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We propose a variety of methods based on the generalized estimation equations to
address the issues encountered in haplotype-based pharmacogenetic analysis, including
analysis of longitudinal data with outcome-dependent dropouts, and evaluation of the
high-dimensional haplotype and haplotype–drug interaction effects in an overall manner.
We use the inverse probability weights to handle the outcome-dependent dropouts
under the missing-at-random assumption, and incorporate the weighted L1 penalty to
select important main and interaction effects with high dimensionality. The proposed
methods are easy to implement, computationally efficient, and provide an optimal
balance between false positives and false negatives in detecting genetic effects.
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1. INTRODUCTION

Pharmacogenetics aims to understand the genetic differences among
individuals in drug response. It shares a large amount of overlap with disease
genetics, except that the trait of interest is drug response instead of disease
predisposition. As in disease association studies, haplotype-based analysis provides
an attractive option for understanding genetic effects on drug response. From a
statistical perspective, haplotype-based analysis is asymptotically more powerful
than single-marker analysis in detecting association of latent causal variants (Zaitlen
et al., 2007). From a biological point of view, haplotypic polymorphisms are more
informative for studying genetic association, as they preserve the joint linkage
disequilibrium (LD) structure among multiple adjacent markers. Haplotypes also
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incorporate the joint nonadditive effect of multimarkers, and therefore can better
capture the combined effects of cis-acting causal alleles (Clark, 2004; Schaid, 2004).

However, typical association techniques may not be directly applicable to
pharmacogenetic studies. First, instead of a typical cross-sectional case-control
approach, pharmacogenetic study designs tend to use clinical trials, with repeatedly
measured outcomes and important covariates. Second, missingness patterns tend
to be more complex and nonrandom (e.g., patient dropout may depend on an
outcome like drug response). Finally, research interests tend to focus more on gene–
drug interactions than genetic main effects. For haplotype analysis, the challenges
just described are further complicated by additional issues. The unknown phase
creates missing values in covariates aside from the problem of response-dependent
dropouts. Moreover, the high dimensionality of haplotype–drug interaction �H ×D�
often causes unstable inference and decreased power. As a result, while there exist
methods that allow for evaluating haplotype main and interaction effects in theory,
the practical implementation is limited to certain prespecified haplotypes, and an
overall exploration of H ×D effects in an unprejudiced manner tends not to be
applicable in reality.

In this work, we propose a variety of approaches that are based on inverse
probability weighted (IPW) generalized estimation equations (GEE) to address these
issues encountered in haplotype-based pharmacogenetic analysis. We adapt the
GEE framework (Liang and Zeger, 1986) to bypass the full specification of the
likelihood. We use the IPW estimation methods (Robins et al., 1995) to account for
the response-dependent dropouts under the missing-at-random (MAR) assumption
(Little and Rubin, 2002), which refers to the scenario that the dropout or non-dropout
probability depends only on the past observed outcomes and covariates. For those
who remain in a study at a particular time, the IPW methods weight each subject’s
contribution to the estimation equations at that time by the inverse of the non-dropout
probability. Next, to facilitate the evaluation of H ×D effects in an overall manner,
we couple the IPWGEE framework with variable selection techniques. Specifically,
we consider two commonly used penalizing approaches: LASSO (Tibshirani, 1996)
and adaptive LASSO (Zhang and Lu, 2007; Zou, 2006). The former applies the
equal-weight L1 penalty to all variables (i.e.,

∑ ��k� where �k is the regression
coefficient). The latter inversely weights the variables by their consistent estimates
(i.e.,

∑ ��k�/��̂k� with �̂k terms being the IPWGEE estimates without penalty), which
makes unimportant variables receive larger penalties than important variables. These
penalized approaches can simultaneously select important variables and estimate their
effect sizes. We are particularly interested to learn their performance relative to the
ordinal IPWGEE method, in which effect estimation and variable selection are done
in two separate steps.

Alternatively, several likelihood-based approaches are also available for
carrying out haplotype-based longitudinal data analysis, such as HAPSTAT (Lin
and Zeng, 2006) and SimHap (Carter et al., 2008). These methods use mixed-
effects models to study haplotype effect on the longitudinal outcomes, and can also
handle the response-dependent dropouts under the MAR missingness (Jansen et al.,
2006). Compared to the IPWGEE method, the likelihood-based approaches are
efficient and do not need to model the dropout probability. However, they require
specification of the joint distribution of the longitudinal outcome process, which
can be difficult in practice and sensitive to model misspecification. In addition,
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when incorporating penalty terms, the optimization of mixed-effects models can
become computational demanding. In contrast, the IPWGEE method can be
expressed as a weighted least-square problem, which makes its penalized extensions
computationally convenient.

We focus this work on quantitative longitudinal traits measured during regular
visits, which is the scenario encountered in our motivating study, the Clinical
Antipsychotic Trails of Intervention Effectiveness (CATIE; Lieberman et al., 2005;
Stroup et al., 2003). The CATIE study examined whether atypical antipsychotics can
reduce morbidity and resource use compared to a conventional antipsychotic drug
for patients suffering from chronic schizophrenia. Recently, the CATIE participants
were also genotyped genome-wide for about 500K single-nucleotide polymorphisms
(SNP; Sullivan et al., 2008). The availability of the CATIE genetic and clinical
data makes it possible to evaluate individual differences in treatment response.
However, such evaluation is intricate, as only a proportion of patients respond
to a specific antipsychotic, and nonresponse and dropouts are key indicators for
individual differences in drug treatment. We aim to tackle these challenges with the
methods constructed in the work.

This article is organized as follows. Section 2 describes the regression model
for studying the haplotype effects on drug response and the proposed inference
procedure based on the IPWGEE and its penalized variations. Section 3 examines
the performance of these methods using simulation, and Section 4 showcases
the proposed methods by applying them on the CATIE data. Finally, Section 5
concludes the work with summary and discussion.

2. MODEL AND ESTIMATION METHOD

2.1. Model

We consider a follow-up study conducted over a fixed interval. Assume for
each subject i �i = 1� � � � � n�, a sequence of the outcome variables Yi�t are designed
to be measured at visit time t = 1� � � � � T . In practice, some patients may quit
the study or may only miss some visits but resume at a later time. These two
missing data patterns are referred to as monotone missingness (or dropouts) and
nonmonotone (or intermittent) missingness, respectively. See Tsiatis and Davidian
(2004) for a good review on analyzing longitudinal data with these two types of
missingness. To fix the idea, we consider the monotone missingness. However, the
method described here can also accommodate nonmonotone missingness.

For each visit time t, define �i�t an indicator that equals 1 if Yi�t is observed
and 0 otherwise. Note that for monotone missingness, �i�t = 0 implies �i�s = 0 for
∀s > t. Let Yi = �Yi�1� � � � � Yi�Ti �

′ denote the observed outcome vector of subject i,
where Ti ∈ �1� T� is the number of visits that subject i had. Also, for subject i,
let Di denote the treatment indicator vector; Hi the haplotype design vector; Yi�0
the baseline outcome value (occurred at t = 0); and Zi�t a vector of covariates
for patients’ characteristics and other environmental exposures that are measured
at visit time t �t = 0� � � � � Ti� and may be time dependent. Assume �hi1� hi2� is
the haplotype pair for subject i; then Hi�h, the hth element of Hi, is set to be
I�hi1 = h�+ I�hi2 = h� with I�·� an indicator function. This particular choice of
coding represents an additive-effect model. We note that other types of coding
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can be used to represent recessive effect (i.e., Hi�h = I�hi1 = h�× I�hi2 = h�) or
dominant effect (i.e., Hi�h = I�hi1 =h�+ I�hi2 = h�− I�hi1 = h�× I�hi2 = h�). Lastly,
we denote a patient’s information up to time t using �Yi�t = �Yi�0� Yi�1� � � � � Yi�t�

′, �Zi�t =
�Zi�0� Zi�1� � � � � Zi�t�

′, and �̄i�t = ��i�0� �i�1� � � � � �i�t�
′ with �i�0 ≡ 1 (i.e., assuming no

missing data at baseline).
To account for potential outcome-dependent dropouts, we assume that the

probability of a subject dropping out at time t may depend on his past observed
outcomes and covariates, and we posit a model for the non-dropout probability
Pi�t�	� at time t as

Pr��i�t = 1 � �̄i�t−1 = 1t� Di��Yi�t−1��Zi�t−1�

= exp�	I + 	′DDi + 	′Y g1��Yi�t−1�+ 	′Zg2��Zi�t−1��

1+ exp�	I + 	′DDi + 	′Y g1��Yi�t−1�+ 	′Zg2��Zi�t−1��
(1)

where 	 = �	I � 	
′
D� 	

′
Y � 	

′
Z�

′ is the coefficients vector, 1t is a t × 1 vector of 1, and
g1 and g2 are pre-specified functions of past observed outcomes and covariates,
respectively. For example, one may use g1��Yi�t−1� = Yi�t−1 and g2��Zi�t−1� = Zi�t−1 to
represent an assumption that the dropout probability only depends on the most
recent observed data.

For longitudinal outcomes, we assume a linear model that includes the main
effects of drugs and haplotypes, and their interactions. That is, for t = 1� � � � � T ,

E�Yi�t � Yi�0� Di�Hi�Zi�t� = �I + �YYi�0 + �′
Tb�t�+ �′

ZZi�t + �′
DDi + �′

HHi + �′
H×DDi ⊗Hi

(2)

where ⊗ is the Kronecker product and b�t� is a vector of functions of the time t.
For example, we may choose b�t� = t if the longitudinal outcomes Yi�t are linear in t,
but the high-order polynomials or more flexible spline basis functions can be used
for nonlinear trend of the longitudinal outcomes.

In reality, haplotype Hi is usually not available and only genotype Gi is
observed. Therefore, the model posited on E�Yi�t � Yi�0� Di�Hi�Zi�t� [i.e., Eq. (2)]
cannot be used to construct the estimating equations, and instead we use
E�Yi�t � Yi�0� Di�Gi�Zi�t�, the conditional expected trait values given the observed
genotypes, for this purpose. Let Ĥi = E�Hi �Gi�, and as shown next, we see this
genotype-conditioned trait expectation is a linear function of Ĥi for quantitative
traits:

E�Yi�t � Yi�0� Di�Gi�Zi�t�

= E
E�Yi�t � Yi�0� Di�Gi�Hi�Zi�t� � Yi�0� Di�Gi�Zi�t�

= �I + �YYi�0 + �′
Tb�t�+ �′

ZZi�t + �′
DDi + �′

HĤi + �′
H×DDi ⊗ Ĥi� (3)

The hth element of Ĥi is E�Hi�h �Gi� and is equal to
∑

�a�b�∈S�Gi�
�I�a = h�+

I�b = h��× P��a� b� �Gi�, where S�Gi� denotes the set of haplotype pairs that are
consistent with the observed genotype Gi, and P��a� b� �Gi� is the conditional
distribution of haplotype pair �a� b� given genotype Gi, which is equal to
�a�b/

∑
�c�d�∈S�Gi�

�c�d with �a the frequency of haplotype a.
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2.2. IPWGEE

Define � = ��I� �
′
J �

′, where �J = ��Y � �
′
T � �

′
Z� �

′
D� �

′
H� �

′
H×D�

′ with length p. To
estimate the parameters � in model (2), we propose to use the IPWGEE method
(Robins et al., 1995). Specifically, we first need to obtain the estimated non-dropout
probabilities Pi�t�	̂�, where 	̂ is an estimator of 	 in model (1). The estimator 	̂ can
be obtained by fitting a logistic model for the observed non-dropout indicators �i�t
on the past observed outcomes and covariates. Then based on Eq. (3) and Pi�t�	̂�,
we obtain the IPWGEE estimator �̂ = ��̂I � �̂

′
J �

′ of � by solving

n∑
i=1

�1Ti �Xi�
′RiV

−1
i �Yi − �I1Ti − Xi�J � = 0 (4)

where Yi = �Yi�1� � � � � Yi�Ti �
′, Xi = �Xi�1� � � � � Xi�Ti

�′ is the Ti × p design
matrix with X′

i�t = �Yi�0� b�t�
′� Z′

i�t� D
′
i� Ĥ

′
i � �Di ⊗ Ĥi�

′� for t = 1� � � � � Ti, Ri =
diag
 1

Pi�1�	̂�
� � � � � 1

Pi�Ti
�	̂�
�, and Vi is a prespecified Ti × Ti weight matrix characterizing

the conditional covariance of the traits Yi. One practical choice for Vi is the identity
matrix, i.e., assuming the working independence. Such choice for Vi can give the
consistent estimator of �, but note that a correct specification or a good estimate of
Vi will improve the efficiency of the IPWGEE estimator (Liang and Zeger, 1986).
Finally, solving Eq. (4) is equivalent to minimizing the following weighted least
squares:

n∑
i=1

�Yi − �I1Ti − Xi�J �
′RiV

−1
i �Yi − �I1Ti − Xi�J �� (5)

As a result, the minimization of Eq. (5) can be easily accomplished using standard
software, such as R, for weighted least-squares regression.

Let �0 denote the true values of �. As shown in Robins et al. (1995), if the
non-dropout model (1) and the longitudinal model (2) are correctly specified, then
the IPWGEE estimator �̂ is consistent and

√
n��̂ − �0� converges in distribution to

a normal random vector with mean 0 and variance–covariance matrix  as n → �.
The variance–covariance matrix  involves complicated expressions since it needs
to take into account of the variations in the estimation of 	̂ and Ĥi. Here instead, to
directly estimate , we propose to use the bootstrap method (Davison and Hinkley,
1997) to estimate . Then we can use Wald tests to select important covariates.

2.3. Penalized IPWGEE

To facilitate the evaluation of the main and interaction effects in an overall
manner, we propose a penalized IPWGEE method that can simultaneously estimate
the model parameters and select important variables. The penalization term in this
method shrinks the coefficients of unimportant variables to exactly zero. To be
specific, we consider the following penalized weighted least-squares estimation:

n∑
i=1

�Yi − �I1Ti − Xi�J �
′RiV

−1
i �Yi − �I1Ti − Xi�J �+ n�

p∑
k=1

wk��J�k�� (6)
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where �J�k is the kth element of �J ; the wk terms are the weights that are
preselected nonnegative constants and could be data dependent, and � > 0 is the
tuning parameter. When the wk terms are set to 1, it becomes the LASSO penalty
(Tibshirani, 1996); when wk = 1/��̂J�k�, the penalty term becomes the adaptive
LASSO penalty (Zhang and Lu, 2007; Zou, 2006). Following the techniques of
Zhang and Lu (2007), it can be shown that proposed adaptive LASSO IPWGEE
estimator has the selection consistency property; i.e., as

√
n� → 0 and n� → �, the

probability of estimating the nonzero coefficients as nonzero and zero coefficients as
zero converges to 1. Moreover, the estimates of nonzero coefficients are consistent
and asymptotically normal.

For each of the possible values of the tuning parameter �, we minimize Eq. (6)
to obtain the estimates for � and calculate the BIC for the corresponding model.
The minimization of Eq. (6) can be achieved using standard LASSO packages, such
as the shooting algorithm (Fu, 1998), the algorithm proposed by Osborne et al.
(2000), and the lars algorithm (Efron et al., 2004). We use the lars algorithm in
our numerical studies since it can give the whole solution path. We choose the
model with the � value that results in the smallest BIC (Bayesian Information
Criterion), as the optimal � chosen by the BIC criterion can identify the true
model consistently (Wu et al., 2007). In other words, we choose � to minimize
BIC��� = ∑n

i=1�Yi − �I1Ti − Xi�J �
′RiV

−1
i �Yi − �I1Ti − Xi�J �+ log n · df�, where df�

is the number of nonzero coefficients in �̂aLASSO
J ���, a simple estimate for the degree

of freedom (Zou et al., 2007).

3. SIMULATION STUDY

3.1. Setup

We perform simulation studies to examine the performance of the proposed
IPWGEE methods. We also carried out analysis using the likelihood-based method
SimHap (Carter et al., 2008) as a benchmark using the “haplo.long” function in
the R package “SimHap” provided by the authors. We simulate data akin to the
CATIE study, including 500 individuals with outcomes measured at time points of
1, 3, 6, 9, 12, 15, and 18 months. We consider 5 drugs with equal probability of
assignment, and a 3-SNP haplotype region forming 8 haplotypes: 000, 001, 010, 011,
100, 101, 110, and 111, with frequencies of 0.22, 0.09, 0.19, 0.09, 0.10, 0.11, 0.11,
and 0.08. For each individual, we randomly sample a pair of haplotypes, assign
one of the drugs, and generate the baseline response value from Normal(0, 1). We
evaluate each method’s ability to detect the causal effects under nine scenarios
(Table 1), regarding whether the interacting treatment and haplotype also exhibit
main effects, and whether the involved haplotype is of high or low frequency.
Given the causal haplotypes and drugs for each scenario, we generate Yi�t based
on model (2) by the following steps. First, we set �i�t = E�Yi�t � Yi�0� Di�Hi�Zi�t� as
given in model (2) with �I = �Y = 1, �T = 0�1, and b�t� = t. The drug effect �i.e., �D�
is set to 1 for the causal-effect drug and 0 for the rest. The same effect size
(i.e., 1) is used for the causal haplotype and the causal H ×D, which leads to a
heritability ranging from 0�07 to 0�20. Next, to create additional correlation among
the outcomes values for subject i, we generate Yi�t from Normal(�i�t + �i, 1) where
�i ∼ Normal�0� 0�5�. To simulate the dropout process, we assume that the dropout
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Table 1 List of causal effects of drug, haplotype, and haplotype–drug interactions considered in the
simulation

Scenario Causal drug Causal haplotype Interactions Heritability

NULL: no effect NA NA NA 0

A: The haplotype in the interactions has no main effect
A1 Drug 3 010 (0.19) Drug 3× 101 (0.11) 0�14
A2 Drug 3 111 (0.08) Drug 3× 101 (0.11) 0�07

B: The treatment in the interactions has no main effect
B1 Drug 2 010 (0.19) Drug 3× 010 (0.19) 0�20
B2 Drug 2 111 (0.08) Drug 3× 111 (0.08) 0�10

C: Both the haplotype and treatment in the interactions have main effects
C1 Drug 3 010 (0.19) Drug 3× 010 (0.19) 0�13
C2 Drug 3 111 (0.08) Drug 3× 111 (0.08) 0�10

D: Both the haplotype and treatment in the interactions have no main effects
D1 Drug 2 010 (0.19) Drug 3× 101 (0.11) 0�14
D2 Drug 2 111 (0.08) Drug 3× 101 (0.11) 0�08

Note. Values in parentheses indicate the haplotype frequencies.

status depends on drug 2 and the previous outcome values. Here we only consider
the monotone missingness, and generate �i�t from the binomial distribution with the
success probability specified in model (1), where 	I = 3, 	′D = �1� 0� 0� 0�, 	Y = −1,
g1��Yi�t−1� = Yi�t−1, and 	Z = 0. The 	 terms were set to obtain similar dropout rates
observed in CATIE, and the resulting simulated non-dropout probabilities are about
0.86, 0.74, 0.78, 0.76, 0.75, 0.75, and 0.72 at visits 1 to 7, respectively.

3.2. Results

In the simulation analyses, we use only unphased genotypes and implement
the IPWGEE methods under a working independence assumption (i.e., set
Vi = ITi×Ti

�. To investigate the potential power loss that is attributed to the
working independence assumption, we repeat our analysis using the true variance–
covariance structure for Vi. We also use the true covariance/correlation structure
in SimHap analysis. For the scenario “ALL NULL,” we run 5000 replications
in the IPWGEE analysis and 1000 replications in the SimHap analysis. We run
1000 replications for scenarios A to D in all analyses. We summarize the results
by reporting the frequencies of each variable being identified as significant. For
the ordinary IPWGEE method (referred to as oIPWGEE), the significance of a
variable is determined by the Wald test of 5% level based on the asymptotic normal
distribution of the � estimates, with the variances of the � estimates obtained from
100 bootstrap samples. For the IPWGEE combined with the LASSO (referred
to as LASSO) and adaptive LASSO (referred to as aLASSO), the significance
is determined by whether the regression coefficient is estimated as exactly zero:
nonzero means significant and zero otherwise. Finally, for the SimHap method
(referred to as SimHap), the significance of a variable is determined at the 5% level
using the p values obtained from 100 simulations. The simulations are conducted to
account for uncertainty in haplotype assignment when phase is unknown.
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Figure 1 Proportion of significance under the Scenario of ALL NULL (i.e., type I error rates).
The top two panels are the results of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, and
aLASSO) with different covariance structures. The open circles, filled circles, and the star signs indicate
the results for the oIPWGEE, aLASSO, and LASSO, respectively. The bottom panel is the results
of the SimHap, where the type I error rates are indicated by triangles. In all panels, the horizontal
dashed line indicates the nominal level of 0.05 used in the oIPWGEE and SimHap methods.

Figure 1 shows the results from the scenario of ALL NULL, where the
proportion of significance corresponds to the type I error rates. The top panel is for
the IPWGEE methods when a working independence covariance is used. The type I
error rates for oIPWGEE are around the nominal level 0.05. It is observed that the
type I error rates for the interaction terms are a little conservative, which agrees with
our expectation since there is less information for the gene–drug interaction effects
than for their main effects. The type I error rates for LASSO and aLASSO are more
conservative since these two methods are not test-based and shrink coefficients of
unimportant variables to exact zeros. Indeed, the error rates will be closer to zero
as the sample size increases, especially for aLASSO. This is because the aLASSO
estimates have the variable selection consistency property (Zhang and Lu, 2007;
Zou, 2006)—i.e., when the sample size increases, the procedure will estimate the zero
coefficients as exact zero with probability converging to 1. With a sample of size 500,
the range of the type I error rates across all variables for LASSO is 0.0072 to 0.0198,
with mean equal to 0.0132, and the range for aLASSO is 0.0004 to 0.0106, with
mean error rate equal to 0.0030. The middle panel shows the results of the IPWGEE
methods when the true covariance is used. The type I error rates are compatible to
those in the top panel. Finally, the bottom panel shows the type I error rates of
the SimHap method. We see that the type I error rates are conservative, which is
somewhat expected as the dimension of the parameter space is big.
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Figure 2 Proportion of significance under scenario A as defined in Table 1. The left panel shows
the results of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, aLASSO) when a working
independence covariance is used, and the right panel shows the results of the IPWGEE and SimHap
analysis when the true covariance structure is used. The horizontal dashed line indicates the nominal
level of 0.05 used for the Wald test in oIPWGEE and SimHap. The vertical dashed lines indicate the
causal effects.

Figures 2–5 show the power (true positive) and type I error (false positive)
rates for scenarios A to D. The left panels present the results of the IPWGEE
methods (i.e., oIPWGEE, LASSO, and aLASSO) with a working independence
covariance structure. Across all these scenarios, the oIPWGEE method offers the
lowest power in detecting an effect. The LASSO method exhibits the greatest power
but at a cost of high false positive rates. This is not too surprising because the
LASSO method does not have the variable selection consistency property and it
tends to select more variables than necessary (Zou, 2006). The simulation result
suggests that all false positive detections tend to involve an interaction term that
contains at least one of the main effects. On the other hand, the aLASSO method
has power nearly as high as the LASSO but it does not have as many false positives.
The aLASSO method achieves a better balance between true and false positives than
the oIPWGEE and the LASSO, which is again a result from the nice theoretical
properties of the adaptive LASSO method.

The right panels of Figs. 2–5 show the results of the IPWGEE methods and
SimHap when the true covariance structure is used in the analysis. Focusing on the
IPWGEE methods (oIPWGEE, LASSO and aLASSO), we note that the left and
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Figure 3 Proportion of significance under scenario B as defined in Table 1. The left panel shows
the results of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, aLASSO) when a working
independence covariance is used, and the right panel shows the results of the IPWGEE and SimHap
analysis when the true covariance structure is used. The horizontal dashed line indicates the nominal
level of 0.05 used for the Wald test in oIPWGEE and SimHap. The vertical dashed lines indicate the
causal effects.

right panels provide similar results, indicating that there is only marginal power
loss when the independence covariance matrix is used instead of the true covariance
structure. For the comparisons between the proposed IPWGEE methods with the
benchmark SimHap method, we see that compared to oIPWGEE, the SimHap
method gives higher power for detecting drug main effects, but lower power for
haplotype main effects and H ×D interactions. On the other hand, other proposed
methods (i.e., LASSO and aLASSO) result in much higher power than the SimHap
method. A similar trend holds for all scenarios of A, B, C, and D.

4. APPLICATION TO CATIE DATA

We apply the proposed IPWGEE methods to the CATIE study of
schizophrenia, and perform a search on chr22 for potential genetic variants related
to drug response. We choose chr22 because it contains the most published candidate
genes (i.e., 91 genes) for schizophrenia etiology according to the Schizophrenia
Research Forum (http://www.schizophreniaforum.org/res/sczgene/dbindex.asp) as
of June 2009.
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Figure 4 Proportion of significance under scenario C as defined in Table 1. The left panel shows the results
of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, aLASSO) when a working independence
covariance is used, and the right panel shows the results of the IPWGEE and SimHap analysis when the
true covariance structure is used. The horizontal dashed line indicates the nominal level of 0.05 used for the
Wald test in oIPWGEE and SimHap. The vertical dashed lines indicate the causal effects.

4.1. Data

CATIE uses a multiphase design to study the effect of antipsychotic
medications for schizophrenia. In phase 1, 1460 patients are randomly assigned to
double-blinded treatment with either the conventional drug perphenazine or one
of the new-generation drugs olanzapine, quetiapine, risperidone, or ziprasidone.
The patients are followed up for up to 18 months or until treatment was
discontinued for any reason. Patients whose assigned treatment is discontinued
could receive other treatments in phases 1B, 2, and 3 (see Stroup et al., 2003, for
further details). Our analysis focused on the phase 1 data only.

About 51% of the 1460 CATIE participants provided DNA samples, and
in total 738 patients are genotyped after further inclusion and exclusion criteria.
Genotyping is conducted using the Affymetrix 500K platform and a custom
164K chip created by Perlegen, which, after quality control, led to 6378 SNPs on
chr22. Among the 738 patients, 2 individuals do not have treatment information,
1 individual does not have baseline Positive and Negative Symptom Scale (PANSS)
scores, and 86 individuals only have baseline PANSS scores but no follow-up
information. Excluding these subjects results in a sample of 649 patients in our
analysis. Among the 649 patients, 60% of the subjects have missing outcome values,
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Figure 5 Proportion of significance under scenario D as defined in Table 1. The left panel shows
the results of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, aLASSO) when a working
independence covariance is used, and the right panel shows the results of the IPWGEE and SimHap
analysis when the true covariance structure is used. The horizontal dashed line indicates the nominal
level of 0.05 used for the Wald test in oIPWGEE and SimHap. The vertical dashed lines indicate the
causal effects.

and the monotone missingness accounts for a large percentage of missing (i.e., 96%
of the 60% individuals).

4.2. Analysis

The primary outcome variable was the PANSS total scores measured at
months 1, 3, 6, 9, 12, 15, and 18. The effects to be assessed include: (a) the
relative effects of the four new-generation antipsychotic drugs to the conventional
drug perphenazine; (b) the genetic effects; and (c) the interactions between the
genes and drugs. In addition to the effects of interest, we also incorporate baseline
PANSS score, drug–time interaction, age, sex, and ancestry in model (2), and set
b�t� = t and Vi = In×n for the analysis. The ancestry is approximated using the first
seven principle components identified in the CATIE genome-wise association study
(Sullivan et al., 2008) using EigenSoft (Price et al., 2006). The missing mechanism
is modeled by a logistic regression, in which the dropout status was regressed on
the previous PANSS scores and the drugs. When previous PANSS scores are not
available, we use the most recent observed value instead. The chromosomal scan is
carried out using a sliding window of four SNPs. One challenge for the haplotype
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sliding-window scan is the multiple testing problem, as the tests can be highly
correlated due to the use of overlapping SNPs. While this issue may be bypassed in
the LASSO or aLASSO since they do not involve any test procedure for selecting
significant variables, a chromosome-wide significant threshold would still be needed
for the Wald test in the oIPWGEE method. Because our analysis is for exploratory
purposes, and because it is beyond our focus to address this unsettled issue here,
we use an ad hoc way to determine a less stringent threshold: We set the total
number of tests as 6378/4 (i.e., as if non-overlapping windows were used), and treat
the tests as perfectly correlated when they are next to each other, and uncorrelated
otherwise. This leads to a Bonferroni threshold of 0�05/�6378/4/2� = 6�3× 10−5 for
the p values from chr22.

4.3. Result

We focus on the oIPWGEE and aLASSO methods, as we see in the simulation
that the LASSO method tends to select more variables than necessary. First, the
dropout rates seem to depend on drug olanzapine (p value 0.026): Patients with
olanzapine have higher odds to stay in the study relative to the baseline drug
perphenazine �OR = 1�36�. Next, for PANSS analysis, it appears that the PANSS
scores depend positively on the baseline PANSS score, negatively on time, but not
on the drugs or the drug–time interactions. The mean estimate across all regions
for ��Y � �T � �

′
D� �

′
D×T � = ��Y � �T � �Ola� �Que� �Ris� �Zip� �Ola×T � �Que×T � �Ris×T � �Zip×T � is

(0.59, −0.36, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) by aLASSO, and is
(0.58, −0.59, 1.66, 0.81, 2.32, 1.03, 0.01, 0.04, 0.00, 0.34) by oIPWGEE, with the
corresponding mean Z statistics of the Wald test (obtained based on 100 bootstrap
samples) as (21.00, 4.68, 0.91, 0.71, 1.04, 0.70, 0.38, 0.42, 0.11, 1.94).

For genetic effect detections, while there are quite a few overlaps in regions
identified by both methods, there are also regions where the findings from the two
methods do not agree. The inconsistent results may be due to various reasons.
For example, one possible reason is that the oIPWGEE selects significant genetic
effects using Wald tests adjusting for the multiple testing issue, while the aLASSO
selects important genetic factors and estimates their effect sizes at the same time
avoiding the multiple testing. Another possible reason is that the dropout status
may depend on other covariates than what we have incorporated, and hence the
assumed logistic model for the non-dropout probability cannot catch the complete
missingness mechanism. Because there are no known positive controls for the
data analysis, we report those regions that are identified by both methods. We
see that some of the significant regions are adjacent with each other. We list and
annotate our findings in Table 2, where the annotations are based on HapMap
genome browser (http://www.hapmap.org/cgi-perl/gbrowse/hapmap27_B36),
UCSC genome browser (http://www.genome.ucsc.edu/cgi-bin/hgGateway), NCBI
(http://www.ncbi.nlm.nih.gov/sites/entrez), Sullivan Lab Evidence Project (SLEP,
https://slep.unc.edu/evidence/?tab=GeneName), and Schizophrenia Research
Forum (http://www.schizophreniaforum.org/res/sczgene/chromo.asp?c=22).
As with many findings in complex trait genetics, there are intriguing
suggestions in the results that require replication to understand more fully.
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5. DISCUSSION

We introduce an ordinary IPWGEE method and its penalized extensions
to facilitate haplotype-based pharmacogenetic analysis for longitudinal
quantitative data. It allows for outcome-dependent missingness, and permits
an overall evaluation of the high-dimensional haplotype–drug interaction in
an unbiased manner. By re-expressing the IPWGEE as a weighted least-square
problem, the proposed method is easy to implement and computationally
efficient. Our simulations show that the IPWGEE combined with the adaptive
LASSO penalty can improve the power to identify important genetic effects
while retaining the false positive rates at a desired level. The R code that
implements this method is available from the corresponding author’s website at
http://www4.stat.ncsu.edu/˜jytzeng/Software/HapWGEE/R

In our numerical studies, we set Vi to be the identity matrix in the estimation
Eq. (4) to obtain the parameter estimates, which treats the outcome values from
the same subject as independent after conditioning on the covariates incorporated
in model (2). Under the content of genetic studies, this working independence
assumption might not be completely incorrect, as the within-subject correlation
might be removed after conditioning on the genetic factors of an individual.
Nevertheless, the GEE does not require a correctly specified working variance–
covariance matrix in order to obtain consistent estimates. The use of a more
precisely specified Vi can improve detecting power.

In this work, the IPWGEE-based approaches are constructed for quantitative
traits, but the framework can be also extended to binary traits. For quantitative
traits, the expected outcome values E�Yi�t � Yi�0� Di�Hi�Zi�t� is a linear function
of the unobserved haplotype Hi, and consequently, its genotype-conditioned
expectation, E�Yi�t � Yi�0� Di�Gi�Zi�t�, is also linear in E�Hi �Gi�. With binary
traits, the same principle of Eq. (3) applies, but E�Yi�t � Yi�0� Di�Hi�Zi�t� = 
1+
exp�−��I1Ti + Xi�J ���

−1 is no longer linear in Hi. As a result, the mean effect model
conditioning on genotypes require additional work in the computation, and we plan
to continue the work in our future study.

Finally, modeling longitudinal quantitative traits has also drawn big attention
in the field of quantitative trait locus (QTL) mapping. Among the many methods
proposed, functional mapping emerges to be a powerful and promising tool (Wu
and Lin, 2006). Functional mapping uses mathematical equations to describe
the profile of the response values, such as using logistic equations for the
growth trajectories, and using bi-exponential equations for HIV dynamics. These
mathematical functions are typically governed by a few parameters that have
biological interpretation and can be further expressed in terms of genetic effects.
In recent years, the framework of functional mapping has also been extended from
controlled crosses to natural population (Lin et al., 2007; Ma et al., 2004; Wu et al.,
2007). It will be of great interest to incorporate such mechanistic mathematical
modeling in our IPWGEE methods and consider it in the CATIE data analysis.

ACKNOWLEDGMENTS

J.Y.T. was supported by NSF grant DMS-0504726 and NIH grants R01
MH074027 and R01 MH084022. W.L. was supported by NSF grant DMS-
0504269 and NIH grant R01 CA140632. P.S.F. was supported by NIH grants R01



HAPLOTYPIC-BASED PHARMACOGENETIC ANALYSIS 349

MH074027, R01 MH080403, and R01 MH084022. The CATIE project was funded
by NIMH contract N01 MH90001 (PIs Drs. Jeffrey Lieberman and Scott Stroup).
Jung-Ying Tzeng and Wenbin Lu are contributed equally to this work.

REFERENCES

Carter, K. W., McCaskie, P. A., Palmer, L. J. (2008). SimHap GUI: an intuitive graphical
user interface for genetic association analysis. BMC Bioinformatics. 25:557.

Clark, A. G. (2004). The role of haplotypes in candidate gene studies. Genet. Epidemiol.
27:321–333.

Davison, A. C., Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge:
Cambridge University Press.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004). Least angle regression. Ann. Statist.
32:407–451.

Fu, W. J. (1998). Penalized regression: the bridge versus the lasso. J. Comput. Graph. Stat.
7:397–416.

Jansen, I., Beunckens, C., Molenberghs, G., Verbeke, G., Mallinckrodt, C. (2006). Analyzing
incomplete discrete longitudinal clinical trial data. Stat. Sci. 21:52–69.

Liang, K. Y., Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models.
Biometrika. 73:13–22.

Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D.
O., Keefe, R. S., Davis, S. M., Davis, C. E., Lebowitz, B. D., Severe, J., Hsiao, J. K.
(2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N.
Engl. J. Med. 22:1209–1223.

Lin, D. Y., Zeng, D. (2006). Likelihood-based inference on haplotype effects in genetic
association studies. J. Am. Stat. Assoc. 101:89–104.

Lin, M., Li, H., Hou, W., Johnson, J. A., Wu, R. (2007). Modeling sequence–sequence
interactions for drug response. Bioinformatics 23:1251–1257.

Little, R. J. A., Rubin, D. B. (2002). Statistical Analysis with Missing Data. 2nd ed. New York:
Wiley.

Ma, C. X., Wu, R., Casella, G. (2004). FunMap: functional mapping of complex traits.
Bioinformatics 20:1808–1811.

Osborne, M. R., Presnell, B., Turlach, B. A. (2000). On the LASSO and its dual. J. Comput.
Graph. Stat. 9:319–337.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., Reich, D.
(2006). Principal components analysis corrects for stratification in genome-wide
association studies. Nat. Genet. 38:904–909.

Robins, J. M., Rotnitzky, A., Zhao, L. P. (1995). Analysis of semiparametric regression
models for repeated outcomes in the presence of missing data. J. Am. Stat. Assoc.
90:106–121.

Schaid, D. J. (2004). Evaluating associations of haplotypes with traits. Genet. Epidemiol.
27:348–364.

Stroup, T. S., McEvoy, J. P., Swartz, M. S., Byerly, M. J., Glick, I. D., Canive, J. M.,
McGee, M. F., Simpson, G. M., Stevens, M. C., Lieberman, J. A. (2003). The National
Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness
(CATIE) project: schizophrenia trial design and protocol development. Schizophr Bull.
29:15–31.

Sullivan, P. F., Lin, D., Tzeng, J. Y., van den Oord, E., Perkins, D., Stroup, T. S., Wagner,
M., Lee, S., Wright, F. A., Zou, F., Liu, W., Downing, A. M., Lieberman, J., Close,
S. L. (2008). Genomewide association for schizophrenia in the CATIE study: results
of stage 1. Mol. Psychiatry. 13:570–584.



350 TZENG ET AL.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B.
58:267–288.

Tsiatis, A. A., Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data:
an overview. Stat. Sin. 14:809–834.

Wang, H., Li, R., Tsai, C. L. (2007). Tuning parameter selector for SCAD. Biometrika
94:553–568.

Wu, S., Yang, J., Wu, R. (2007). Semiparametric functional mapping of quantitative trait
loci governing long-term HIV dynamics. Bioinformatics 23:i569–i576.

Wu, R., Lin, M. (2006). Functional mapping—how to map and study the genetic architecture
of dynamic complex traits. Nat. Rev. Genet. 7:229–237.

Zaitlen, N., Kang, H. M., Eskin, E., Halperin, E. (2007). Leveraging the HapMap correlation
structure in association studies. Am. J. Hum. Genet. 80:683–691.

Zhang, H. H., Lu, W. (2007). Adaptive-LASSO for Cox’s proportional hazards model.
Biometrika 94:1–13.

Zou, H. (2006). The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101:1418–
1429.

Zou, H., Hastie, T., Tibshirani, R. (2007). On the degrees of freedom of the Lasso. Ann. Stat.
35:2173–2192.



Copyright of Journal of Biopharmaceutical Statistics is the property of Taylor & Francis Ltd and its content

may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express

written permission. However, users may print, download, or email articles for individual use.


