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Abstract

With development of massively parallel sequencing technologies, there is a sub-
stantial need to developing powerful rare variants association tests. Common ap-
proaches include burden and non-burden tests. Burden tests assume all rare variants
in the target region have effects on the phenotype in the same direction and of similar
magnitude. The recently proposed Sequence Kernel association Test (SKAT) [19] an
extension of the C-alpha test [12], provides a robust test that is particularly powerful
in the presence of protective and deleterious variants and null variants, but is less
powerful than burden tests when a large number of variants in a region are causal
and in the same direction. As the underlying biological mechanisms are unknown
in practice and vary from one gene to another across the genome, it is of substantial
practical interest to develop a test that is optimal for both scenarios. In this paper,
we propose a class of tests that include burden tests and SKAT as special cases, and
derive an optimal test within this class that maximizes power. We show that this
optimal test outperforms burden tests and SKAT in a wide range of scenarios. The
results are illustrated using simulation studies and triglyceride data from the Dallas
Heart Study. In addition, we have derived sample size/power calculation formula
for SKAT with new family of kernels to facilitate designing new sequence association
studies. Burden tests; Correlated Effects; Kernel Association Test; Rare variants; Score
Test
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1 Introduction

Advances in high-throughput sequencing technology are reshaping the landscape of med-
ical and human genetics research. In contrast to genome wide association studies (GWAS),
which involves genotyping preselected single nucleotide polymorphisms (SNPs) that are
relatively common, these new sequencing technologies enable us to also genotype rare ge-
netic variants. Rare genetic variants, here defined as variants with minor allele frequency
(MAF) < 1 − 5%, have been shown to play a crucial role in complex trait etiology[2].
Despite their importance, testing for associations between rare variants and traits has
proven challenging. Since standard individual variant tests, typically used for analysis
of SNPs, are underpowered to detect rare variant effects due to the low allele frequencies
and the large numbers of rare variants in the genome, region based analysis has become
the standard approach for analyzing rare variants in sequencing studies[6].

The earliest and most commonly used class of region based rare variant tests are the
burden tests, which collapse or summarize the rare variants within region as a single
genetic variable which can then be tested for association with any trait of interest [6, 10, 11,
14]. For example, the Combined Multivariate and Collapsing (CMC) method [6] collapses
information on all rare variants within a region by counting the number of rare alleles.
Many extensions and variations on these methods exist. A key limitation of burden tests
is that they suffer substantial loss of power in the presence of large number of non-causal
variants, or in the presence of both protective and deleterious variants [12].

Recognizing the inherent limitations of burden based methods, Wu et al.[19] recently
proposed the sequence kernel association test (SKAT), which builds upon the kernel ma-
chine regression framework, to test rare variants associations. As a kernel machine based
test, SKAT aggregates genetic information across the region using a kernel function and
uses a computationally efficient variance component test to test for association. Wu et
al.[19] also showed that SKAT is a generalization of the classical C-alpha test [12, 13].

Although SKAT offers improved power over burden based tests in many cases, if a
large proportion of the rare variants in a region are truly causal and influence the pheno-
type in the same direction, then burden tests can have higher power than SKAT[1]. This
scenario can arise in several current sequencing studies, e.g., whole exome sequencing
studies. This is because standard evolutionary principles and population genetics mod-
els indicate that majority of rare missense mutations are moderately deleterious [5]. In
addition, bioinformatic tools are often used to restrict testing to variants that are likely
harmful variants. However, such prior knowledge is often lacking in practice. The un-
derlying biological mechanisms vary from one gene to another across the genome and
often unknown. It is hence of substantial practical interest to develop a data-adaptive test
that is optimal for both scenarios when scanning the genome in genome-wide sequencing
association studies.

In this paper, by exploiting the relationship between burden based tests and SKAT,
we propose a data-adaptive optimal test within a class of tests that include both burden
tests and SKAT as special cases. Specifically, we consider a class of tests that is an arbitrary
linear combination of burden test and SKAT statistics, and identify the optimal test within
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this class to maximize power. We show that this new class of tests can be formulated as
a generalized family of SKAT tests by incorporating a correlation structure of variants
effects through a family of kernels. It reduces to the burden tests when the effects of
variants are perfectly correlated. We derive the optimal test (SKAT-O) by estimating the
correlation parameter in the kernel matrix to maximize the power, which corresponds to
the estimated weight in the linear combination of the burden test and SKAT test statistics
that maximizes power. We derive the theoretical distribution of the SKAT-O test statistic,
which allows us to calculate the p-value analytically with high accuracy in the tail. This is
advantageous for analyzing genome-wide sequencing data by avoiding computationally
intensive methods, such as resampling or permutation, to calculate p-values, especially
in the tail required to reach genome-wide significance.

In addition we also consider the problem of designing future sequencing association
studies. In particular, to design a new sequence association study, it is important to be
able to estimate the required sample size to achieve proper statistical power. Although
power and sample size calculation can be done via simulation, this computer intensive
approach is not desirable. Therefore, we derive the analytical formula for the statistical
power of SKAT under the newly proposed family of kernels, and by inverting the power
function, we can compute the necessary sample size to adequately power future studies.

2 Optimal Test

For simplicity,we assume that we are interested in testing whether the rare variants in
a single region are associated with a complex trait. In a large scale study of multiple
regions, the same methods can be applied with the appropriate adjustment of multiple
testing.

2.1 Rare variants testing methods

Assume n subjects are sequenced in a region with p genotyped rare variants. For the
ith subject, let yi denote a phenotype variable, Gi = (gi1, . . . , gip) the genotypes for the p
variants (gij = 0, 1, 2 for 0,1, or 2 copies of the minor allele), Xi = (xi1, . . . , xiq) the covari-
ates for which we would like to adjust (e.g. demographic or environmental variables).
To relate genotypes to continuous/categorical phenotypes, we use the generalized linear
model (GLM), such that yi independently follows an exponential family distribution with
first two moments E(yi) = µi and V ar(yi) = ϕv(µi), and a link function

g(µi) = Xiα+Giβ, (1)

where v(·) is a variance function. α and β = (β1, . . . , βp)
′ are the vectors of regression

coefficients for the covariates and rare variants, respectively. Under the GLM, the asso-
ciation between the p rare variants and the phenotype y can be tested by evaluating the
null hypothesis that H0: β = (β1, . . . , βp)

′ = 0. However, the standard p degree of free-
dom (d.f.) test may lose power when p is large. To reduce the d.f., additional assumptions
need to be made.
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Popular burden based tests reduce the d.f. by making the assumption that each βj is a
function of the minor allele frequencies (MAF) such that βj = w(mj) = wjβ0, where mj is
the MAF of the jth variant. Then (1) becomes

g(µi) = Xiα+ β0

p∑
j=1

wjgij, (2)

and the association between the genetic variants and the phenotype can be tested by
conducting a 1 d.f. test with H0: β0 = 0. We refer to this test as the weighted counting
burden test (WBT). The WBT assumes that all variants are causal with the same direction
of association and common β0. Violation of these assumptions can result in significant
loss of power.

SKAT takes a different approach to reducing the d.f. It assumes that each βj indepen-
dently follows an arbitrary distribution with mean zero and variance w2

jψ where wj is a
fixed number that may depend on MAF. Under this assumption, the null hypothesis H0

: β = 0 is equivalent to H0 : ψ = 0, i.e., variance component test in generalized linear
mixed models by treating β as random effects. Suppose X is the n × q covariates matrix,
G = [G1, . . . ,Gn]

′ is the n × p genotype matrix, W = diag[w1, . . . , wp] is a p × p diagonal
matrix of weights, and K = GWWG′ is an n × n weighted linear kernel matrix. [19]
proposed to use a class of flexible weight functions of the MAF using the beta density
function as wj = Beta(MAFj, a1, a2), where the parameters a1 and a2 are pre-specified,
and MAFj are estimated using the sample MAF of the j-th variant.

We define the working vector by y∗ = Xα + ∆(y − µ), where ∆ = diag {g′(µi)} ,
and the variance matrix by V = diag {ϕv(µi)[g

′(µi)]
2}. Their estimates under the null

hypothesis are ỹ = Xα̂ + ∆̂(y − µ̂), ∆̂ = diag {g′(µ̂i)} and V̂ = diag
{
ϕ̂v(µ̂i)[g

′(µ̂i)]
2
}

,
respectively, where α̂ is an q× 1 vector of estimates of α, µ̂ is an n× 1 vector of estimates
of µ, and ϕ̂ is an estimate of ϕ. All estimates are obtained under the null hypothesis.
Following [20], the score test statistic of the variance component ψ is

Q = (ỹ −Xα̂)′V̂−1KV̂−1(ỹ −Xα̂) = (y − µ̂)′∆̂V̂−1KV̂−1∆̂(y − µ̂). (3)

When g(·) is a canonical link function, (3) can be simplified to Q = (y − µ̂)′K(y − µ̂)/ϕ̂2.
For binary and Poisson data, ϕ = 1.

2.2 New family of kernels

As shown in the previous section, the weighted linear kernel is constructed under the
assumption that βjs are independent. If a large percentage of variants in the target region
are associated with the phenotype with the same direction of effect, burden tests can out-
perform SKAT because the current kernels used by SKAT do not account for correlation in
β. Therefore, we propose a new family of kernels that explicitly incorporates correlation
among the variant effects.

4



We propose to allow β to follow a multivariate distribution with exchangeable cor-
relation structure. Then the correlation matrix of β is Rρ = (1 − ρ)I + ρ11′. With this
correlation structure, the SKAT test statistic is a function of ρ:

Qρ = (y − µ̂)′∆̂V̂−1KρV̂
−1∆̂(y − µ̂), (4)

where Kρ = GWRρWG′. When ρ = 0, Kρ results in the weighted linear kernel SKAT.
When ρ = 1, SKAT test statistic is

Qρ = (y − µ̂)′∆̂V̂−1GW11′WG′V̂−1∆̂(y − µ̂) =

[
n∑

i=1

yi − µ̂i

ϕ̂v(µ̂i)g′(µ̂i)

p∑
j=1

wjgij

]2

,

which is equivalent to the square of the score test statistic of weighted counting burden
test. Thus, both tests can be framed within this new family of kernels. In fact, one can
easily show that Qρ is a linear combination of SKAT and burden test, i.e, Qρ = (1 −
ρ)QSKAT + ρQburden.

For a fixed ρ, Qρ follows a mixture of chi-square distributions [17, 8, 7]. Specifically,
if (λ1, . . . , λm) are the eigenvalues of V̂−1/2KρV̂

−1/2, then the null distribution of Qρ can
be closely approximated by

∑
λjχ

2
1,j , where {χ2

1,j} are independent χ2
1 random variables.

To reduce small sample bias, the restricted maximum likelihood (REML) estimator of the
variance component can be used [20]. Define P = V̂−1 − V̂−1X̃(X̃′V̂−1X̃)−1X̃′V̂−1 where
X̃ = [1X], we use the eigenvalues of P1/2KρP

1/2 to obtain the null distribution of Qρ.
A p-value can be obtained by matching moments [9] or by inverting the characteristic
function [3].

To understand the role of the parameter ρ, we derive in Supplementary Appendix C
the analytic relationship between ρ and the given regression coefficients βs as a function of
the proportion of causal variants in a region (i.e., the proportion of the β coefficients that
are non-zero) and the proportion of causal variants that are protective (i.e., the proportion
of the non-zero β coefficients that are negative), assuming the magnitude of the causal
variant effects as a function of the MAFs. We illustrate this relationship and its use in the
power calculation section.

2.3 Optimal test (SKAT-O)

In practice, we rarely have any information about ρ. Thus, we need a procedure to select ρ
to maximize power. The resulting optimal test corresponds to a best linear combination of
SKAT and burden tests that maximizes power. This is in general a challenging problem
because ρ disappears under the null hypothesis. Davies [4] studied this problem and
proposed to use maximum of score test statistic as a test statistic. This approach, however,
is not directly applicable here due to the different kurtoses of the Qρs. As ρ increase, the
null distribution of Qρ has a heavier tail, and adjustment for this is difficult.

We employ an different approach and use the minimum of p-values as a test statistic
rather than the score statistics. Specifically, the test statistic is

T = inf
0≤ρ≤1

pρ, (5)
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where pρ is the p-value computed based on Qρ. T can be obtained by simple grid search
across a range of ρ: set a grid 0 = ρ1 < ρ2 < . . . < ρb = 1, then the test statistic T =
min{pρ1 , . . . , pρb}.

2.3.1 Null distribution of the test statistic

In order to obtain the null distribution of T and conduct a hypothesis test, let Z =

V̂−1/2GW and z̄ = (z̄1, . . . , z̄n)
′, where z̄i =

∑p
j=1 zij/p. M = z̄(z̄′z̄)−1z̄′ is a projection

matrix onto a space of spanned by z̄. We further let

τ(ρ) = pρz̄′z̄+
1− ρ

z̄′z̄

p∑
j=1

(z̄′z.j)
2,

where z.j is the jth column of Z, and Qρ1 , . . . , Qρb are the score test statistics computed
with different ρv, (v = 1, . . . , b). Then we show in Supplementary B that under the null
hypothesis Qρv is asymptotically the same as

(1− ρv)(
m∑
k=1

λkηk + ζ) + τ(ρv)η0 = (1− ρ)κ+ τ(ρv)η0, (6)

where {λ1, . . . λm} are non-zero eigenvalues of Z′(I − M)Z, ηk(k = 0, . . . ,m) are i.i.d χ2
1

random variables, κ =
m∑
k=1

λkηk + ζ , and ζ satisfies the following conditions:

E(ζ) = 0, V ar(ζ) = 4trace(Z′MZZ′(I−M)Z),

Corr(
m∑
k=1

λkηk, ζ) = 0, and Corr(η0, ζ) = 0.

Since the Pearson correlation between κ and η0 is zero, we can approximate Qρ as the
mixture of two independent random variables. We can approximate the distribution of
κ by using the characteristic function inversion method [3] after adjusting for the extra
variance term of ζ . Letting qmin(ρv) denote the (1 − T )th percentile of the distribution of
Qρv for each ρv, the p-value based on the test statistic T is

1− P (Qρ1 < qmin(ρ1), . . . , Qρb < qmin(ρb))

= 1− E [P (κ < min{(qmin(ρv)− ρvη0)/(1− ρv)}|η0)] ,

which can be obtained by one-dimensional numerical integration, which can be easily cal-
culated. When we compute pρv and qmin(ρv), we approximate each marginal distribution
of Qρv by modifying the moment matching method of Liu et al.[9]. In particular, instead
of matching the first 3 moments, we match the mean, variance and kurtosis to improve
the approximation in the tail area. To adjust for small sample bias, one can use REML
estimates of the variance components, such that Z = P1/2GW. The following algorithm
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provides the detailed description of the proposed method.

Step 1: Set a grid 0 = ρ1 < ρ2 < . . . < ρb = 1.
Step 2: Compute Qρ1 , . . . , Qρb , Z, and M. Here Z = P1/2GW.
Step 3: Compute λks, τ(ρv), and

µQ =
m∑
k=1

λ2k, σζ = 2
√
trace(Z′MZZ′(I−M)Z), and σQ =

√√√√2
m∑
k=1

λ2k + σ2
ζ .

Step 4: Calculate pρv , T and qmin(ρv)s using the modified moment matching approxima-
tion.
Step 5: Numerically integrate F (δ(x)|λ)f(x|χ2

1), where

δ(x) = (min{(qmin(ρv)− τ(ρv)x)/(1− ρv)} − µQ)

√
σ2
Q − σ2

ζ

σQ
+ µQ,

f(x|χ2
1) is a density function of χ2

1, and F (δ(x)|λ) is a distribution function of a mixture of
chi-square distribution,

∑
λiχ

2
i . The p-value is found as

P-value = 1−
∫
F (δ(x)|λ)f(x|χ2

1)dx.

3 Sample Size and Power Calculations for Designing Se-
quencing Association Studies

Estimating the necessary sample size to adequately power a study is an important part
of designing new sequencing association studies. In this section, we derive the analytical
formula for the statistical power of SKAT. We restrict our interest to continuous traits
study designs and dichotomous traits study designs, such as case/control study designs,
since both are commonly used designs in association studies. We further note that we
only consider SKAT with fixed ρ, since at the design stage, researchers generally specify
anticipated alternative hypotheses, i.e. a specific ρ based on the scenario they have in
mind. The detailed power calculation method can be found in Supplementary Appendix
A. The required sample size to achieve a fixed power level can be easily computed by
inverting the power function.

The proposed formula can be used to calculate statistical power efficiently for speci-
fied sample sizes and α level, given prior information on the genetic architecture of the
genomic region of interest. Also required are the proportion of causal variants within the
region (i.e, the fraction of non-zero β coefficients), and the proportion of causal variants
that are protective (i.e., the fraction of non-zero β coefficients that are negative). Both of
these can be easily posited by investigators based on prior belief, and detailed discus-
sions are provided in Wu et al.[19]. What is more challenging to specify is the particular
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ρ value to be used in power calculations. As discussed in Section 2.2 and Supplementary
Appendix C, if the proportion of nonzero βs is p1, the proportion of positive βs among
the non-zero βs is p2, and the magnitude of the causal variant effects is a function of the
MAFs, the optimal ρ can be estimated as

ρ = p21(2p2 − 1)2. (7)

Note that the power computed with this theoretical estimate of ρ will differ slightly from
the power of the optimal test (5) which is based on the data driven optimal ρ, since we are
fixing ρ to obtain the power. However, our simulation studies (Section 4.3) suggest that
this difference tends to be small.

4 Simulations and Real Data Analysis

4.1 Type I error rate

For all simulations, sequence genotypes were generated from 10,000 chromosomes over
1 MB regions by the calibrated coalescent model with mimicking the linkage disequilib-
rium (LD) structure of European ancestry samples [16]. Continuous phenotypes were
generated from the null linear model

yi = 0.5X1 + 0.5X2 + ϵi, ϵi ∼ N(0, 1),

and binary phenotypes were generated from the null logistic model

logitP (yi = 1) = α0 + 0.5X1 + 0.5X2,

where X1 was a continuous covariate generated from N(0, 1), X2 was a binary covariate
generated from Bernoulli(0.5), and α0 was chosen to make penetrance 0.01. For binary
trait simulations, we generated retrospective case−control data with half being cases and
half being controls. Since the average length of a gene is around 3kb, we randomly se-
lected 3kb regions across the 1MB chromosome. For each model, we generated a total of
10, 000 data sets.

We applied six different methods to each of the simulated data sets: proposed test with
default wj = beta(MAFj; 1, 25) weights (SKAT-O); SKAT-O with flat weights (rSKAT-O);
original SKAT (ρ = 0) with beta(1, 25) weights (SKAT); SKAT (ρ = 0) with flat weights
(rSKAT); counting based burden test (N); and weighted counting burden test (W). For
rSKAT-O, rSKAT and counting based burden test (N), only variants with observed MAF
< 0.03 were used. The equal size grid of 11 points (from 0 to 1) were used to obtain test
statistics of the SKAT-O and rSKAT-O to search for optimal ρ. Table 1 shows that all six
methods well controlled type I error rates with α = 0.05 and α = 0.01.

To investigate type I error rates at very stringent genome-wide α levels, we conducted
extensive simulations under a slightly different setting (Supplementary D). Table 2 shows
that SKAT-O can accurately control type I error with moderate α levels, but produces
slightly inflated type I error rates at very small α levels.
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4.2 Power

As with the type I error simulations, we randomly selected 3kb regions from the broader
1Mb region, but we then randomly chose causal variants from among the variants with
true MAF < 0.03. The continuous phenotype were simulated from

yi = 0.5X1 + 0.5X2 + β1g1 + . . .+ βsgs + ϵi, ϵi ∼ N(0, 1),

and dichotomous phenotypes were simulated from

logitP (yi = 1) = α0 + 0.5X1 + 0.5X2 + β1g1 + . . .+ βsgs,

where (g1, . . . , gs) were selected causal variants. Covariates X1 and X2 follow the same
distribution in the type I error simulation, and α0 was chosen to make prevalence 0.01.

We considered simulations in which 10%, 20%, or 50% of rare variants were causal.
Since it is assumed that rarer variants are more likely to have large effect sizes, we set
βj = c| log10(mj)|, wheremj is the MAF of the jth variant. For continuous trait simulations,
we set c = 0.6, when 10% of the rare variants were causal, which gives maximum β = 2.4
for variants with MAF=10−4. We used c = 0.3 and c = 0.2, when 20% and 50% of the
rare variants were causal to compensate for the increased number of causal variants. For
dichotomous trait simulations, we set c = ln13/4 = 0.64, when 10% of the rare variants
were causal, which gives maximum OR=13 for variants with MAF=10−4. We scaled down
c with larger percentages of causal variants. We allowed sample size to vary as n = 1000,
2000, and 5000. Datasets were generated 1,000 times for each configuration. We applied
the same six methods used in the type I error simulations to each data set, and power was
estimated as the proportion of p-values less than α = 2.5× 10−6.

Figure 1 shows the empirical power under all considered configurations when non-
zero β coefficients are all positive, i.e., causal variants are all in the same directions. When
the percentage of causal SNPs was low, both the original SKATs (SKAT and rSKAT) and
the proposed SKAT-O (SKAT-O and rSKAT-O) had higher power than the burden tests.
When the proportion of causal SNPs increased, the burden tests performed better, and the
original SKAT has lower power than burden tests when 50% of variants are causal. The
SKAT-O and rSKAT-O perform better (when 20% of rare variants are causal) or similar
to the burden tests (when 50% of rare variants are causal). This suggests that the per-
formance of SKAT-O is closer to the burden tests in the presence of a larger proportion
of causal variants. The higher power of the weighted test over the unweighted test also
suggests that appropriate weighting can increase the power.

We also conducted simulations in which 20% of causal variants have negative βs (and
80% have positive βs). Results for these simulations are presented in Figure 2 and show
that as expected, burden tests lose a significant amount of power since the effects of the
causal variants cancel out due to the presence of negative β coefficients. Both the original
and the new optimal SKAT and rSKAT outperform the burden tests no matter where the
percentage of causal variants is small or large. In this case, the performance of SKAT-O is
closer to SKAT. When 10% or 20% of variants were causal variants, SKAT-O and rSKAT-
O had slightly lower power than SKAT and rSKAT. With 50% of variants being causal,
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SKAT-O and rSKAT-O had slightly higher power than SKAT and rSKAT. Compared to
Figure 1, SKAT and rSKAT did not suffer any power loss in continuous trait simulation
and had slightly lower power in dichotomous trait simulation which resulted from lower
enrichment for causal variants due to fixed prevalence and the presence of protective
variants. However, burden tests lose considerable power due to the fact that causal vari-
ants β coefficients are in mixed directions. In addition, we present the ρ values selected
by SKAT-O in Supplementary Figure 4, which shows that SKAT-O generally selects large
ρ values when the percentage of causal variants is high and β + /− = 100/0 and selects
small ρs when either the percentage of causal variants is low or β + /− = 80/20. Over-
all, our simulation results confirm that the proposed SKAT-O performed very well under
broad circumstances.

4.3 Sample Size and Power Calculation

We investigated the effect of different ρ values on the power under various models (Sup-
plementary E). Supplementary Figures 2 and 3 show that the test with ρ = 0 (original
SKAT) or ρ = 1 (burden tests) can have reduced power, depending on the model assump-
tions. For example, if only 10% of the variants are causal, then the test with ρ = 1 is
significantly less powerful than the test with ρ = 0. In contrast, when 50% of the vari-
ants are causal and all of the non-zero β coefficients are positive, the test with ρ = 0 had
lower power than the test with ρ = 1. In all scenarios, ρ computed from the proposed
formula (ρ=estimated) was most powerful. These figures also show that the theoreti-
cal power under the theoretical optimal ρ closely approximates the empirical power of
SKAT-O verifying the adequacy of using equation (7) to select ρ for power and sample
size calculations.

We also conducted simulations to evaluate the accuracy of the power calculation for-
mula given ρ values, and details can be found in Supplementary F.

4.4 Real Data Application

We applied the proposed SKAT-O and other competing methods to the resequencing data
from the Dallas Heart Study [18] to test for association between serum triglyceride (TG)
levels and rare variants in 3 genes (ANGPTL3, ANGPTL4, and ANGPTL5). The rese-
quencing dataset has sequence information on 93 observed variants in the three genes
from each of 3,476 individuals in three ethnic groups (white = 1043, black=1832 and his-
panic=601) [15]. 35, 32 and 26 variants reside in the ANGPTL3, ANGPTL4 and ANGPTL5
gene, respectively. All variants except one have MAF < 0.03. The histogram of the esti-
mated allele frequencies of the 92 variants with MAF < 0.03 is presented in Figure 3 A
and clearly indicates that the majority of variants are very rare.

We first performed single variant association analysis between each variant and log-
transformed TG level to explore whether there were variants with different directions of
effect. Specifically, we regressed the trait value on the variant while adjusting for gender
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and ethnicity and computed the t-statistic based on the regression coefficient (Figure 3 B-
D). There is no clear evidence that ANGPTL3 and ANGPTL5 have variants with opposite
effects; however, since some of the t-statistics for the variants in ANGPTL4 have opposing
signs and relatively large magnitude, suggesting that there is the potential for variants to
have different directions of effect.

We conducted two different analyses. First, we pooled all 93 variants from across the 3
genes and tested for their cumulative effect on log TG level. Second, then we considered
each gene separately and tested the association between rare variants in each gene and
log TG level. We again applied the 6 methods used in the simulation studies with adjust-
ing gender and ethnicity. The results (Table 3) show that when the variants in all three
genes were pooled to form a single region for analysis, SKAT-O was by far the most pow-
erful. Our individual variant analysis results suggested that the variants in ANGPTL3
and ANGPTL5 may affect log TG unidirectionally so it is unsurprising that the burden
tests (W,N) had comparable or better performance than SKAT and rSKAT for testing the
variants in ANGPTL3 and ANGPTL5. Also as expected due to the apparent presence of
variants with opposing effects, SKAT and rSKAT performed better than the burden tests
for testing the association between ANGPTL4 and log TG level. However, SKAT-O and
rSKAT-O performed very well across all settings and had only slightly larger p-values
than the best test for the particular setting.

Although log TG is a continuous variable, purely for illustration we also dichotomized
the log TG level by taking the the highest and lowest quartiles of each of the six sex-
ethnicity groups and using high/low log TG as a dichotomous outcome. The results
were qualitatively similar to the results keeping log TG continuous (Table 3).

5 Discussion and Conclusion

In this paper, we propose a new family of kernels that incorporates correlation among the
effects of causal variants. Based on this new family of kernels, we develop the optimal
testing procedure that uses the minimum p-values from different kernels as a test statis-
tic. In simulation and real data analysis, we show that the proposed optimal test often
outperformed the existing burden test and weighted linear kernel SKAT. In addition, we
derived sample size/power formula for SKAT for designing new sequence association
studies.

In whole exome or whole genome sequencing studies, we scan the genome by testing a
large number of genes. We cannot expect all the genes/regions to follow the same genetic
model of association: some are likely to have many causal variants with the effects in
the same direction while others may have few causal variants or the causal variants may
have the effects in different directions. A good example is the Dallas Heart Study data in
which ANGPTL 3 and 4 seem to follow different genetic association models. Thus, the
proposed SKAT-O can be an attractive choice for many situations, because it adapts to the
underlying biological model by selecting ρ based on the data.

We note that the proposed kernels only consider the compound symmetry covariance
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structure for the effect of rare variants. The simple structure of compound symmetry
allows us to efficiently compute p-values of the optimal test. For example, it would take
only 3 ∼ 4 hours to analyze a whole exome sequencing study with 20,000 genes and
2,000 samples on a laptop. Extension of the method to accommodate other correlation
structures is a problem of future interest.

The power/sample size calculation formula presented in this paper are derived with
fixed ρ, and thus we acknowledge that this formula may not be applicable for the pro-
posed SKAT-O. To derive power/sample size formula for the optimal test is challenging
due to the ζ term, and we suggest a practical approach to pre-select ρ based on assump-
tions on underlying genetic structure of association. In particular, researchers can use the
simple formula we developed in this paper to select a proper ρ parameter based on the
expected effects of the variants in power calculations. We note that for simplicity, this
formulae was derived under the assumption that the magnitudes of the nonzero β coef-
ficients are equal to the weights used in the test. However, our simulation studies show
that the power is robust to this assumption and is not very sensitive to modest changes in
ρ, and the proposed approach can closely approximate the empirical power of SKAT-O.

As shown in simulation and real data analysis, proper weighting can improve power
to detect rare variants association. In this paper, we use the beta(1, 25) density function as
a weight function that has been proposed by Wu et al.[19]. Since the weight is fixed prior
to conducting the association test, the type I error rate is not inflated. It is possible, how-
ever, the power can be lost if the weight is misspecified. Although an attractive solution
is to choose the weight adaptively using data and obtain p-values through permutation
or resampling, the computationally expense is not desirable, particularly for for genome-
wide studies, and it remains of interest to select the weight that maximizes power.
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Table 1: Type I error estimates of six different methods to test an association between
randomly selected 3kb regions with continuous and binary traits. Each entry represents
type I error rate estimates as the proportion of p-values smaller than α under the null
hypothesis based on 10, 000 simulated datasets.

Sample Size Level α SKAT-O SKAT rSKAT-O rSKAT N W

Continuous Trait
2000 0.05 0.051 0.051 0.050 0.048 0.048 0.047

0.01 0.009 0.009 0.009 0.009 0.009 0.009
5000 0.05 0.051 0.049 0.054 0.050 0.049 0.051

0.01 0.011 0.010 0.011 0.009 0.009 0.009
Dichotomous Trait

2000 0.05 0.051 0.049 0.049 0.048 0.047 0.047
0.01 0.011 0.009 0.012 0.010 0.010 0.011

5000 0.05 0.047 0.043 0.046 0.044 0.047 0.048
0.01 0.010 0.009 0.010 0.008 0.009 0.010
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Table 2: Type I error estimates of SKAT-O to test an association between randomly se-
lected 3kb regions with continuous and binary traits at stringent α level. The sample size
was 2, 000. Each entry represents type I error rate estimates as the proportion of p-values
smaller than α under the null hypothesis based on 107 simulated phenotypes.

Level α Continuous traits Binary traits

10−3 1.1× 10−3 1.1× 10−3

10−5 1.7× 10−5 1.2× 10−5

2.5× 10−6 4.1× 10−6 3.3× 10−6

Table 3: Analysis of Dallas Heart Study sequence data. Each entry represents a p-value
from each method after adjusting gender and ethnicity. The selected ρ values by SKAT-O
and rSKAT-O are presented in the parentheses. “ALL” indicates analysis results of joint
test of all 93 variants in 3 genes.

Gene SKAT-O rSKAT-O SKAT rSKAT N W

Continuous TG Level
ALL 1.8× 10−5 (ρ = 0.1) 4.6× 10−5 (ρ = 0.2) 9.5× 10−5 2.9× 10−4 7.2× 10−5 2.3× 10−4

ANGPTL3 2.6× 10−3 (ρ = 0.5) 1.3× 10−3 (ρ = 1) 8.9× 10−3 6.2× 10−3 1.1× 10−3 1.9× 10−3

ANGPTL4 1.7× 10−4 (ρ = 0) 8.5× 10−4 (ρ = 0.1) 9.5× 10−5 6.9× 10−4 4.9× 10−3 3.1× 10−2

ANGPTL5 3.4× 10−1 (ρ = 1) 5.0× 10−1 (ρ = 1) 7.6× 10−1 8.5× 10−1 3.3× 10−1 2.0× 10−1

Dichotomous TG Level
ALL 1.1× 10−4 (ρ = 0.1) 2.8× 10−4 (ρ = 0.1) 1.4× 10−4 2.4× 10−4 2.2× 10−3 2.7× 10−3

ANGPTL3 4.7× 10−2 (ρ = 0.4) 3.2× 10−2 (ρ = 0.8) 4.7× 10−2 4.1× 10−2 2.3× 10−2 3.6× 10−2

ANGPTL4 1.6× 10−4 (ρ = 0) 3.6× 10−4 (ρ = 0.1) 9.4× 10−5 3.3× 10−4 3.1× 10−3 2.2× 10−2

ANGPTL5 4.6× 10−1 (ρ = 0) 3.1× 10−1 (ρ = 0) 3.0× 10−1 1.9× 10−1 8.7× 10−1 4.0× 10−1
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Figure 1: Empirical power of SKAT-O and competing methods at α = 2.5 × 10−6 using
simulation studies when region size=3kb and β + /− = 100/0. Top panel considers con-
tinuous phenotypes and bottom panel considers dichotomous phenotypes. From left to
right, the plots consider the setting in which 10% of rare variants were causal, 20% of
rare variants were causal, and 50% of rare variants were causal. The detailed simulation
setups are described in “Simulations and Real Data Analysis”.
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Figure 2: Empirical power of SKAT-O and competing methods at α = 2.5 × 10−6 using
simulation studies when region size=3kb and β + /− = 80/20. Top panel considers con-
tinuous phenotypes and bottom panel considers dichotomous phenotypes. From left to
right, the plots consider the setting in which 10% of rare variants were causal, 20% of
rare variants were causal, and 50% of rare variants were causal. The detailed simulation
setups are described in “Simulations and Real Data Analysis”.
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Figure 3: Single variant analysis results of Dallas Heart Study data. A) Histogram of
minor allele frequencies of 92 variants with MAF < 0.03. B-D) Plots of log10(MAF) vs.
t-statistic values of each variant of ANGPTL 3,4 and 5 genes. The dashed line represents
the 95% confidence interval of no-association.
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