðxjZÞdx:

ð11Þ

Thus, the parameters (b0 5 b10, b, Y, Z) are sufficient to
identify pr(D 5 1), i.e., k5k1 is identified from (b0, b, Y, Z).
This means that simply using (5) as a likelihood function
directly will be unstable because of over-parametrization.
To overcome this, we may re-parametrize in terms of
pr(D 5 1) through (11). In addition, let k be a function of
pr(D 5 1). This obvious solution can solve the over-
parametrization problem.

The genotype G was simulated under HWE for I 5 1, 2, 3.
Given the values of (G, X), we generated a binary disease
outcome D using two logistic models, corresponding to the
GEM and AEM. For the GEM, covariates are related to a
disease via link function

logitfprðD ¼ 1jA;B;XÞg ¼ b0 þ XbX þ
XI

i¼1

AibAi

þ
XI

i¼1

XAibAXi þ
XI

i¼1

BibDi

þ
XI

i¼1

XBibDXi; I ¼ 1; 2; 3;

and the corresponding AEM was obtained by setting
coefficients bDi and bDXi to be 0. Here we omit the
subscription k in the regression parameters bs since we
have one level disease cases and normal controls.

We considered three settings of the disease risk function.
In the first setting, only one marker is involved in a disease.
This marker has weak additive and dominance effects
(bA1 5 log(1.5) and bD1 5 log(1.3)), while the interaction
effect with the environment is strong for both additive and
dominance components (bXA1 5 log(2.5) and bXD1 5 log(3)).
In the second setting, in addition to the marker described
above, we added one with stronger additive component
(bA2 5 log(2.2)) and almost no dominance bD2 5 log(1.1).
Interaction effects of both additive and dominance compo-
nents are strong (bAX2 5 log(2.2) and bDX2 5 log(2.5)).
Finally, in the third setting, we added one additional
marker with strong additive and dominance components in
addition to the strong interaction effects bA3 5 log(2),
bAX3 5 log(3), bD3 5 log(2), bDX3 5 log(3).

THE DISCRETE CASE

Consider the case when disease status and environmental
variables (X, W) are binary. Let pr(X 5 1) 5 0.5. We simulated

the observed environmental variable W using the following
misclassification probabilities. pr(W 5 0|X 5 1) 5 0.25 for
the exposed participants and pr(W 5 1|X 5 0) 5 0.20 for
the non-exposed. We performed a simulation sub-study
when probability of disease is not known and it is estimated
via grid-search method. The values of pd are set to be on
interval (0.001, 0.04) with step 0.005 and the resulting
estimate is a value that maximizes the pseudo-likelihood
function. Parameter b0 is estimated by solving equation (11).
To estimate the parameters, 500 samples are simulated and
each sample contains 1,000 cases and 1,000 controls. To
illustrate performance and advantages of the proposed
method, we presented biases and Root Mean-Squared Errors
(RMSE).

Shown in the Table I are simulation results for the case
when three independent genetic markers are observed.
The results illustrate that the proposed methodology
produced parameter estimates that are nearly unbiased
and have small variability. The naive approach that
ignores existence of the measurement error and pretends
that the environment is observed exactly results in biased
estimates with variability that is larger than that of the
proposed approach. These simulation results illustrate that
the RMSE of coefficients bDi and bDXi are generally larger
than those of bAi and bAXi, thus suggesting that the
dominance effect should only be used in the situations
when the data present strong evidence for the dominance
effect. In Web Tables I and II, we present the results for
two-marker case, additive and genotype effect models,
respectively. Findings shown in the Web Tables I and II are
similar to those of the Table I.

The setup described above simulates markers that are in
linkage equilibrium. To evaluate performance of the
proposed method in the case when genetic markers are
in the LD, we considered the following simulation setup.
We simulated the observed genotype according to the
following frequencies:

G ¼

M1M2; PðM1ÞPðM2Þ þ DM1M2

m1M2; f1� PðM1ÞgPðM2Þ � DM1M2

M1m2; PðM1Þf1� PðM2Þg � DM1M2

m1m2; f1� PðM1Þgf1� PðM2Þg þ DM1M2:

8>><
>>:

We further compared performance of the proposed
approach and the one that ignores existence of the LD.
We found that when the LD is small (e.g. 0.005), the
parameter estimates based on the model (5) are nearly
unbiased and have small variability (Web Table III),
because the coefficients capture enough of the LD
information. To test the performance of the proposed
models in the case when moderate amount of LD is
present (D5 0.01, 0.02, 0.05) and compare it to the
procedure that ignores existence of the LD, we performed
the following simulation experiment. We simulated the
observed data using a simulation setup described above
with two markers that are in LD using AEM. Results
presented in the Table II illustrate that the naive approach
resulted in parameter estimates that are biased and are
highly variable, while the proposed method eliminated
bias and substantially reduced the variability of the
estimates.

CONTINUOUS SIMULATIONS

In this simulation experiment, we considered a contin-
uous environmental variables. We simulated the true
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environmental covariate X from a Normal distribution
with zero mean and variance 0.1. To simulate observed
environmental variables, we used additive model of the
form W 5 X1U, where U is generated from the normal
distribution with zero mean and variance x5 0.25. Note
that we are simulating a case of large measurement error,

to mimic a situation that occurs in practice while
measuring diet. To estimate the probability of disease,
we used grid-search method on the interval (0.001, 0.051)
with step 0.005 by maximizing the pseudo-likelihood
function for values of probability of disease fixed on a
grid and then performing a grid-search to identify the
value of probability of disease that maximized the
likelihood.

Within this simulation setup, we suppose that the
measurement error distribution is known. Table III pre-
sents the results of three-marker case under the additive
effect model. We found that for our method there is no
noticeable bias in parameter estimates, whereas the naive
approach that ignores existence of the measurement error
results in substantial bias (Table III). The RMSEs of
coefficients bAi in Table III are reasonable. However, the
RMSEs of bAXi in Table III are generally larger because they
are based on the continuous covariate with noise that is 2.5
times more variable than the signal. We are giving a very
stringent test to our method in the case when the
environmental covariate is continuous because in practice
the measurement error is massive. In the Web Tables IV
and V, we present the results of one marker case for
additive effect model and genotype model, respectively; in
Web Table VI, we report the results of two-marker case for
the additive effect model. The three Web Tables provide
similar results as those of Table III.

To investigate accuracy of the proposed variance
estimator, we performed an experiment and reported
results in Table IV. The results suggest that the mean
estimated standard error is nearly unbiased. However, the
variability of the parameter estimates is elevated. This
phenomena is well known in the measurement error

TABLE II. Biases and RMSEs of risk parameters for the
naive approach that ignores existence of the LD and the
proposed method

Naive approach Proposed method

Parameter True value Bias RMSE Bias RMSE

k �5.000 �0.060 0.024 �0.024 0.017
bX 1.099 0.063 0.045 0.005 0.038
bA1 0.693 �0.043 0.019 �0.007 0.013
bA2 0.000 �0.046 0.022 0.002 0.014
bAX1 0.693 0.169 0.064 0.005 0.028
bAX2 0.693 0.113 0.049 0.005 0.026
PMi

0.250 o0.001 o0.001 o0.001 0.001
pr(X 5 1) 0.500 0.002 0.001 o0.001 0.001

The results are based on 500 samples of 1,000 cases and 1,000
controls. Genotype is simulated at the two marker loci with
PMi
¼ 0:25, i 5 1,2. The environmental covariate (X) is binary and

measured with error with misclassification probabilities with
misclassification probabilities being 0.20 for exposed and 0.25 for
non-exposed subjects. Probability of disease is 0.0069 and is
assumed to be known in the population. The data are simulated
and analyzed under the additive effect model and the LD measure
Dm1m2

¼ 0:02. RMSE, root mean-squared error.

TABLE I. Biases and RMSEs of risk parameters for the naive approach that ignores existence of measurement error and
the proposed method in the case when pr(D 5 1) is known and when it is estimated

Naive analysis Proposed approach

pr(D 5 1) is known pr(D 5 1) is known pr(D 5 1) is unknown

Parameter True value Bias RMSE Bias RMSE Bias RMSE

k 0.484 0.481 0.231 �0.048 0.019 �0.054 0.020
bX 0.693 �0.351 0.132 �0.005 0.036 0.014 0.039
bA1 0.406 0.257 0.073 �0.006 0.016 �0.011 0.016
bA2 0.789 0.194 0.046 0.002 0.015 �0.003 0.015
bA3 0.693 0.283 0.089 �0.0002 0.015 �0.005 0.016
bAX1 0.916 �0.425 0.193 0.012 0.040 0.039 0.046
bAX2 0.693 �0.317 0.113 0.009 0.037 0.038 0.041
bAX3 1.099 �0.515 0.282 0.011 0.053 0.039 0.058
bD1 0.262 0.299 0.133 0.024 0.149 0.026 0.152
bD2 0.095 0.258 0.105 �0.0003 0.097 0.005 0.099
bD3 0.693 0.231 0.092 0.012 0.124 0.018 0.128
bDX1 1.099 �0.495 0.326 �0.002 0.287 0.018 0.301
bDX2 0.916 �0.413 0.235 0.019 0.197 0.006 0.208
bDX3 1.099 �0.486 0.313 0.016 0.275 0.023 0.286
PMi

0.250 o0.001 o0.001 o0.001 o0.001 �0.001 o0.001
pr(X 5 1) 0.500 0.003 0.001 0.003 0.001
pr(D 5 1) 0.005 0.003 o0.001

The results are based on 500 samples of 1,000 cases and 1,000 controls. Genotype is simulated at the three marker loci with PMi
¼ 0:25, i 5 1,

2, 3. The environmental covariate (X) is binary and measured with error with misclassification probabilities being 0.20 for exposed and 0.25
for non-exposed subjects. The data are simulated and analyzed under the genotype effect model. RMSE, root mean-squared error.
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literature and noted in our previous work [Lobach et al.,
2008]. When the measurement noise is large, which is the
case in our situation, the sampling distribution of the
parameter estimates can be skewed. Hence, we reported
5%-timmed standard errors of the parameter estimates
that are close to the true and mean estimated standard
errors.

COLORECTAL ADENOMA STUDY
DATA ANALYSIS

SINGLE MARKER ANALYSIS

Model. To illustrate the application of the proposed
method we analyzed the colorectal adenoma study
described in the introduction. To recap, there were 772
cases and 778 controls, the response D was colorectal

adenoma status, the genetic data observed were three
SNPs in the calcium receptor gene CaSR, the environ-
mental variable X measured with error was log(11calcium
intake), which was measured by W, the result of a FFQ.
The variables Z measured without error were age, sex, and
race, which are not significant and are not included in the
final model. The two alleles at the first SNP are A and G,
the two alleles at the second SNP are C and G, and the two
alleles at the third SNP are G and T. Let us denote M1 5 A,
m1 5 G, M2 5 C, m2 5 G, M3 5 G and m3 5 T; and then
define dummy variables Ai accordingly by (2). Based on
the observed genetic data only, we estimated the LD
measures as follows: DM1M3

¼ 0:011 for the first and third
markers; DM2M3

¼ 0:012 for second and third markers; and
DM1M2

is approximately zero. Given calcium intake X and
genotype information G 5 (G1, G2, G3), we considered
several risk model based on the following strategy. We first
analyzed the three observed markers using the risk models
based on one marker at a time in the following form

logitfPðD ¼ 1jG;XÞg ¼ b0 þ XbX þ AibAi þ XAibAXi;

i ¼ 1; 2; 3;

and the model is denoted as AEM1, AEM2, and AEM3,
respectively.

Measurement Error Modeling. Unfortunately, there
is no direct information in the study to assess the measure-
ment error properties of calcium intake W. We used a
combination of outside data and sensitivity analysis instead.
The outside data came from the WISH Study [Potischman
et al., 2002]. There were E400 women in this study, which
used the same FFQ as in the colorectal adenoma study and
also included the results of six 24-hr recall measurements,
which we denoted by Tij for the ith individual and jth
replicate. The model for these data were that

Wi ¼ a0 þ aiXi þUi;

Tij ¼ Xi þ Vij;

where Ui ¼ Normalð0;s2
uÞ and Vij ¼ Normalð0;s2

vÞ. Using
variance components analysis, we estimated ða0; a1;s2

uÞ,
and took these as fixed and known in the colorectal
adenoma study, although we also varied s2

u. The distribu-
tion of X was taken to be Gaussian with mean linear in
Z and variance x. We used the method of Fuller 1987,
Chapter 2, 5 and found estimates â0 ¼ 0:22, â1 ¼ 0:75,
ŝ2

u ¼ x̂ ¼ 0:65. To assess sensitivity to the measurement
error model specification, we considered several scenarios
by imposing measurement error structure estimated using
WISH data and varying it through s2

u.
Results. After fitting the three models, AEM1, AEM2,

and AEM3, we found significant results for AEM1 and
AEM2 based on analysis of parameter estimates and 95%
Wald confidence intervals (Table V). For the AEM1, each
of the three regression coefficients bA1, bX, and bAX1
was significantly different from 0; and so was each of the
three regression coefficients bA2, bX and bAX2 for AEM2
(Table V). Since the estimate �0.478 of parameter bAX1 was
negative in AEM1 and so the estimate �0.771 of bAX2 in
AEM2, the results suggested protective effect of an
interaction between the calcium intake and additive effect
of allele M1 5 A of the first marker and allele M2 5 C of the
second marker.

For AEM3, none of the three regression coefficients bA3,
bX and bAX3 was significant (data not shown). In addition,

TABLE IV. Standard errors (SE) of risk parameters for
the proposed approach

Parameter
True
value

SE of parameter
estimates

Mean
estimated SE True SE

bX 1.099 0.308� 0.284 0.293
bA1 0.693 0.073 0.092 0.092
bAX1 0.693 0.266� 0.255 0.252
bA2 0.000 0.076 0.081 0.082
bAX2 0.693 0.308� 0.278 0.278

Genotype is simulated at the two marker loci with PMi
¼ 0:25,

i 5 1,2. The environmental covariate (X) is Normal (0, 0.1). The
measurement error is additive with variance of noise that is 0.25.
The data are simulated and analyzed under the additive effect
model. 5%-trimmed values are marked by �. The results are based
on 500 samples of 1,000 cases and 1,000 controls.

TABLE III. Biases and RMSEs of risk parameters for the
naive approach that ignores existence of measurement
error and the proposed method

Naive approach Proposed method

Parameter True value Bias RMSE Bias RMSE

k �5.000 0.001 0.050 �0.069 0.090
bX 1.099 �0.775 0.780 0.018 0.319
bA1 0.693 0.019 0.056 �0.003 0.057
bA2 0.000 0.029 0.064 o0.001 0.061
bA3 0.693 0.038 0.067 �0.001 0.060
bAX1 0.693 �0.483 0.489 0.010 0.251
bAX2 0.693 �0.485 0.493 0.005 0.277
bAX3 1.099 �0.775 0.778 0.001 0.247
PMi

0.250 o0.001 0.005 o0.001 0.005
mx 0.000 0.002 0.090
s2

X 0.100 o0.001 0.011

The results are based on 500 samples of 1,000 cases and 1,000
controls. Genotype is simulated at the three marker loci with
PMi
¼ 0:25, i 5 1, 2, 3. The environmental covariate (X) is

Normalðmx;s
2
xÞ. The measurement error is additive with variance

of noise that is 0.25. The data are simulated and analyzed under
the additive effect model. RMSE, root mean-squared error.
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we added dominance effect and the related gene-environ-
mental interaction terms to the AEM1, AEM2, and AEM3
to fit the data. No significant result was found for the
dominance effect and the related gene-environmental
interactions (data not shown). Thus, the additive effect
models (AEM1 and AEM2) are enough to fit the data.

MULTIPLE MARKER ANALYSIS

Motivated by the results of single marker analysis, we
considered the following risk model that models the effect
of a pair of markers 1 and 2

logitfPðD ¼ 1jG;XÞg ¼ b0 þ XbX þ A1bA1 þ A2bA2

þ XA1bAX1 þ XA2bAX2;

which we denoted as AEM12. The results are presented in
the Table V. All regression coefficients except bA1 in
AEM12 were significantly different from 0. The results of
Table V confirmed the protective effects of the allele
M1 5 A at the first marker and the allele M2 5 C at the
second marker.

In addition to AEM12 using markers 1 and 2 in analysis,
we fitted two more models: (1) AEM13: markers 1 and 3;
and (2) AEM23: markers 2 and 3, respectively. The results,
however, suggested that the third marker does not provide
significant effect on the models AEM13 and AEM23 (data
not shown). Hence, markers 1 and 2 are enough to model
the association with the disease trait, and marker 3
contributed no significant information in addition to
marker 1 or 2.

COMPARISON WITH THE RESULTS OF HAP-
LOTYPE-BASED APPROACHES

In Lobach et al. [2008], two haplotypes h4 and h5 have
protective effects against colorectal tumor development
and a haplotype h2 has no significant effect. h4 is haplotype
GCG, h5 is a combination of a common haplotype AGG
plus three rare haplotypes AGT, GGG, and GCT. Compared
with our results that the allele M1 5 A at the first marker
and the allele M2 5 C at the second marker have protective
effects, the protective effect of h4 5 GCG may be due to the
allele M2 5 C at the second marker and the protective
effect of h5 may be due to the allele M1 5 A at the first
marker. The alleles at the third marker make no significant
contribution to the colorectal tumor development.

DISCUSSION

In this article, we proposed a genotype-based approach
for the analysis of case-control studies of gene-environment
interactions in the presence of measurement error in the
environmental factors. Two types of risk functions are
proposed along the lines of the previous work of the
second author: genotype and additive effect models [Fan
et al., 2006; Fan and Xiong, 2002]. The genotype effect
models capture both the additive and dominance effects,
while the additive effect model takes into account the
additive effect of genetic markers. The proposed method
has several unique aspects. First, the observed genetic
information enters the model directly and the pairwise LD
structure is captured in the regression coefficients. Com-
pared with the haplotype-based approaches, the proposed
models are simpler and the theoretical justification/
inference/asymptotics can be simpler too. Subsequently,
in practice, the computational burden is less demanding
since there is no need to estimate the haplotype phase.
Moreover, there is no risk of potential bias due to haplotype
phase estimations. The second unique aspect of the
proposed method efficiently models the environmental
covariates are measured with substantial error. So far, there
is no genotype-based methods in literature to deal with the
issue and the proposed method can fill the gaps. Similary
to the method investigated in Lobach et al. [2008], the
estimating procedure is based on a pseudo-likelihood
model that allows to efficiently estimate parameters, model
environmental covariates completely non-parametrically,
and incorporate information about the probability of
disease. In epidemiologic studies, the vector of environ-
mental covariates measured exactly is oftentimes high
dimensional and a good estimate about probability of
disease in a population is known. Thus, the use of the
proposed pseudo-likelihood function offers advantages.

Simulation experiments illustrated that the proposed
methods can lead to nearly unbiased parameter estimates
and the variability is generally low for the additive effect
terms. In the genotype effect models, the variability of the
dominance effect terms can be slightly elevated. Hence, in the
case when dominance effect is moderate or is not significant,
the additive effect models are superior to the genotype effect
models as we noted in our previous work [Fan et al., 2006; Fan
and Xiong, 2002]. In comparison, the naive estimation that
ignores existence of measurement error and/or LD results in
parameter estimates that are largely biased and variable.

The proposed methods will prove useful when the
amount of LD is small or moderate. In this case,
the number of possible haplotypes that are consistent
with the observed genotype is large and hence the
estimating procedure can be computationally intensive.
Simulation experiments illustrated that the proposed
method resulted in parameter estimates that are nearly
unbiased and have small variability in the cases: (1) the LD
is small and the LD is only modeled in the regression
coefficients; (2) the LD is moderate and the proposed
method estimates that LD and risk parameters simulta-
neously. When the number of markers is much larger than
two and the strong LD is present, haplotype-based
approaches developed in Lobach et al. [2008] can be more
useful. In particular, if a disease is mainly due to one or
two haplotypes and the haplotype consists of multiple
alleles at different markers and none of the alleles has big

TABLE V. Estimates and 95% Wald confidence intervals
of parameters for the colorectal adenoma study

Model Parameter Estimate Confidence interval

AEM1 bA1 �0.310 (�0.524, �0.096)
bX �0.687 (�0.977, �0.400)
bAX1 �0.478 (�0.699, �0.256)

AEM2 bA2 �0.636 (�0.891, �0.381)
bX �0.986 (�1.321, �0.651)
bAX2 �0.771 (�1.015, �0.527)

AEM12 bA1 �0.273 (�0.581, 0.035)
bA2 �0.568 (�0.901, �0.235)
bX �1.253 (�1.522, �0.985)
bAX1 �0.430 (�0.757, �0.103)
bAX2 �0.664 (�0.983, �0.344)
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effect on the disease, the proposed genotype-based
approach can be less powerful while the haplotype-based
approach can be more powerful. On the other hand, the
proposed models can be powerful when some alleles have
strong effect on the disease.

As a result of application of the proposed method to the
analysis of colorectal adenoma study, we found that the
protective effects of the allele M1 5 A at the first marker
and the allele M2 5 C at the second marker. In Lobach et al.
[2008], two haplotypes h4 5 GCG and h5 (mainly AGG)
have protective effects against colorectal tumor develop-
ment. Compared with our results, the protective effect of
h4 may be due to the allele M2 5 C at the second marker
and the protective effect of h5 may be due to the allele
M1 5 A at the first marker. Therefore, the proposed
approach has the ability to identify important alleles and
markers, which have significant contribution to the color-
ectal tumor development.

The proposed risk model is readily expendable for the
analysis of gene-gene interactions in the case when the
genetic markers involved in an interaction are indepen-
dent. For the colorectal adenoma study data, we fit the
model by adding the product terms A1A2 of dummy
variables A1 and A2 but no significant gene-gene interac-
tion effect was found.
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APPENDIX A

JUSTIFICATION OF THE MODEL AND
REGRESSION COEFFICIENTS

To justify that the proposed risk functions (3) and (4) are
valid for analysis of case-control association studies in the
case when genetic markers are in the LD. Consider a
situation when genetic markers are in the HWE. Suppose
that only one trait locus Q affects the disease status,
and there are two alleles Q1 and Q2 at the trait locus.

Let qi be the frequency of allele Qi, i 5 1,2. Let mðkÞij ¼

logfPðD ¼ kjQiQj;X;ZÞ=PðD ¼ 0jQiQj;X;ZÞg be the log
ratio of the disease given genotype QiQj and environmental

covariates (X, Z), i,j 5 1,2. Denote ak ¼ mðkÞ11 � fm
ðkÞ
11 þ mðkÞ22 g=2

and dk ¼ mðkÞ12 � fm
ðkÞ
11 þ mðkÞ22 g=2. As traditional quantitative

genetics, the average effect of gene substitution is aQk 5 ak1
(q2�q1) dk, i.e. the difference between the average
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effects of the trait locus alleles, and dominance deviation is

dQk 5 2dk [Falconer and Mackay, 1996]. Let mðkÞ ¼ mðkÞ11 q2
1 þ

2mðkÞ12 q1q2 þ mðkÞ22 q2
2 be the population mean effect. It can be

shown that

mðkÞ11 1ðQ1Q1ÞðGQÞ þ mðkÞ12 1ðQ1Q2ÞðGQÞ þ mðkÞ22 1ðQ2Q2ÞðGQÞ

¼ mðkÞ þ AQaQk þ BQdQk; ðA:1Þ

where

AQ ¼

2q2 ifGQ ¼Q1Q1

q2� q1 ifGQ ¼Q1Q2

�2q1 ifGQ ¼Q2Q2

8>><
>>: ; BQ ¼

�q2
2 if GQ ¼Q1Q1

q1q2 if GQ ¼Q1Q2

�q2
2 if GQ ¼Q2Q2

8>><
>>: :

Hence, the genotypic value mðkÞij can be expressed by a linear

combination of mðkÞ, AQ, and BQ. Suppose that the marker
M1 coincides with the trait locus Q, and marker allele Mi is
the trait allele Q1 and marker allele mi is the trait allele Q2.
Then after a linear transformation, the relation (A.1) can be
re-expressed by a linear combination of mðkÞ, A1 5 AQ, and
B1 5 BQ (actually, it can be seen that AQ12q1 5 A111).

First, denote for k 5 1,y,K

ykðg; x; zÞ ¼ log
prðD ¼ kjG ¼ g;X ¼ x;Z ¼ zÞ

prðD ¼ 0ÞjG ¼ g;X ¼ x;Z ¼ z

� �

¼ log

P
l;j prðD ¼ k;QlQjjG ¼ g;X ¼ x;Z ¼ zÞP
l;j prðD ¼ 0;QlQjjG ¼ g;X ¼ x;Z ¼ zÞ

( )
:

ðA:2Þ

If no covariates are considered, it can be shown that the
LD information between trait locus Q and markers Mi is
contained in the probabilities pr(D 5 k, QlQj, G 5 g). To see
this, let hdip 5 (h1, h2) denote a phased haplotype of an
individual at the markers. Notice

prðD ¼ k;QlQj;GÞ ¼ prðD ¼ kjQlQj;GÞ � prðQlQj;GÞ

¼ prðD ¼ kjQlQjÞ � prðQlQj;GÞ;

and the probability prðQlQj;GÞ ¼
P

hdip2G prðQlQj; hdipÞ

contains the LD information between trait locus Q and
markers Mi. Here, the subscript hdipAG denote all
haplotype phases, which are consistent with the genotype
G. If the covariates are considered, then

prðD ¼ k;QlQj;G;X;ZÞ

¼ prðD ¼ kjQlQj;G;X;ZÞ � prðQlQj;G;X;ZÞ

¼ prðD ¼ kjQlQj;X;ZÞ � prðQl;Qj;G;X;ZÞ;

and the probability prðQlQj;G;X;ZÞ ¼
P

hdip2G prðQlQj;
hdip;X;ZÞ contains the LD information between trait locus
Q and markers Mi. Thus, Yk(G, X, Z) is a function of the LD

information between trait locus Q and markers Mi, and it
contains association information between the trait locus
and the markers.

Denote the pairwise measure of LD between marker Mi

and marker Mj by DMiMj
¼ PðMiMjÞ � PMi

PMj
; ioj; i; j ¼

1; . . . ; I Let the additive and dominance variance-covar-
iance matrices of the indicator variables defined in (2) be
(second section of the Appendix A)

VA ¼ 2

PM1
Pm1

DM1M2
� � � DM1MI

DM1M2
PM2

Pm2
� � � DM2MI

..

. ..
.

� � � ..
.

DM1MI DM2MI � � � PMI PmI

0
BBBBB@

1
CCCCCA;

VD ¼

P2
M1

P2
m1

D2
M1M2

� � � D2
M1MI

D2
M1M2

P2
M2

P2
m2
� � � D2

M2MI

..

. ..
.

� � � ..
.

D2
M1MI

D2
M2MI

� � � P2
MI

P2
mI

0
BBBBBB@

1
CCCCCCA
: ðA:3Þ

Define

BA ¼

bkA1 þ XbkAX1 þ ZbkAZ1

..

.

bkAI þ XbkAXI þ ZbkAZI

0
BB@

1
CCA and

BD ¼

bkD1 þ XbkDX1 þ ZbkDZ1

..

.

bkDI þ XbkDXI þ ZbkDZI

0
BB@

1
CCA:

Given X and Z, the coefficients of model (A.2) are derived
as (third section of the Appendix A)

BA ¼ V�1
A � CovðYk;AjX;ZÞ;

BD ¼ V�1
D � CovðYk;BjX;ZÞ: ðA:4Þ

The form of Cov(Yk, A|X, Z) and Cov(Yk, B|X, Z) is
given in the Appendix A.3.

Since Yk(G, X, Z) contains association information
between the trait locus and the markers, Equations (A.4)
show that the measures of LD are contained in the mean
coefficients. Model (3) simultaneously captures the LD
and the effects of the trait locus.

Given X and Z, assume that QlQj and G are independent
or, equivalently, there is no association between the trait
and markers. Then Yk does not depend on G since

Therefore, Cov(Yk, Ai|X, Z) 5 0 and Cov(Yk, Bi|X, Z) 5 0
for all markers i 5 1,y,I. Hence, the regression coeffi-
cients of Ai and Bi are all zero, and the function

ykðg; x; zÞ ¼ log

P
l;j prðD ¼ kjQlQj;G ¼ g;X ¼ x;Z ¼ zÞ � prðQlQjjG ¼ g;X ¼ x;Z ¼ zÞP

l;j prðD ¼ 0jQlQj;G ¼ g;X ¼ x;Z ¼ zÞ � prðQlQj; jG ¼ g;X ¼ x;Z ¼ zÞ

( )

¼ log

P
l;j prðD ¼ kjQlQj;X ¼ x;Z ¼ zÞ � prðQlQjjX ¼ x;Z ¼ zÞP
l;j prðD ¼ 0jQlQj;X ¼ x;Z ¼ zÞ � prðQlQjjX ¼ x;Z ¼ zÞ

( )

¼ log
prðD ¼ kjX ¼ x;Z ¼ zÞ

prðD ¼ 0jX ¼ x;Z ¼ zÞ

� �
:
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mk( � ) does not depend on the marker genotype
data.

In summary, we illustrated that (1) the LD is being
modeled in the regression coefficients, and (2) if there is no
association between observed genotype and trait locus,
then all regression coefficients of Ai and Bi are zeros and so
the regression does not depend on the markers.

DERIVATION OF VARIANCE-COVARIANCE
MATRICES (A.3)

Similarly to the Appendix A, Fan and Xiong [2002], the
following expectations, variance and covariances can be
derived accordingly: EðAiÞ ¼ PMi

� Pmi
, E(Bi) 5 0, VarðAiÞ ¼

2PMi
Pmi

, VarðBiÞ¼P2
Mi

P2
mi

, CovðAi;AjÞ¼2DMiMj
, CovðBi;BjÞ ¼

D2
MjMl

, i,j 5 1,y,I, I 6¼j; in addition, Cov(Ai, Bj) 5 0 for all i

and j.
Define A ¼ ðA1; . . . ;AIÞ and B ¼ ðB1; . . . ;BIÞ. Further, let

VA be the I� I matrix with diagonal elements 2PMimi
and

off-diagonals 2DMiMj
. Similarly, let VD be the I� I matrix

with diagonal elements P2
Mi

P2
mi

and off-diagonals D2
MiMj

.
Note that VA and VD are the covariance matrices of the
additive and dominance effects, respectively. Let OI be a
I� I matrix with zero elements. Then based on the
expectations and covariances described above,

CovðA;BÞ ¼ VA OI

OI VD

� �
:

PROOF OF (A.4)

Based on the definition of Yk and the form of the
covariance matrices (A.3), it can be easily seen that for
j 5 1,y,I

CovðYk;AjjX;ZÞ¼
XI

i¼1

fCovðAi;AjÞ�BAiþCovðBi;AiÞ�BDi
g

¼VA�BAj
;

CovðYk;BjjX;ZÞ¼
XI

i¼1

fCovðAi;AjÞ�BAiþCovðBi;AiÞ�BDi
g

¼VD�BDj
:

Equation (A.4) readily follows. To calculate the covar-
iance between Yk and Ai, Bi, let us denote GðMiMiÞ ¼

fðG1; . . . ; Gi�1; MiMi; Giþ1; . . . ; GIÞ:Gj2ðMjMj; Mjmj; mjmjÞ;
j 6¼ig, and similarly we may define GðMimiÞ and GðmimiÞ.
Using these notations, we may calculate

EðYkjX;ZÞ ¼
X
g2G

PðGÞ�log

P
l;j prðD¼k;QlQjjG;X;ZÞP
l;j prðD¼0;QlQjjG;X;ZÞ

( )
;

EðYkAijX;ZÞ ¼
X

g2GðMiMiÞ

PðGÞ

� log

P
l;j prðD ¼ k;QlQjjG;X;ZÞP
l;j prðD ¼ 0;QlQjjG;X;ZÞ

( )

�
X

g2GðmimiÞ

PðGÞ

� log

P
l;j prðD ¼ k;QlQjjG;X;ZÞP
l;j prðD ¼ 0;QlQjjG;X;ZÞ

( )
;

EðYkBijX;ZÞ ¼ �P2
mi

X
g2GðMiMiÞ

PðGÞ

� log

P
l;j prðD ¼ k;QlQjjG;X;ZÞP
l;j prðD ¼ 0;QlQjjG;X;ZÞ

( )

þ PMi
Pmi

X
g2GðMimiÞ

PðGÞ

� log

P
l;j prðD ¼ k;QlQj;G;X;ZÞP
l;j prðD ¼ 0;QlQj;G;X;ZÞ

( )

� P2
Mi

X
g2GðmimiÞ

PðGÞ

� log

P
l;j prðD ¼ k;QlQj;G;X;ZÞP
l;j prðD ¼ 0;QlQj;G;X;ZÞ

( )
:
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