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ABSTRACT: For most complex diseases, the fraction of heritability that can be explained by the variants discovered from
genome-wide association studies is minor. Although the so-called “rare variants” (minor allele frequency [MAF] < 1%) have
attracted increasing attention, they are unlikely to account for much of the “missing heritability” because very few people may
carry these rare variants. The genetic variants that are likely to fill in the “missing heritability” include uncommon causal
variants (MAF < 5%), which are generally untyped in association studies using tagging single-nucleotide polymorphisms
(SNPs) or commercial SNP arrays. Developing powerful statistical methods can help to identify chromosomal regions
harboring uncommon causal variants, while bypassing the genome-wide or exome-wide next-generation sequencing. In this
work, we propose a haplotype kernel association test (HKAT) that is equivalent to testing the variance component of random
effects for distinct haplotypes. With an appropriate weighting scheme given to haplotypes, we can further enhance the ability
of HKAT to detect uncommon causal variants. With scenarios simulated according to the population genetics theory, HKAT
is shown to be a powerful method for detecting chromosomal regions harboring uncommon causal variants.
Genet Epidemiol 37:560–570, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

Genetic association studies have provided insights into
the genetic architecture of complex diseases [Hardy and
Singleton, 2009; WTCCC, 2007]. However, for most complex
diseases, the fraction of heritability that can be explained by
the variants discovered from association studies remains mi-
nor [Eichler et al., 2010; Gibson, 2012; Maher, 2008; Manolio
et al., 2009]. Although the so-called “rare variants” (minor
allele frequency [MAF] < 1%) have attracted increasing atten-
tion, they are unlikely to account for much of the “missing
heritability” because very few people may carry these rare
variants [Pihur and Chakravarti, 2010]. The best bet of ge-
netic variants to fill in the “missing heritability” includes two
sources: uncommon causal variants (MAF < 5%) that are
generally untyped in association studies using tagging single-
nucleotide polymorphisms (SNPs) or commercial SNP ar-
rays, and common causal variants with small genetic effects
that cannot be detected via conventional statistical analyses
[Eichler et al., 2010; Manolio et al., 2009; Yi et al., 2011]. In-
deed, existing association studies such as genome-wide asso-
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ciation studies (GWAS) or candidate-gene association studies
(CGAS) are not designed to capture uncommon causal vari-
ants [Wray et al., 2011]. The emergence of next-generation
sequencing technologies has allowed for the mapping of all
genetic variants across the human genome [Hawkins et al.,
2010]. However, the cost of sequencing remains high [Sboner
et al., 2011]. Genome-wide sequencing is especially expensive
for large sample sizes that are required for association stud-
ies [Sampson et al., 2012]. In the current stage, GWAS and
CGAS data are still much more widely available than next-
generation sequencing data [Li et al., 2010; WTCCC, 2007].

The widely used single-marker analysis that is imple-
mented on each tagging SNP (usually with MAF ≥ 5%) is
underpowered for detecting uncommon causal variants [Gu-
sev et al., 2011] because the information of uncommon causal
variants is not easy to be represented by common SNPs. Hap-
lotypes, combinations of multiple adjacent alleles on a single
chromosome, may act as “superalleles” and serve as better
tagging markers for uncommon causal variants that are gen-
erally not genotyped in GWAS or CGAS [Lin et al., 2012b].
For case-control studies with unrelated subjects, haplotype
frequencies are often compared between cases and controls
with a likelihood-ratio statistic [Becker et al., 2005; Epstein
and Satten, 2003; Zhao et al., 2000]. To deal with contin-
uous traits, a regression framework has been introduced to
relate inferred haplotype frequencies to observed phenotypes
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[Zaykin et al., 2002]. Moreover, score tests based on general-
ized linear models have been proposed to deal with a variety
of traits [Schaid et al., 2002]. Methods with use of haplo-
type similarity [Tzeng et al., 2003] and haplotype clustering
[Browning and Browning, 2007; Durrant et al., 2004; Moli-
tor et al., 2003; Tzeng, 2005; Tzeng et al., 2006] were also
developed for GWAS or CGAS.

Modeling individual effects for all distinct haplotypes may
induce many parameters and cause computation problems
to the conventional likelihood-ratio test [Schaid et al., 2002].
In this work, we propose a haplotype kernel association test
(HKAT) that is equivalent to testing the variance compo-
nent of random effects for distinct haplotypes. Despite a
large number of distinct haplotypes in a region, the signal of
haplotype-trait association can be aggregated to a single vari-
ance parameter. With an appropriate weighting scheme given
to haplotypes, we can further enhance the ability of HKAT to
detect uncommon causal variants. We also consider the situ-
ation that a gene or a chromosomal region harbors not only
uncommon causal variants but also common causal variants,
and then we compare HKAT with several popular genotype or
haplotype analysis methods by performing systematic sim-
ulations under a wide range of linkage disequilibrium (LD)
patterns. In addition, we apply HKAT to data from a genetic
association study related to human adiposity.

Materials and Methods

Haplotype Kernel Association Test (HKAT)

Let Yi be the trait of the ith subject (i = 1, . . . , n), and let
xi = [xi,1 xi,2 · · · xi,p ]′ be a vector that codes p nongenetic
covariates (e.g., age, gender, ethnicity, etc.) of the ith sub-
ject. To account for haplotype ambiguity, the expectation-
maximization algorithm [Dempster et al., 1977] is often used
to infer the posterior distribution of haplotypes given mul-
timarker genotypes. Let hi = [hi,1 hi,2 · · · hi,L ]′ be the ith
subject’s expected frequencies of L distinct haplotypes over
his/her posterior distribution of haplotypes. To relate the ge-
netic composition to the trait, we consider a linear model for
a continuous trait:

E (Yi) = α0 + α′xi + β′h i, (1)

or a logistic regression model for a dichotomous trait:

logitP (Yi = 1) = α0 + α′xi + β′h i, (2)

where α0 is the intercept term, α = [α1 α2 · · · αp ]′ is the
vector of regression coefficients for the p covariates, and
β = [β1 β2 · · · βL ]′ is the vector of regression coefficients for
the L distinct haplotypes.

To test if any of the haplotypes are associated with the
trait, the null hypothesis is H0 : β = 0, i.e., H0 : β1 = β2 =

· · · = βL = 0. However, the commonly used likelihood-ratio
test is computationally intensive and underpowered espe-
cially when some haplotypes are of low frequency. To reduce
the number of parameters for distinct haplotypes, we assume
that βj is a random effect following an arbitrary distribu-

tion with a mean of zero and a variance of wj τ, where τ is
a variance component and wj is a prespecified weight for
the jth distinct haplotype. Therefore, τ is a common param-
eter for all of the distinct haplotypes and wj ’s (j = 1, . . . ,
L) are prespecified weights for these distinct haplotypes. To
test whether the regression coefficients of the L distinct haplo-
types are all zero (H0 : β = 0) is equivalent to test whether the
variance component is zero (H0 : τ = 0). The score statistic
to test H0 : τ = 0 is

THK AT = (y – μ̂)′ H ′WH H (y – μ̂) (3)

where y is the vector of traits of all the n subjects, μ̂ is the
predicted mean of y under the null hypothesis (H0 : τ = 0),
H is the haplotype frequency matrix with the ith column as
h i , and WH is a diagonal matrix with the (j, j)th element to
be the prespecified weight for the jth distinct haplotype (wj ).
This test is referred to as the HKAT.

According to the theory of quadratic forms of normal vari-
ables [Scheffe, 1959], THKAT is asymptotically distributed as
a mixture of χ2 variables:

∑�
i=1 λiχ

2
1,i , where χ2

1,i ’s are in-
dependent χ2 variables with one degree of freedom, and
λ1 ≥ λ2 ≥ · · · ≥ λ� are the ordered eigenvalues of the ma-
trix P 1/2

0 H ′WH H P 1/2
0 (with the rank of �). To reduce

the bias that may be caused by a small sample size, we
use the restricted maximum likelihood estimator of the
variance component [Zhang and Lin, 2003] and there-

fore the matrix P 0 = V̂
–1

– V̂
–1

X̃ (X̃
′
V̂

–1
X̃ )–1X̃

′
V̂

–1
, where

X̃ = [1 X ] is an n × (p + 1) matrix and V̂ is a diagonal
matrix with the (i, i)th element to be the estimated vari-
ance of μ̂i . For a continuous trait, V̂ = σ̂2

0I , where σ̂2
0 is

the mean squared error under the null hypothesis and I
is an n × n identity matrix. For a dichotomous trait, V̂ =

diag(μ̂1(1 – μ̂1), μ̂2(1 – μ̂2), . . . , μ̂n(1 – μ̂n)) where μ̂i =

logit–1(α̂0 + α̂′xi) is the estimated probability of being a case
under the null hypothesis. The distribution of THKAT can be
approximated by the three-moment approximation method
[Allen and Satten, 2007, 2009; Imhof, 1961; Pan, 2009; Tzeng
et al., 2009; Zhang, 2005], and the P-value of the observed
HKAT test statistic is given by

P

(
χ2

b > (THKAT – c1) ×
√

b

c2

+ b

)
, (4)

where c j =
∑�

i=1 λ
j
i , b = c3

2
/
c2

3
, and χ2

b is the χ2 distribution

with b degrees of freedom.

Genotype Kernel Association Test (GKAT)

To investigate the association of genetic variants in a chro-
mosomal region with the disease, we can use genotypes to
bypass the haplotype-phasing stage. Let g i be a vector of
genotype scores of the ith subject at the set of markers in
the chromosomal region. Under the assumption of additive
genetic model, the possible elements of g i are 0, 1, and 2,
representing the number of copies of the minor allele. The
vector g i can be recoded accordingly if dominant or recessive
genetic models are considered. In Equations (1) and (2), if
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we substitute h i with g i , the score statistic to test whether the
variance component of genotypes is zero will be

TG K AT = (y – μ̂)′ G ′WG G (y – μ̂) , (5)

where G is the genotype matrix with the ith column to be
g i , and WG is a diagonal matrix with the (j, j)th element
to be the weight given to the jth genetic variant. This test is
referred to as the GKAT. Similarly, TGKAT is asymptotically

distributed as a mixture of χ2 variables:
∑�′

i=1 λiχ
2
1,i , where

χ2
1,i ’s are independent χ2 variables with one degree of free-

dom, and λ1 ≥ λ2 ≥ · · · ≥ λ�′ are the ordered eigenvalues
of the matrix P 1/2

0 G ′WG G P 1/2
0 (with the rank of �′).

The test statistic of GKAT is equivalent to that of the popular
sequence kernel association test (referred to as “SKAT”) [Wu
et al., 2011], except the weight given to genetic variants, i.e.,
WG in Equation (5). In SKAT, the weight given to the jth
variant is wj = Beta(p j ; a1, a2)2, where p j is the MAF of the
jth variant, and a1 and a2 are suggested to be set at 1 and 25,
respectively [Wu et al., 2011]. We call the test in Equation (5)
GKAT rather than SKAT [Wu et al., 2011] because we want to
distinguish the situations of using SKAT and GKAT. SKAT has
been proposed by Wu et al. [2011] for analyzing sequencing
data, whereas GKAT is used to analyze genotyped SNPs in
GWAS or CGAS.

WH and WG

In Equations (3) and (5), WH and WG are diagonal ma-
trices with weights given to distinct haplotypes and SNPs,
respectively. If mutations are rare, the distribution of the fre-
quency (p) of the mutant allele is f (p ) ∝ p –1 [Crow and
Kimura, 1970; Hill et al., 2008; Kimura, 1983; Wright, 1931].
A causal allele may be a mutant allele or an ancestral al-
lele, so the frequencies of causal alleles follow a U-shaped
distribution; i.e., f (p ) ∝ p –1 + (1 – p )–1 = [p (1 – p )]–1 [Hill
et al., 2008]. Therefore, a straightforward weight given to a
genetic variant with MAF of p j is [p j (1 – p j )]–1. To avoid
obtaining an extreme weight given a p j very close to 0, we
follow Madsen and Browning [2009] to estimate frequencies

as p̂ j =
(mj +1)
(2nj +2) , where mj is the number of minor allele ob-

served for the jth SNP and nj is the total number of subjects
genotyped for that SNP. In the following, GKAT is evaluated
with WG = diag([p̂ 1(1 – p̂ 1)]–k, . . . , [p̂ L (1 – p̂ L )]–k), where L
is the number of loci in the chromosomal region and k = 0,
1
2 , and 1, respectively. According to the different levels of k,
the test is referred to as GKAT0, GKAT1/2, or GKAT1, respec-
tively. As mentioned above, k = 1 is a straightforward choice
given the U-shaped distribution for a causal allele [Hill et al.,
2008]. The choice of k = 1

2 is based on Madsen and Brown-
ing’s [2009] weight given to genetic variants. In addition, k =

0 represents a same weight given to all variants, regardless of
their MAFs.

Parallel to GKAT, HKAT is evaluated at WH =

diag([f̂ 1(1 – f̂ 1)]–k, . . . , [f̂ L (1 – f̂ L )]–k), where L here is the
number of distinct haplotypes in the chromosomal region
and k = 0, 1

2 , and 1, respectively. The test is referred to
as HKAT0, HKAT1/2, or HKAT1, respectively. In WH , f h

is the frequency of haplotype h, estimated with f̂ h =
(Ch +1)
(2n+2) ,

where Ch is the number of haplotype h among all of the
n subjects. When haplotype phases are ambiguous, Ch can
be inferred from unphased multimarker genotypes using the
expectation-maximization algorithm [Dempster et al., 1977],
under the assumption of Hardy-Weinberg equilibrium [Ex-
coffier and Slatkin, 1995; Hawley and Kidd, 1995; Long et al.,
1995].

When dealing with case-control studies, some researchers
[Madsen and Browning, 2009; Li et al., 2010; Lin et al., 2012b]
have proposed using only unaffected subjects to estimate
MAFs or haplotype frequencies. However, weights depen-
dent on traits (affected or unaffected) will inflate type-I error
rates [Lin and Tang, 2011], especially for the HKAT1 test.
Suppose the count of some distinct haplotype is five in the
pooled sample and that, by chance, these five haplotypes are
all contributed by the affected subjects. If we calculate the
frequencies and consequent weights with only the unaffected
subjects, this haplotype will be even more up-weighted (i.e.,
more than if it were weighted independently of the traits) and
this artificial association will be amplified. This phenomenon
will jeopardize the validity of the HKAT1 test, in which a larger
magnitude of weight (k = 1) is given to haplotypes. There-
fore, we use the whole sample to estimate MAFs (in GKAT)
or haplotype frequencies (in HKAT).

Simulation Study

Following Li et al.’s simulation [2010] and using the Cosi
program [Schaffner et al., 2005], we generated 500 data sets
each containing 10,000 chromosomes of 1 Mb regions. The
chromosomes were generated according to the LD patterns of
the HapMap CEU (Utah residents with ancestry from north-
ern and western Europe) samples, and an ∼50 kb causal
region was randomly picked from the 1 Mb region for each
data set. Within each causal region, we randomly selected d
variants (d = 5, 10, 20, 30, or 40) as causal variants. When eval-
uating the performance of different methods for detecting
uncommon causal variants, the causal variants were chosen
from the variants with population MAFs ranging from 0.1%
to 5%. In addition, a gene may harbor both uncommon and
common causal variants, and therefore we also consider the
scenario with causal variants having population MAFs rang-
ing from 0.1% to 30%. Minor alleles were treated as causal
alleles, which might be deleterious or protective (or, increase
or decrease the trait values, when continuous traits are simu-
lated). We let risk% of the d causal variants increase the disease
risk, while the remaining (100 – risk)% decrease the disease
risk (or increase/decrease the value of a continuous trait).
The value of risk was evaluated at 5, 20, 50, 80, and 100, re-
spectively. To mimic the selection of tagging SNPs based on
the HapMap CEU data, for each data set, we randomly chose
120 from the 10,000 chromosomes and paired them as 60
subjects. Based on the LD patterns of the 60 subjects, we used
the H-clust method [Rinaldo et al., 2005; Roeder et al., 2005]
to select tagging SNPs with the conventional criteria, i.e., r2 >

0.8 (only one SNP selected from a group of SNPs in LD with
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r2 > 0.8) and MAF > 5% [Barrett and Cardon, 2006; Keating
et al., 2008]. These tagging SNPs were served as genotyped
genetic variants in our simulations. For each simulated data
set, a 20-tagging-SNP window that encompasses the causal
region was chosen as a multimarker set used for analysis.

Dichotomous Traits

Population genetics theories and empirical studies all sup-
port the assumption that the effect sizes of causal variants
tend to be inversely related to their allele frequencies [Bod-
mer and Bonilla, 2008; Eyre-Walker, 2010; Park et al. 2011;
Ramsey et al., 2012; Weetman et al., 2010]. Therefore, follow-
ing previous studies [Li et al., 2010; Lin et al., 2012b; Madsen
and Browning, 2009], we let the genotype relative risk (GRR)
of the jth causal variant be

GRRj =

(
PARj(

1 – PARj

) · MAFj

+ 1

)(–1)I (ξj =1)

, (6)

where PARj and MAFj are the population attributable risk
(PAR) and the population MAF of the jth causal variant, re-
spectively. The indicator function I (ξj = 1) is 1 or 0 according
to whether the jth causal variant is protective or deleterious.
Given PAR, the relationship between MAF and GRR is shown
in Supplementary Figure S1. In addition, Supplementary
Figures S2 and S3 present the distributions of MAFs and
GRRs of the causal variants in our 500 simulated data sets,
respectively.

To generate the genotypes of an individual, we randomly se-
lected two chromosomes from the remaining 9,880 (= 10,000
– 120) chromosomes. The disease status of an individual with
chromosomes {H1, H2} was determined by

P (affected| {H1, H2}) = f 0 ×
2∏

k=1

d∏
j =1

GRR
I(Hk,j =aj )
j , (7)

where f 0 is the baseline penetrance and was fixed at 10% [Li
et al., 2010; Lin et al., 2012b], and aj is the minor allele of
the jth causal variant. The total sample size was set at 2,000.
Considering that cases are usually more difficult to recruit and
so many studies have fewer cases than controls [Barrett et al.,
2011; Macgregor et al., 2011; Sawcer et al., 2011; WTCCC,
2007; Zhernakova et al., 2007], we let the 2,000 subjects be
composed of 400 cases and 1,600 controls (a balanced case-
control design with equal numbers of cases and controls will
be discussed later). After generating the disease status based
on Equation (7), the genotypes of the causal variants that were
not selected as tagging SNPs were removed from our analysis
data sets. When all of the causal variants were uncommon
(MAF < 5%), almost all of them were removed from the
multimarker set because the tagging SNPs were selected with
the criterion of MAF > 5% [Barrett and Cardon, 2006; Keating
et al., 2008]. When the causal variants were selected from
those having MAFs ∈ [0.1%, 30%], some common causal
variants (MAF > 5%) might be reserved in the multimarker
set if they were selected as tagging SNPs.

Continuous Traits

In addition to dichotomous traits, we also simulated con-
tinuous traits. The trait value (Y) was generated by

Y = 10C1 + 10C2 + β1g 1 + β2g 2 + · · · + βdg d + e, (8)

where C1 is a continuous covariate following a standard nor-
mal distribution, C2 is a dichotomous covariate taking a value
of 0 or 1 each with a probability of 0.5, g j is the number of
causal allele on the jth causal variant (g j = 0, 1, or 2), βj is
the effect size of the jth causal variant, and e was the random
error. The random error, e, was assumed to have a normal
distribution with a mean of zero and a variance of Ve . The
effect sizes β’s and Ve were determined so that the “marginal
heritability” (the heritability of each causal variant, notated as

h2 and h2 =
Var(βj g j )

Var(Y) =
Var(βj g j )

Var(10C1+10C2)+dVar(βj g j )+Ve
for j = 1, . . . ,

d) was fixed at 0.05%, 0.1%, 0.15%, or 0.2% under the al-
ternative hypothesis. The actual values of Ve and β’s were
not critical. Once Ve was specified, β’s were determined via
the setting of the marginal heritability. We first assigned an
arbitrary value to Ve , and we then obtained βj (j = 1, . . . , d)
from

Var
(
βj g j

)
= β2

j · 2 · MAFj · (1 – MAFj )

=
h2 · [Ve + Var (10C1 + 10C2)]

1 – d · h2

=
h2 · (Ve + 125)

1 – d · h2
. (9)

The relationship between β’s and the MAFs of causal vari-
ants is shown in Supplementary Figure S4. The total sample
size was set at 2,000. After generating the traits, the genotypes
of the causal variants that were not selected as tagging SNPs
were removed from our analysis data sets.

Tests Under Comparison

We compared the three HKAT tests (HKAT0, HKAT1/2, and
HKAT1) and the three GKAT tests (GKAT0, GKAT1/2, and
GKAT1) with a global score test for haplotypes (hereinafter
referred to as “global”) and a test based on the maximum
score statistic over all haplotypes (hereinafter referred to as
“max”), both of which have been widely used for haplotype
association analyses [Schaid et al., 2002]. The global tests the
overall effect of all haplotypes, while max tests the effect of
the most significant haplotype. When performing global and
max, the haplotypes with counts less than 5 were lumped
into a single baseline group, according to the default of the
package “haplo.stats” [Schaid et al., 2002]. To allow the HKAT
tests to be robust to genotyping errors, we merged haplotypes
having a count less than 5 with their most similar haplotypes
having a count larger than 5, where “5” was chosen to lead
to a parallel comparison on HKAT, global, and max. Under
the assumption of Hardy-Weinberg equilibrium [Excoffier
and Slatkin, 1995; Hawley and Kidd, 1995; Long et al., 1995],
we used the “haplo.em” function in the “haplo.stats” package
[Schaid et al., 2002] to infer haplotype phases from unphased
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multimarker genotypes with the expectation-maximization
algorithm [Dempster et al., 1977]. The jth element of hi =

[hi,1 hi,2 · · · hi,L ]′ in Equation (1) is determined by hi,j =
1
2

∑
k 	=j Pr(Hj , Hk|g i) + Pr(Hj , Hj |g i), where Pr(Hj , Hk|g i)

is the posterior distribution of haplotype pairs (Hj , Hk) given
multimarker genotypes g i . In this way, all possible haplotype
pairs were considered with their posterior probabilities. To
have a better control of type-I error rates, phasing cases and
controls together (instead of phasing them separately) was
suggested [Lin and Huang, 2007]. Therefore, we phased the
pooled sample of cases and controls when dichotomous traits
were evaluated.

In addition to global and max, we used the R package
“SKAT” to perform the popular sequence kernel association
test (referred to as “SKAT”) [Wu et al., 2011], as well as the op-
timal test (referred to as “SKAT-Op”) [Lee et al., 2012], which
optimally combines the burden tests [Li and Leal, 2008; Lin
et al., 2011; Madsen and Browning, 2009; Morris and Zeg-
gini, 2010; Price et al., 2010] and SKAT [Wu et al., 2011]. Both
SKAT and SKAT-Op were proposed for dealing with sequenc-
ing data, therefore we applied these two approaches to the full
sequence (rather than merely the 20 tagging SNPs) of the anal-
ysis region. For any given data set, there were around 170–280
observed variants in an analysis region. With consideration
of cost, there is a trade-off between the number of subjects
and different study designs (CGAS or next-generation se-
quencing) [Sampson et al., 2011; Sboner et al., 2011]. There-
fore, following a suggestion from an anonymous reviewer,
when performing SKAT and SKAT-Op on full sequencing
data, the total sample size was set at 200 (or 40 cases and 160
controls for simulations of dichotomous traits) rather than
2,000.

When analyzing dichotomous traits, we also included a
haplotype grouping test (referred to as “HG”) [Feng and
Zhu, 2010; Zhu et al., 2010] and a weighted haplotype test
on genotyped SNPs (referred to as “WHG”) [Li et al., 2010]
into comparisons. First, the data are split into a training
set and a testing set. HG classifies haplotypes as risk or
nonrisk with the training set, and then tests for associa-
tions by performing a Fisher’s exact test with the testing
set. WHG is based on a similar procedure, but it further
boosts power to detect rare variants by weighting haplo-
types according to their frequencies. For both tests, we ran-
domly selected 30% of the sample as the training set and
let the remaining 70% be the testing set, following the al-
location chosen by previous studies [Li et al., 2010; Lin
et al., 2012b].

Results

Type-I Error Rates

By setting the PAR (for dichotomous traits) or the marginal
heritability (for continuous traits) at exactly 0%, we evalu-
ated type-I error rates by performing 1,000 replications for
each of the 500 simulated data sets. The P-values of global
and max were obtained with 1,000–20,000 permutations by

a sequential Monte Carlo algorithm [Besag and Clifford,
1991], according to the default of the package “haplo.stats”
[Schaid et al., 2002]. Then we evaluated type-I error rates
given significance levels from 10–4 to 10–1. Based on 500,000
(= 500 × 1, 000) replications across the 500 simulated data
sets, Figure 1 shows that all of the 12 tests (for dichotomous
traits) or 10 tests (for continuous traits) are valid in the sense
that their type-I error rates match the nominal significance
levels.

Power Comparisons

When we evaluated power, a total of 100 replications were
performed under each scenario (each combination of risk,
PAR or marginal heritability, and d) for each of the 500 sim-
ulated data sets. Figures 2 and 3 present the power averaged
over the 500 data sets, given a nominal significance level of
10–3, for dichotomous traits and continuous traits, respec-
tively. When the nominal significance level is set at 10–4, we
get the results presented in Supplementary Figures S5 and
S6. HKAT1 (HKAT with a weighting order k = 1) is the most
powerful test, given uncommon causal variants with MAFs
∈ [0.1%, 5%] or given a mixture of uncommon and common
causal variants with MAFs ∈ [0.1%, 30%].

The power performance of these tests may be sensitive to
(1) the percentage of rare variants among all causal variants,
and (2) the LD pattern between the causal variants and the
surrounding markers. With stratified analysis, we find that
HKAT1 consistently outperforms other tests over all ranges
of percentage of rare variants, and all ranges of average r2

between causal variants and surrounding markers (data not
shown).

Regarding the power performance of different levels of
weighting order, k = 1 is the best, followed by k = 1

2 and
k = 0, for both HKAT and GKAT. This is because k = 1
setting up-weights rare haplotypes that are more likely to
tag rare causal variants. As can be seen in the top rows of
Figures 2 and 3, genotype-based tests (GKAT and SKAT [Lee
et al., 2012; Wu et al., 2011], which are equivalent except for
different weighting schemes given to variants) are underpow-
ered when all causal variants are uncommon with population
MAFs ∈ [0.1%, 5%], because their power can only be driven
by tagging SNPs (usually with MAF > 5% [Barrett and Car-
don, 2006; Keating et al., 2008]) that are generally not good
surrogates for uncommon causal variants. Haplotype-based
tests (HKAT, global, and max) are more powerful because
haplotypes can be better tags for uncommon causal variants.
When some causal variants are common (so that the tagging
SNPs are likely to represent the information of these com-
mon causal variants), the performance of genotype-based
tests (GKAT and SKAT) improves, although it still cannot
compete with HKAT (see the bottom rows of Figs. 2 and 3).

Application to a Human Adiposity Study

Next, we applied the 10 tests for continuous traits to a
human adiposity study [Chung et al., 2009]. In this study,
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Figure 1. Type-I error rates. The x-axis is the nominal significance level (where the leftmost point is 10−4 and the rightmost point is 10−1), and
the y-axis is the type-I error rate. (A) Dichotomous traits and “uncommon” causal variants with MAFs ∈ [0.1%, 5%]. (B) Dichotomous traits and
“uncommon + common” causal variants with MAFs ∈ [0.1%, 30%]. (C) Continuous traits and “uncommon” causal variants with MAFs ∈ [0.1%, 5%].
(D) Continuous traits and “uncommon + common” causal variants with MAFs ∈ [0.1%, 30%]. The curves of all the tests are on the line y = x (the
black bold line).

1,982 unrelated European Americans living in the New York
City metropolitan area were recruited. We investigated the
association of 17 tagging SNPs in the Janus kinase 2 (JAK2)
gene (located on chromosome 9p24) with body-mass in-
dex (BMI). These 17 tagging SNPs were selected from SNPs
from 10,000 base pairs upstream to 10,000 base pairs down-
stream of JAK2’s coding sequence, according to the con-
ventional criteria of r2 > 0.8 and MAF > 5%. Following
Chung et al. [2009], we first adjusted the log-transformed
BMI with sex, age, age2, and their respective interactions.
Associations of the joint additive and dominance effects of
each of the 17 tagging SNPs with BMI were tested using the
ordinary-least-squares regression method. Consistent with

the results from Chung et al. [2009] (see their Table 3),
there were six SNPs with P-values smaller than 0.05, with the
smallest P-value (0.008) being observed on SNP rs3780365.
However, after correcting for multiple testing, none of
the six SNPs was significant at the family-wise error rate
of 0.05.

We then resorted to the 10 multimarker tests. The first step
was to define a “multimarker set.” A natural strategy is to
aggregate all SNPs located in a gene [Schifano et al., 2012]. We
let all the 17 SNPs in the JAK2 gene be a “multimarker set” and
analyze this set with the 10 multimarker tests, respectively.
Among the 10 tests, GKAT0, GKAT1/2, GKAT1, and HKAT1
suggest that the JAK2 gene is associated with BMI, and the
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Figure 2. Dichotomous trait—comparison of power by risk (the percentage of deleterious variants among the d causal variants), PAR, and d (the
number of causal variants). The figure shows the power comparison by risk (left column, given PAR = 0.5% and d = 40), PAR (middle column, given d = 40
and risk = 100%), and d (right column, given risk = 100% and PAR = 0.5%), respectively. The nominal significance level was set at 10−3. The top row is the
result given “uncommon” causal variants with MAFs ∈ [0.1%, 5%]; the bottom row is the result given “uncommon + common” causal variants with
MAFs ∈ [0.1%, 30%].

P-values are 0.025, 0.026, 0.024, and 0.025, respectively. The
P-values of other six multimarker tests are all larger than 0.05.

Another commonly used strategy is to partition a gene
into segments according to the LD patterns [Gabriel et al.,
2002; Han and Pan, 2010; Schifano et al., 2012; Twells et al.,
2003; Zhang et al., 2002]. Based on the default of Haploview
[Barrett et al., 2005] to customize the haplotype blocks (the
Gabriel et al.’s [2002]rule), there are two haplotype blocks in
the JAK2 gene. We applied the 10 multimarker tests to the
two haplotype blocks, respectively. Only HKAT1 and global
suggest an association of haplotypes from the second block
(rs3780365- rs2230724- rs1410779- rs3824432- rs3780372-
rs10491652- rs3780379- rs966871) with BMI, and the P-values
are 0.004 and 0.006, respectively.

JAK2 is involved in leptin, insulin, and ABCA1 (the adeno-
sine triphosphate-binding cassette transporter A1) signaling
pathways [Banks et al., 2000]. Disturbance in leptin and in-
sulin signaling pathways are related to obesity and metabolic
syndrome [Penas-Steinhardt et al., 2011]. It may influence
body fat mass, insulin sensitivity, or serum lipid profile in
humans [Ge et al., 2008]. An independent study genotyped
tagging SNPs spanning JAK2 for 2,760 white female twin

subjects from the St. Thomas’ U.K. Adult Twin Registry [Ge
et al., 2008], and it led to a similar result as that of Chung
et al.’s [2009] study. That is, although some P-values of SNP-
obesity association were smaller than 0.05, none of these
remained significant after adjusting for multiple testing. In-
vestigation of the tagging SNPs via HKAT may provide ad-
ditional information that may be missed by single-marker
analyses.

Discussion

Because the cost of sequencing remains high, association
studies using SNP arrays or tagging SNPs are still among
the most commonly available data types in the current stage
[Li et al., 2010; WTCCC, 2007]. The aim of this study is to
provide a valid and powerful statistical method for detecting
disease-associated genomic regions with uncommon causal
variants from contemporary GWAS or CGAS data sets, thus
bypassing the genome-wide or exome-wide next-generation
sequencing. Both uncommon causal variants with large effect
sizes and common variants with small effect sizes are possible
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Figure 3. Continuous trait—comparison of power by risk (the percentage of variants among the d causal variants that increase the trait value),
the marginal heritability, and d (the number of causal variants). The figure shows the power comparison by risk (left column, given the marginal
heritability = 0.2% and d = 40), the marginal heritability (middle column, given d = 40 and risk = 100%), and d (right column, given risk = 100% and
the marginal heritability = 0.2%), respectively. The nominal significance level was set at 10−3. The top row is the result given “uncommon” causal
variants with MAFs ∈ [0.1%, 5%]; the bottom row is the result given “uncommon + common” causal variants with MAFs ∈ [0.1%, 30%].

to contribute to the missing heritability for complex diseases
[Eichler et al., 2010; Manolio et al., 2009; Yi et al., 2011].
Single-locus analysis is underpowered to detect these two
types of causal variants [Stahl et al., 2010, 2012]. Because a
susceptibility gene is likely to harbor multiple causal variants
[Hugot et al., 2001; Madsen and Browning, 2009; Ogura et al.,
2001; Pritchard, 2001; Wang et al., 2010; WTCCC, 2007], we
investigate methods that can test multiple SNPs aggregately
for a collective signal on traits. These methods include SKAT,
which is popular and powerful for rare variant detection [Lee
et al., 2012; Wu et al., 2010]; global and max [Schaid et al.,
2002], which have been widely used for detecting haplotype-
trait association; our HKAT and GKAT equipped with three
levels of weighting order (k = 0, 1

2 , and 1). After simulating
scenarios based on the population genetics theory [Crow and
Kimura, 1970; Hill et al., 2008; Kimura, 1983; Wright, 1931],
we find that HKAT1 is the best test to detect the signal of
uncommon causal variants.

HKAT is computationally feasible because it is based
on a score test without fitting the full model (i.e., the

model under the alternative hypothesis). On an Intel
Xeon workstation with 3.0 GHz of CPU and 2.0 GB of
memory, HKAT with a 20-SNP multimarker set on av-
erage takes ∼0.9, ∼7.0, and ∼22.8 sec to analyze 1,000,
2,000, and 3,000 subjects, respectively. In genetic studies,
haplotype phase is usually unknown when diploid sub-
jects are heterozygous at more than one chromosomal
locus. Therefore, we inferred haplotype information with
the expectation-maximization algorithm [Dempster et al.,
1977], which leads inferred haplotype frequencies to maxi-
mum likelihood estimates under the assumption of Hardy-
Weinberg equilibrium [Excoffier and Slatkin, 1995; Hawley
and Kidd, 1995; Long et al., 1995]. There are two com-
mon uses of the inferred haplotypes in downstream anal-
yses. One way is to use the most likely haplotype pair,
which has the highest posterior probability among all possible
haplotype pairs of a subject. The most likely haplotype pair is
assigned probability 1 and all other possible haplotype pairs
are assigned probabilities 0. This common practice is intrin-
sically biased because the most likely haplotype pair is not
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necessarily the true haplotype pair of that subject [Lin and
Huang, 2007]. Another way is the expectation substitution
approach [Stram et al., 2003; Zaykin et al., 2002]. That is,
a subject’s expected frequencies of haplotypes are treated as
observed and directly used in downstream analyses. Under
the null hypothesis of no haplotype effects, similar to previ-
ous methods [Schaid et al., 2002; Stram et al., 2003; Zaykin
et al., 2002], the resulting score statistic (i.e., HKAT statistic
in Equation (3)) is unbiased and gives correct type-I error
rates (see Fig. 1). Employing this expectation substitution ap-
proach, although the variability of the estimated haplotype
frequencies is not explicitly incorporated in the variance of
the HKAT statistic, the HKAT test is shown to be valid.

The HKAT and GKAT proposed here are applicable to
CGAS or GWAS. An issue is how to select a set of SNPs
to be included in a multimarker test. Natural strategies in-
clude aggregating all SNPs located in a gene or within a hap-
lotype block [Feng and Zhu, 2010; Lin et al., 2012a; Schi-
fano et al., 2012], as we have shown in the analysis for the
human adiposity study. Haplotype-based methods such as
HKAT are justifiable to analyze haplotype blocks, which are
discrete chromosome regions containing SNPs in high LD
[Cardon and Abecasis, 2003]. Another strategy is to use slid-
ing windows [Guo et al., 2009; Wang et al., 2012]. In general,
multimarker analyses with larger window sizes may allow for
measuring sharing over longer genomic sequences and lead to
more power gains [Allen and Satten, 2009; Lin et al., 2012b].

The HKAT and GKAT can be applicable to continuous
or dichotomous traits. In our simulation for dichotomous
traits, we considered an unbalanced case-control design with
20% cases and 80% controls. For a balanced case-control
design (with 50% cases and 50% controls), HKAT1 has a
similar performance with global. However, HKAT1 is still
more advantageous than global in computational feasibility,
because no permutation is required for HKAT1. By contrast,
global needs permutations to obtain reliable P-values when
the frequencies of some haplotypes are low [Lin et al., 2012b;
Schaid et al., 2002].

Our work shows that in GWAS using commercial SNP ar-
rays or CGAS using tagging SNPs, the haplotype-based meth-
ods (e.g., HKAT, global [Schaid et al., 2002], max [Schaid et al.,
2002], HG [Feng and Zhu, 2010; Zhu et al., 2010], and WHG
[Li et al., 2010]) are more promising than the genotype-based
methods (e.g., GKAT, SKAT [Wu et al., 2011], and SKAT-Op
[Lee et al., 2012]) in detecting uncommon causal variants.
Among haplotype-based methods, HKAT is further shown
to be more powerful than HG [Feng and Zhu, 2010; Zhu
et al., 2010] and WHG [Li et al., 2010], because the power
of HG or WHG is generally compromised due to splitting
the data into two subsets (i.e., a training set and a testing
set). In addition, HKAT1 outperforms global and max by up-
weighting uncommon haplotypes that may be better tags for
uncommon causal variants. When a gene harbors both un-
common and common causal variants, HKAT1 remains the
most powerful test among all the tests we evaluate here. Note
that this conclusion is based on the simulation scenario fol-
lowing the population genetics theory (i.e., the distribution

of causal allele frequencies is U-shaped) [Crow and Kimura,
1970; Hill et al., 2008; Kimura, 1983; Wright, 1931], and in
this situation k = 1 is a straightforward and reasonable weight-
ing order. However, for any given study, the most powerful
test may vary if the underlying genetic architecture departs
from the population genetics theory.

At the pseudo-sequencing level (i.e., GWAS or CGAS im-
puted with publicly available sequencing data) [Li et al., 2010]
or the sequencing level, the haplotype-based methods may
not be as promising as the genotype-based methods. This
deserves further investigation. In recent years, many novel
methods have been proposed for rare variant identification
using next-generation sequencing data [Basu and Pan, 2011;
Han and Pan, 2010; Lee et al., 2012; Li and Leal, 2008; Lin et al.,
2011; Liu and Leal, 2010, 2012; Madsen and Browning, 2009;
Morris and Zeggini, 2010; Neale et al., 2011; Price et al., 2010;
Wu et al., 2011; Yi et al., 2011; Yi and Zhi, 2011]. However,
next-generation sequencing data have not been prevalent till
today. By contrast, few methods have been proposed for de-
tecting uncommon causal variants from genetic association
studies genotyped with tagging SNPs or commercial SNP ar-
rays. We here provide a haplotype-based test that is powerful
to detect disease-associated regions from GWAS or CGAS.
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