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Summary. Penalized regression approaches are attractive in dealing with high-dimensional data such as arising in high-
throughput genomic studies. New methods have been introduced to utilize the network structure of predictors, for example,
gene networks, to improve parameter estimation and variable selection. All the existing network-based penalized methods are
based on an assumption that parameters, for example, regression coefficients, of neighboring nodes in a network are close
in magnitude, which however may not hold. Here we propose a novel penalized regression method based on a weaker prior
assumption that the parameters of neighboring nodes in a network are likely to be zero (or non-zero) at the same time,
regardless of their specific magnitudes. We propose a novel non-convex penalty function to incorporate this prior, and an
algorithm based on difference convex programming. We use simulated data and two breast cancer gene expression datasets to
demonstrate the advantages of the proposed methods over some existing methods. Our proposed methods can be applied to
more general problems for group variable selection.
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1. Introduction

With large amounts of high-dimensional data accumulating
from high-throughput genomic studies, penalized regression
methods equipped with simultaneous variable selection and
parameter estimation have been increasingly used in practice.
Most popular generic methods exploiting sparsity of high-
dimensional data include the Lasso (Tibshirani, 1996), SCAD
(Fan and Li, 2001), elastic net (Enet) (Zou and Hastie, 2005)
and LARS (Efron et al., 2004), among others. In addi-
tion to sparsity, other structures may be present in a
given high-dimensional problem. For example, in genomics,
various types of gene networks describe gene–gene in-
teractions and their coordinated functioning: protein–
protein interaction (PPI) networks as available from
the Biomolecular Interaction Network Database (BIND)
(Alfarano et al., 2005) and the Human Protein Reference
Database (HPRD) (Peri et al., 2004), biological pathways in
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000), and gene functional annotations
in the Gene Ontology (Ashburner et al., 2000). Regardless of
the network type, often it is reasonable to assume that two
neighboring genes in a network are more likely to partici-
pate together in the same biological process than two genes
far away in the network. Hence, incorporating prior biological
knowledge by exploiting the network structure in a frequentist
or Bayesian method is expected to improve its performance
(Li and Zhang, 2010; Monni and Li, 2010; Tai, Pan, and Shen,
2010; Huang and Wang, 2012). In particular, as demonstrated
in cancer marker discovery (Chuang et al., 2007), changes in
expression of some causal genes governing metastatic poten-

tial (e.g., ERBB2 and MYC) may be only subtle and non-
significant while some of their neighbors have much stronger
alterations; incorporation of gene networks can improve the
chance of identifying these cancer-causing genes.

A natural way to utilize gene network information is to
smooth parameters of neighboring genes over a network: given
any two neighboring genes in a network, denoted as j ∼ j′,
and their parameters βj and βj′ , it may be reasonable to as-
sume that βj/wj ≈ βj′/wj′ with some known or chosen weights
wj and wj′ (Li and Li, 2008). More generally, since the ef-
fect directions could be different, for example, regulation of
gene expression could be either stimulatory or inhibitory, we
can assume |βj|/wj ≈ |βj′ |/wj′ (Li and Li, 2010; Pan, Xie, and
Shen, 2010). Although the aforementioned assumptions are
reasonable, they may be too strong in some cases: in general,
it is valid to assume two neighboring genes in a network to
be co-functioning, but their effect sizes may or may not be
equal. Hence, rather than smoothing the (weighted) param-
eters over a network, we only assume that two neighboring
genes are more likely to participate together in the same bi-
ological process than two non-neighboring genes. This latter
prior knowledge was recently used by (Percival et al., 2011) in
a modified forward stepwise variable selection scheme. In this
article, we propose a novel penalty to incorporate this prior in
a general framework of penalized regression. Simply speaking,
we propose a penalty to encourage I(|βj| �= 0) = I(|βj′ | �= 0)
for j ∼ j′. Since the indicator function (or the L0-loss) is not
even continuous, it is not computationally feasible to use it
directly in an objective function to be minimized. Our ma-
jor contributions include proposing a novel penalty as its
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approximation (or surrogate) and a corresponding non-convex
minimization method.

This article is organized as follows. Section 2 first briefly re-
views some existing methods, then describes two implementa-
tions of our new idea in detail. In Section 3 simulation results
are presented to investigate the finite sample performance of
the methods, demonstrating the advantages of the proposed
methods over several existing methods. Section 4 illustrates
the application of the methods to predict metastases of breast
cancer patients with their gene expression profiles and a PPI
network. We end with a short summary and discussion out-
lining a few future research topics.

2. Methods

2.1. Review: Penalized Regression

In a linear regression model,

Yi = β0 +
p∑

j=1

Xijβj + εi, E(εi) = 0, (1)

for i = 1, . . . , n, we often have a “large p, small n” problem,
as arising in high-throughput genomic studies. With a large
p, for example, p > n, the ordinary least squares estimate
(OLSE) does not perform well due to its over-fitting. As one
remedy, penalized regression is proposed: a penalty P(β) is
added to the objective function

S(β) = 1

2
‖Y − Xβ‖2 + P(β). (2)

The penalty P(β) not only regularizes parameter estimation
as desired, but also can realize effective variable selection. The
Lasso (Tibshirani, 1996) with an L1-penalty is well-known:

P(β) = λ
p∑

j=1

|βj|, where λ is a tuning parameter to be deter-

mined. With a large λ, the Lasso yields a sparse (i.e., few
non-zero components of) estimate of β, effectively realizing
variable selection. However, the Lasso and many other generic
penalized methods ignore network structures in the predic-
tors, hence may not be efficient. To take advantage of given
information embedded in a predictor network, Li and Li (2008,
2010) and Pan et al. (2008) introduced network-based penal-
ized regression methods. We implicitly assume that a network
is given, and as before two directly connected nodes/genes
(i.e., with an edge connecting them) are represented as j ∼ j′.
The first is a graph constrained estimation (Grace) method
(Li and Li, 2008) with penalty

P(β) = λ1

p∑
j=1

|βj| + λ2

∑
j∼j′

(
βj√
dj

− βj′√
dj′

)2

,

where dj is the degree of node j, that is, the number of edges
connected to j. The first term is an L1-penalty for variable
selection, while the second aims to smooth (weighted) βj’s
over the network. As discussed before, since in some appli-
cations two neighboring genes might have βj’s with oppo-

site signs, it is more desirable to shrink (weighted) |βj|’s
towards each other in a network: we’d like to encourage
|βj|/

√
dj = |βj′ |√dj′ for j ∼ j′. For this purpose, an adaptive

version (aGrace) was proposed (Li and Li, 2010):

P(β) = λ1

p∑
j=1

|βj| + λ2

∑
j∼j′

(
sign(β̃j)βj√

dj

− sign(β̃j′)βj′√
dj′

)2

,

where β̃j is an initial estimate based on OLSE for p < n, or an
elastic net (Enet) estimate (Zou and Hastie, 2005) for p � n.
The main idea is to use sign(β̃j) to estimate sign(βj), which
however may not work well for high-dimensional data: since
we do not even know which βj’s are 0 for variable selection,
it is more difficult to estimate their signs. As an alternative,
Pan et al. (2010) proposed a direct approach with a class of
penalties

P(β) = λ
∑
j∼j′

[(
|βj|√

dj

)γ

+
(

|βj′ |√
dj′

)γ]1/γ

with a γ > 1 to be specified. This class of penalties are essen-
tially a weighted Lγ -norm with some attractive properties: for
j ∼ j′, in addition to the grouping effect of shrinking weighted
|βj| and |βj′ | towards each other, it also realizes group variable
selection that encourages both βj and βj′ to be zero simultane-
ously (Yuan and Lin, 2006; Zhao, Rocha, and Yu, 2009). Pan
et al. (2010) demonstrated better performance of the method
for variable selection than Lasso, Enet, and Grace, though
the parameter estimates may be severely biased. Luo, Pan,
and Shen (2012)proposed a 2-step procedure similar to that
of Li and Li (2010)for bias reduction; with a new convex pro-
gramming method, they also showed that the penalty with
γ = ∞ performed better than that with smaller γ=2 or 8.
The penalty with γ = ∞ is linear:

P(β) = λ
∑
j∼j′

max

(
|βj|√

dj

,
|βj′ |√

dj′

)
,

closely related to a penalty proposed by Bondell and Reich
(2008), though a separate L1-penalty is added in the latter
for variable selection. Hence, in the following we consider
only γ = ∞, and simply denote the method with an L∞-
norm penalty as L∞, while the two-step procedure as aL∞.
Finally we note that in the above methods, we can replace√

dj with a more general weight wj, which for example can be
simply 1.

Although these methods appear to be useful, their assump-
tion on the smoothness of (weighted) βj’s or |βj|’s over a net-
work may be questionable in some applications. Therefore,
next we propose a new network-based penalty with a much
less stringent assumption.
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2.2. New Methods

Our new methods are based on the below “ideal” penalty:

P(β) = λ1

p∑
j=1

I (|βj| �= 0)

+λ2

∑
j∼j′

∣∣∣∣I
( |βj|

wj

�= 0

)
− I

( |βj′ |
wj′

�= 0

)∣∣∣∣ , (3)

where the first penalty is the L0-loss for sparsest variable se-
lection and unbiased parameter estimation (Shen, Pan, and
Zhu, 2012), while the second one encourages simultaneous se-
lection (or elimination) of two neighboring nodes in a net-
work. Since the indicator function I( ) is not continuous, it
is not computationally tractable. As a computational surro-
gate of I(|z| �= 0), Shen, Pan, and Zhu (2012)proposed a trun-
cated Lasso penalty (TLP), Jτ(|z|) = min( |z|

τ
, 1), which tends

to I(|z| �= 0) as τ → 0+; the tuning parameter τ determines
the degree of approximation. Thus, applying the TLP to (3)
leads to a new penalty with a TLP for variable selection and
a TLP-based penalty for grouping of indicators, shortened as
TTLPI :

P(β) = λ1

p∑
j=1

Jτ(|βj|) + λ2

∑
j∼j′

∣∣∣∣Jτ

( |βj|
wj

)
− Jτ

( |βj′ |
wj′

)∣∣∣∣ ,

(4)
where a common τ is used in both terms for variable selection
and grouping.

Note that, although the weights wj can be omitted in (3),
they may play an important role in (4) (and other penalties
shown earlier), as to be shown later.

For any given (λ1, λ2, τ), we present a difference convex
(DC) programming algorithm to minimize S(β) with the new
penalty. First, we decompose the non-convex function Jτ(|z|)
in (4) into a difference of two convex functions: Jτ(|z|) =
1
τ
(|z| − max(|z| − τ, 0)). Additionally, to deal with the abso-

lute value function in the second term of (4), we construct
another DC decomposition: |f1 − f2| = 2max(f1, f2) − (f1 +
f2) for two convex functions f1 and f2. After applying these
two DC decompositions to (4), we have

λ1

τ

(
p∑

j=1

|βj| − max(|βj| − τ, 0)

)

+λ2

τ

∑
j′∼j

2max(uj,j′ , vj,j′) − (uj,j′ + vj,j′),

where uj,j′ = |βj |
wj

+ max
( |βj′ |

wj′
− τ, 0

)
and vj,j′ = |βj′ |

wj′
+

max
(

|βj |
wj

− τ, 0
)

are defined to simplify notation. Then, (4)

can be rewritten as a difference of two convex functions P1

and P2,

P(β) = P1(β) − P2(β),

P1(β) = 1

τ

(
λ1

p∑
j=1

|βj| + λ2

∑
j′∼j

2max(uj,j′ , vj,j′)

)
,

P2(β) = 1

τ

(
λ1

p∑
j=1

max(|βj| − τ, 0) + λ2

∑
j′∼j

(uj,j′ + vj,j′)

)
.

Linearizing P2 at a current estimate β̂
(m−1)

and ignoring terms
independent of β, we obtain a convex approximation of S(β):

S(m)(β) = 1

2
‖Y − Xβ‖2 + λ1

τ

p∑
j=1

|βj|I
(
|β̂(m−1)

j | � τ

)

+λ2

τ

∑
j∼j′

2max(uj,j′ , vj,j′)

−λ2

τ

∑
j∼j′

(
βj

wj

sign
(
β̂j

(m−1)
)[

1 + I

(
|β̂j

(m−1)|
wj

> τ

)]

+ βj′

wj′
sign

(
β̂j′

(m−1)
)[

1 + I

(
|β̂j′

(m−1)|
wj′

> τ

)])
,

which is minimized to obtain an updated estimate β̂
(m)

.
Since S(m)(β) is convex, we use Matlab package CVX

(Grant and Boyd, 2011) to minimize it. The DC algorithm
to compute the final estimate β̂ is as follows.

[A1] Start with an initial estimate β̂
(0)

and m = 1.

[A2] At iteration m, compute β̂
(m)

that minimizes S(m)(β).

[A3] Stop if S(β̂
(m−1)

)-S(β̂
(m)

) � ε with a small tolerance ε

(e.g., 10−4 used throughout); otherwise, return to [A2].

We have the following convergence result with its proof given
in Web Appendix B.

Theorem 1: The sequence S(β̂
(m)

) decreases strictly in m

unless β̂
(m) = β̂

(m−1)
. In addition, the DC algorithm termi-

nates in finite steps; that is, there exists m∗ < ∞ such that

β̂
(m) = β̂

(m∗−1)
for all m � m∗. Finally, β̂

(m∗)
is a local mini-

mizer of (2) with penalty (4).

We used the Lasso estimate β̂lasso as the initial value β̂
(0)

in step [A1]. The three tuning parameters (δ1, δ2, τ) with
δ1 ≡ λ1/τ and δ2 ≡ λ2/τ were searched over a set of 4, 4, and
5 equally spaced grid points, respectively within the follow-
ing ranges: let t denote the maximum absolute value of the
components of the lasso estimate β̂lasso, and g denote the total
number of the edges in the network, we used intervals [t, pt

4
]

for δ1, [t, tg] for δ2, and [10−6, t

2
] for τ.

The TLP has been shown to perform well for accurate
variable selection and almost unbiased parameter estimation
for sparse models (Shen et al., 2012). An intuition behind the
TLP is that, if a parameter βj is large with βj > τ, then no
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penalty is imposed on βj, which is in contrast to universal
penalization of Lasso on all βj’s that leads to Lasso’s biased
parameter estimation and over selection of too large models.
However, with a non-sparse true model, universal penalization
imposed by Lasso may be beneficial to parameter estimation
and outcome prediction due to its better bias-variance trade-
off. In our current context, since the true model may not be
too sparse, it might be interesting to contrast the performance
of the TLP and Lasso. Furthermore, to save computing time,
we have used a common τ for both variable selection and
grouping in (4), which might not be optimal. Thus, rather
than using the TLP for variable selection in (4), we can simply
use the Lasso, leading to a modification with a Lasso penalty
for variable selection and a TLP-based penalty for grouping
indicators, called LTLPI :

P(β) = λ1

p∑
j=1

|βj| + λ2

∑
j∼j′

∣∣∣∣Jτ

( |βj|
wj

)
− Jτ

( |βj′ |
wj′

)∣∣∣∣ . (5)

The computational algorithm and its convergence properties
are similar to that for TTLPI . In particular,the intermediate
objective function S(m)(β) is the same as before except that its

second term λ1
τ

p∑
j=1

|βj|I(|β̂(m−1)

j | � τ) is replaced by λ1
τ

p∑
j=1

|βj|.
The tuning parameters (λ1, λ2, τ) were tuned in the same

way as in TTLPI , except that the searching range of λ1 was
set as interval [λ̂lasso/1.5, 1.5λ̂lasso], where λ̂lasso was the chosen
tuning parameter for the Lasso.

3. Simulations

3.1. Simulation Set-ups

Our simulation set-ups are similar to those in Li and Li (2008)
and Pan et al. (2010). Briefly, the responses Y were generated

from linear model (1) with iid error εi ∼ N

(
0,

∑
j

β2
j /2

)
. A

gene regulatory network consisted of 10 independent subnet-
works, each including one transcription factor (TF) and its 10
target genes (and thus p = 110); each TF was connected to
each of its 10 target genes while there was no edge between any
other two genes. All predictors were marginally distributed as
N(0, 1); conditional on the TF’s expression level XTF , a target
gene’s expression level Xtg was distributed as N(0.5XTF , 0.75);
any two Xtgs were conditionally independent given XTF . The
expression levels of any two genes from two different sub-
networks were independent. Two types of the true regression
coefficient vector β were considered in two sets of simulations
respectively: in simulation I, the (weighted) magnitudes of
the non-zero βj’s were close to each other, while in simulation
II they were completely random. Specifically, in set-up 1 of

simulation I, we had

β =

⎛
⎜⎜⎝5,

5√
10

, . . . ,
5√
10︸ ︷︷ ︸

10

, −3, − 3√
10

, . . . ,− 3√
10︸ ︷︷ ︸

10

, 0, . . . , 0

⎞
⎟⎟⎠

′

,

the first 11 were for the TF and its 10 targets in subnet-
work 1, followed by subnetworks 2 to 10. Note that there
were p1 = 22 informative predictors with βj �= 0, and there

was a strong relationship among βj’s: βj/
√

dj = βj′/
√

dj′ for
any j ∼ j′. The set-up 2 was similar to set-up 1 except that the
signs of the first three target genes’ βj’s in the first two sub-

networks were flipped; that is, for j ∼ j′, βj/
√

dj = βj′/
√

dj′

might not hold, though |βj|/
√

dj = |βj′ |/√dj′ always held.
Similarly set-up 3 was another type of perturbation to set-
up 1: the first 5 genes’ βj’s were set to 0 in the first two

subnetworks; |βj|/
√

dj = |βj′ |/√dj′ held for only some, but
not all, gene pairs j ∼ j′.

In the first set-up of simulation II, we had

β =
(
1.5, β2, . . . , β11︸ ︷︷ ︸

10

, 0.5, β13, . . . , β22︸ ︷︷ ︸
10

, 0, . . . , 0
)′

,

where we randomly drew β2, . . . , β11 ∼ Unif(0, 3), and
β13, . . . , β22 ∼ Unif(-3, 3); then we flipped the signs of
β7, . . . , β11. Specifically the generated regression coefficient
vector β was:

β =
(
1.5, 2.98, 2.01, 1.35, 1.03, 2.7, −0.98, −2.39, −1.33, −0.37, −1.24︸ ︷︷ ︸

10

,

0.5, 1.85, 2.91, 2.48, 1.45, 2.25, 0.34, −1.12, −1.03, −0.2, 0.7︸ ︷︷ ︸
10

, 0..., 0
)′

.

In set-up 2, we used a true β similar to that of set-up 1 except
that five target genes in each of the first two subnetworks
were randomly selected to have their corresponding βj = 0,
mimicking a setting with I(βj �= 0) = I(βj′ �= 0) for some, but
not all, gene pairs j ∼ j′. A sparser true model was used in
set-up 3, in which only the TF and its five randomly selected
genes in the first subnetwork had non-zero βj’s while all others
were zero.

We generated 100 replicates for each set-up, where each
replicate consisted of a training set, a tuning set, both of
size n = 50, and a test set of size m = 200. The training set
was used to fit the model to obtain parameter estimates β̂

for any given tuning parameter values. The tuning set was
used to select the tuning parameters as the ones with the
smallest predictive residual sum of squares (PRSS) for the
response on the tuning data. To evaluate the performance,
the model error (ME) and the prediction error (PE) were
calculated: ME = (β − β̂)′E(X′X)(β − β̂) with E(X′X) as the
population covariance matrix of X (since E(X) = 0), and

PE=
m∑

i=1

(Yi − Ŷi)
2/m (based on the test data). We also cal-

culated the mean and median numbers of the true positives
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(TPs) and false positives (FPs) for variable selection, where
|β̂j| > 10−3 was considered as non-zero (or a positive). We

considered two types of weights, wj = 1 and wj = √
dj.

We also note that, following Li and Li (2010), unlike in
Li and Li (2008) and Pan et al. (2010), we did not rescale
the estimates of Grace and Enet; we found that the un-scaled
versions here performed either better than or almost the same
as the rescaled ones.

3.2. Main Results

Simulation results for simulation I are summarized in Table 1.
The weights wj = 1 were mis-specified in the sense of having
|βj|/wj �= |βj′ |/wj′ for any two non-null neighboring genes j ∼
j′ with non-zero βj and βj′ , whereas the weights wj = √

dj

were correctly specified in the above sense for set-ups 1 and
2, but only partially correctly specified for set-up 3, for the
methods depending on the assumptions on the magnitudes
of the regression coefficients, that is, Grace, aGrace, L∞, and
aL∞. For set-up 1, in which the true regression coefficients
of all the directly connected genes in a network had the same
signs, with wj=1, Grace yielded the lowest mean ME and PE,
followed closely by LTLPI and aL∞. All the network-based
methods except L∞ performed better than the generic Lasso
and Enet for parameter estimation and outcome prediction.
For variable selection, however, Grace performed poorly with
a too large mean number of FPs; L∞, aL∞, TTLPI , and LTLPI

had a comparable large number of TPs but a much smaller
number of FPs. With weights wj = √

dj, the aL∞ had the
smallest mean ME and PE, closely followed by Grace, then
by LTLPI . For variable selection, perhaps due to the group
selection, L∞ and aL∞ gave the most sparse models with the
highest number of TPs, then followed by TLPII and LTLPI .

In set-up 2 some neighboring genes had true regression coef-
ficients with opposite signs. As expected, Grace was no longer
the winner, and aGrace slightly improved over Grace with a
smaller mean ME and PE. With the mis-specified weights
wj = 1, LTLPI gave the smallest mean ME and PE, then fol-
lowed by aGrace and aL∞. For variable selection, TTLPI was
the winner, giving a similarly large number of TPs but fewer
FPs than LTLPI ; other methods all yielded much smaller
numbers of TPs. On the other hand, with the correctly spec-
ified weights wj = √

dj, aL∞ was the winner with the small-
est ME and PE, followed by LTLPI and then aGrace. For
variable selection, aL∞ and L∞ seemed to be the winners,
though TTLPI was also quite competitive; again LTLPI gave
less sparse models than TTLPI , both performing better than
Grace and aGrace.

For set-up 3, with the mis-specified weights wj = 1, LTLPI

performed best with the smallest mean ME and PE, while
all other network-based methods gave larger MEs than the
generic Lasso and Enet, though TTLPI and Grace gave smaller
mean PEs than those of Lasso and Enet. On the other hand,
with the weights wj = √

dj, Grace had the smallest ME,
closely followed by LTLPI and aL∞.

With random regression coefficients in simulation II
(Table 2), our new methods showed more substantial advan-
tages over other methods, in terms of both parameter estima-
tion (and outcome prediction) and variable selection. With a
sparse true model in set-up 3, the TTLPI method performed
best.

In summary, in cases that the regression coefficients of
neighboring nodes had the same signs, that is, effect direc-
tions, with correctly specified weights Grace performed well
in parameter estimation and outcome prediction, otherwise it
did not perform well; in both cases, however, it gave too large
models. Its modification aGrace could slightly improve over
Grace in the case that neighboring nodes had different associ-
ation directions with the outcome. As expected, L∞ and aL∞
were not sensitive to different association directions of neigh-
boring nodes, but they did not perform well if the weights
were mis-specified; otherwise they performed best in variable
selection, possibly due to their mechanisms of group variable
selection. As discussed by (Luo et al., 2012), due to the over-
shrinkage and thus large biases of its parameter estimates
(Table 3), L∞ did not perform well in parameter estimation
and prediction. On the other hand, our proposed methods, es-
pecially LTLPI , seemed to perform reasonable well across all
the scenarios; TTLPI seemed to have some edge over LTLPI

with a comparable number of TPs but fewer FPs, though
the former lost its edge to the latter in parameter estimation
and outcome prediction, perhaps due to the larger variability
of the former’s parameter estimates in the not-so-sparse true
models considered here (Table 3); for more sparse true models,
we did observe that TTLPI performed better than LTLPI for
both parameter estimation and variable selection, as shown
in set-up 3 in Table 2. Overall, our methods gave less biased
estimates than other network-based methods (Table 3). We
conclude that our proposed new methods were more robust
to mis-specified weights or mis-specified relationships among
the true regression coefficients than other network-based
methods.

3.3. Other Results

As shown in Web Appendix B, the DC algorithm typi-
cally converged in about three iterations for simulated data,
in agreement with Theorem 1. Since our penalties are not
convex, the local minimum the DC algirthm converges to de-
pends on the starting values. In general, better starting values
give better results. For example, for set-up 1 of simulation
I as shown in Web Appendix B, since the Enet estimates
performed only slightly better than the Lasso estimates with
smaller MEs, the TTLPI and LTLPI estimates with the Enet
estimates as the starting values gave also slightly smaller MEs
than those with the Lasso estimates as the starting values;
with weight w = √

d, since the L∞ method performed much
better than the Lasso method, the TTLPI and LTLPI esti-
mates with the former as their starting values yielded much
smaller MEs than those with the latter. More studies are war-
ranted on this topic.

4. Example

We applied the methods to two breast cancer gene expres-
sion datasets, named the Wang data (Wang et al., 2005) and
van de Vijver data (van de Vijver et al., 2002), respectively.
The two datasets contained 286 and 295 patients, respectively,
out of which 106 and 78 developed metastasis within a 5-year
follow-up after surgery. In the analysis, we considered three
tumor suppressor genes, BRCA1, BRCA2, TP53, and their di-
rect neighbors in a PPI network (Chuang et al., 2007), which
formed our prior gene network with 294 genes (nodes) and 326
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Table 1
Simulation I: Mean (SD) of ME and PE, mean [median] (SD) of the numbers of TP, FP, and the TFs from 100 simulated

datasets for each set-up

Set-up w Method ME (SD) PE (SD) TP FP TF

1 1 Lasso 44.2 (13.2) 66.2 (13.1) 13.5 [14] (3.2) 16.8 [13] (19.2) 2.0 [2] (0.2)
Enet 34.2 (13.1) 65.0 (13.5) 16.5 [17] (3.7) 22.2 [18] (16.6) 2.0 [2] (0.2)
Grace 15.1 (3.9) 42.4 (6.4) 21.9 [22] (0.9) 61.2 [66.5] (21.0) 2.0 [2] (0.0)
aGrace 31.9 (13.2) 61.3 (14.9) 16.9 [17] (4.1) 24.3 [18.5] (19.7) 2.0 [2] (0.2)

L∞ 41.2 (12.4) 71.1 (17.6) 21.1 [22] (2.0) 13.7 [12] (9.9) 1.8 [2] (0.4)
aL∞ 19.3 (8.8) 45.4 (12.5) 21.1 [22] (2.1) 4.6 [3] (9.5) 1.8 [2] (0.4)

TTLPI 24.8 (20.6) 50.5 (11.4) 20.4 [22] (4.6) 12.0 [0.0] (21.5) 2.0 [2] (0.0)
LTLPI 17.6 (9.5) 46.7 (9.8) 21.3 [22] (2.2) 17.0 [11] (14.2) 2.0 [2] (0.0)√

d Grace 4.7 (3.6) 39.7 (5.8) 22.0 [22] (0.1) 59.5 [63] (21.2) 2.0 [2] (0.0)
aGrace 23.9 (16.4) 55.6 (14.4) 17.6 [18] (4.1) 29.4 [23.5] (22.3) 2.0 [2] (0.2)

L∞ 14.2 (8.0) 50.4 (11.2) 22.0 [22] (0.0) 9.7 [8] (6.8) 2.0 [2] (0.0)
aL∞ 4.3 (4.1) 38.8 (6.0) 22.0 [22] (0.0) 4.1 [2] (5.4) 2.0 [2] (0.0)

TTLPI 12.4 (12.0) 45.4 (9.1) 21.5 [22] (2.7) 20.2 [1] (28.3) 2.0 [2] (0.0)
LTLPI 9.6 (8.5) 43.4 (8.5) 21.7 [22] (1.4) 23.4 [22] (17.0) 2.0 [2] (0.0)

2 1 Lasso 34.6 (8.8) 67.9 (11.4) 10.2 [9.5] (3.0) 13.4 [9.0] (15.4) 1.8 [2] (0.4)
Enet 34.8 (8.5) 68.2 (11.4) 13.2 [13.0] (4.3) 24.4 [18] (22.1) 1.9 [2] (0.3)
Grace 37.6 (7.2) 63.4 (10.1) 17.7 [19.5] (4.9) 42.5 [38.5] (27.1) 2.0 [2] (0.1)
aGrace 33.7 (8.3) 63.8 (11.5) 15.0 [15] (5.6) 32.3 [27] (25.5) 1.9 [2] (0.3)

L∞ 54.2 (6.8) 77.2 (12.1) 13.0 [14] (3.9) 12.1 [11] (6.9) 0.6 [1] (0.6)
aL∞ 48.9 (10.1) 71.5 (12.8) 12.7 [13] (3.7) 8.1 [8] (5.4) 0.6 [1] (0.6)

TTLPI 33.9 (14.0) 60.0 (13.3) 20.3 [22] (3.7) 16.2 [3] (24.5) 2.0 [2] (0.2)
LTLPI 31.8 (9.2) 58.3 (9.8) 20.5 [22] (3.2) 30.5 [29] (21.1) 2.0 [2] (0.1)√

d Grace 27.1 (5.7) 59.8 (9.0) 18.5 [19] (3.4) 45.1 [43.5] (25.1) 2.0 [2] (0)
aGrace 25.3 (10.9) 58.4 (11.6) 17.5 [19] (5.0) 41.9 [39.5] (24.1) 1.9 [2] (0.2)

L∞ 34.5 (10.2) 65.1 (12.2) 20.9 [22] (2.6) 15.2 [13] (11.0) 1.8 [2] (0.4)
aL∞ 20.7 (9.9) 53.5 (11.6) 20.7 [22] (3.1) 8.3 [5] (10.7) 1.8 [2] (0.4)

TTLPI 28.5 (11.0) 59.5 (11.3) 21.0 [22] (3.3) 26.7 [15] (28.6) 2.0 [2] (0.2)
LTLPI 23.2 (8.1) 55.3 (9.3) 21.4 [22] (2.2) 37.2 [33] (21.4) 2.0 [2] (0.1)

3 1 Lasso 18.4 (6.3) 43.1 (8.6) 8.4 [8.5] (1.7) 14.7 [12.5] (11.4) 2.0 [2] (0.2)
Enet 18.2 (6.5) 43.5 (8.7) 9.0 [9.0] (1.9) 17.5 [17] (11.6) 2.0 [2] (0.2)
Grace 22.5 (6.0) 40.7 (6.7) 10.9 [12] (1.8) 52.7 [60] (32.6) 2.0 [2] (0.1)
aGrace 20.0 (7.0) 44.0 (8.5) 9.0 [9] (1.9) 19.2 [16] (16.6) 2.0 [2] (0.2)

L∞ 41.4 (7.1) 57.4 (12.4) 10.4 [10] (1.7) 20.5 [20] (6.8) 1.4 [1] (0.6)
aL∞ 32.2 (6.5) 46.1 (10.1) 10.3 [10] (1.7) 12.9 [12] (4.5) 1.4 [1] (0.6)

TTLPI 21.4 (7.8) 40.5 (7.5) 9.7 [12] (3.3) 14.6 [10] (19.2) 2.0 [2] (0.0)
LTLPI 17.6 (7.2) 39.5 (7.1) 11.1 [12] (1.3) 28.7 [22.5] (16.8) 2.0 [2] (0.0)√

d Grace 12.8 (3.5) 37.1 (6.1) 11.6 [12] (1.2) 56.2 [60] (28.2) 2.0 [2] (0)
aGrace 16.4 (6.5) 41.8 (8.3) 9.3 [9] (2.0) 27.1 [19] (22.6) 2.0 [2] (0.2)

L∞ 19.9 (5.6) 43.4 (8.4) 11.9 [12] (0.4) 23.3 [20] (11.3) 2.0 [2] (0.1)
aL∞ 13.7 (4.0) 37.4 (6.6) 11.9 [12] (0.4) 16.6 [13] (11.1) 2.0 [2] (0.1)

TTLPI 18.4 (7.0) 40.0 (7.2) 10.0 [12] (3.2) 21.9 [10] (25.9) 2.0 [2] (0)
LTLPI 13.6 (4.1) 38.0 (6.6) 11.5 [12] (1.0) 36.5 [32] (21.4) 2.0 [2] (0)

The true numbers of TP are 22 for set-ups 1 and 2, and 12 for set-up 3. The true number of TFs is 2 for all set-ups.

edges. Among the 294 genes 18 were breast cancer (BC) genes
from the 60-gene list given in (Chuang et al., 2007). Since all
the methods were developed for linear regression, we fitted
linear models to the binary metastasis status as the response.
Each full model included all the 294 genes as its candidate
predictors.

We standardized the data in the following way: across the
samples, the outcomes were centered to have mean 0, and
each gene’s expression levels were standardized to have mean
0 and standard deviation 1. We first assessed marginal asso-
ciation between the binary metastasis status and each gene’
expression level by fitting marginal linear regression models.

For TP53 with the van de Vijver data, its regression coef-
ficient estimate was −0.0189, while those for its neighbors
ranged from −0.1123 to 0.1488 with the three quartiles as
−0.0177, 0.0079, and 0.0377, respectively; similar results were
obtained for the three tumor suppressor genes and their neigh-
boring genes on each dataset as shown in Web Appendix
C. These results suggest that the association strength of a
hub gene like TP53 could be quite different from its direct
neighbors. In particular, as pointed out by Chuang et al.
(2007), the expression changes of some cancer-causing genes
like TP53 might be much weaker than some downstream
ones.
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Table 2
Simulation II: Mean (SD) of ME and PE, mean [median] (SD) of the numbers of TP, FP, and the TFs from 100 simulated

datasets for each set-up

Set-up w Method ME (SD) PE (SD) TP FP TF

1 1 Lasso 36.2 (9.4) 67.0 (1.1) 10.0 [10] (3.3) 13.6 [10] (16.3) 0.7 [1] (0.6)
Enet 34.9 (7.9) 65.8 (1.0) 12.7 [12] (3.8) 22.7 [17] (19.2) 1.1 [1] (0.7)
Grace 32.8 (7.5) 64.3 (1.0) 14.0 [13.5] (3.7) 25.7 [19.5] (19.0) 1.5 [2] (0.7)
aGrace 31.6 (7.2) 62.5 (9.0) 15.2 [15] (5.2) 31.8 [23.5] (24.6) 1.4 [2] (0.7)

L∞ 34.4 (8.3) 66.1 (1.0) 10.2 [10] (3.1) 11.8 [10] (10.0) 0.1 [0] (0.4)
aL∞ 34.0 (8.4) 65.9 (1.1) 10.1 [10] (3.1) 11.2 [9.5] (9.7) 0.1 [0] (0.4)

TTLPI 31.2 (1.0) 62.1 (1.1) 19.2 [22] (5.4) 17.9 [11] (22.4) 1.7 [2] (0.7)
LTLPI 28.1 (8.0) 59.0 (9.5) 20.6 [22] (3.6) 37.0 [33.5] (21.7) 1.8 [2] (0.5)√

d Grace 34.9 (7.8) 65.4 (1.0) 13.6 [14] (4.2) 24.8 [19] (19.3) 1.4 [2] (0.7)
aGrace 36.2 (8.4) 63.1 (9.0) 15.2 [15] (5.6) 32.0 [24] (24.3) 1.2 [1] (0.8)

L∞ 33.9 (8.1) 65.1 (1.0) 15.3 [15] (4.6) 13.8 [11] (11.5) 1.0 [1] (0.6)
aL∞ 37.6 (9.2) 66.0 (1.2) 15.0 [15] (4.7) 9.7 [7.5] (11.0) 1.0 [1] (0.6)

TTLPI 34.2 (1.0) 63.9 (1.0) 19.1 [22] (5.2) 20.1 [13] (22.7) 1.6 [2] (0.7)
LTLPI 31.3 (7.4) 61.1 (9.6) 20.5 [22] (3.7) 39.2 [44] (21.9) 1.8 [2] (0.5)

2 1 Lasso 15.7 (4.7) 33.6 (5.9) 6.2 [6] (1.6) 14.2 [11] (13.7) 0.5 [0.5] (0.6)
Enet 16.1 (4.5) 34.3 (5.8) 7.0 [7] (2.1) 20.6 [16] (17.1) 0.8 [1.0] (0.7)
Grace 15.8 (4.3) 34.0 (5.4) 7.3 [7] (1.9) 20.6 [16] (16.1) 1.1 [1.0] (0.8)
aGrace 15.5 (4.0) 33.7 (5.5) 7.2 [7] (2.2) 21.0 [16.5] (16.9) 0.9 [1.0] (0.8)

L∞ 15.1 (4.2) 33.2 (5.7) 5.8 [6] (1.5) 12.9 [11] (10.5) 0.0 [0.0] (0.3)
aL∞ 15.1 (4.3) 33.3 (5.8) 5.8 [6] (1.4) 12.4 [11] (10.5) 0.0 [0.0] (0.3)

TTLPI 15.3 (5.6) 32.3 (6.4) 8.5 [7] (3.2) 19.2 [10] (23.9) 1.1 [1.0] (0.8)
LTLPI 14.9 (4.3) 32.9 (5.6) 10.8 [12] (2.2) 46.8 [54] (24.5) 1.7 [2.0] (0.6)√

d Grace 16.1 (4.6) 34.1 (5.6) 7.1 [7] (2.0) 20.8 [17] (16.7) 0.9 [1.0] (0.8)
aGrace 16.7 (5.4) 34.0 (5.6) 7.3 [7] (2.5) 24.1 [17] (20.2) 0.8 [1.0] (0.8)

L∞ 15.2 (4.1) 33.3 (5.6) 7.3 [7.5] (2.2) 17.0 [14.5] (9.9) 0.6 [1.0] (0.6)
aL∞ 17.8 (5.6) 35.7 (7.0) 7.2 [7] (2.1) 14.0 [12] (8.0) 0.6 [1.0] (0.6)

TTLPI 15.7 (6.5) 32.6 (6.8) 8.2 [7] (3.1) 20.3 [11] (24.4) 1.1 [1.0] (0.8)
LTLPI 15.7 (5.5) 33.5 (5.8) 10.6 [12] (2.3) 47.1 [46.5] (25.0) 1.6 [2.0] (0.7)

3 1 Lasso 6.0 (2.2) 18.2 (2.9) 4.0 [4] (0.8) 11.9 [10] (11.4) 0.8 [1] (0.5)
Enet 6.4 (2.3) 18.6 (3.3) 4.2 [4] (0.8) 13.8 [12] (11.9) 0.8 [1] (0.5)
Grace 6.2 (2.3) 18.4 (3.0) 4.3 [4] (0.8) 14.9 [12] (13.1) 0.9 [1] (0.5)
aGrace 6.1 (2.1) 18.4 (2.9) 4.2 [4] (0.8) 15.1 [12] (12.5) 0.8 [1] (0.5)

L∞ 6.5 (2.1) 18.3 (3.0) 3.5 [3] (0.9) 11.6 [10] (7.8) 0.1 [0] (0.3)
aL∞ 6.6 (2.1) 18.5 (3.1) 3.5 [3] (0.9) 10.6 [9] (7.1) 0.1 [0] (0.3)

TTLPI 4.8 (2.1) 16.1 (2.8) 5.0 [6] (1.2) 8.5 [5] (12.7) 0.8 [1] (0.5)
LTLPI 6.5 (2.3) 18.4 (2.9) 5.5 [6] (0.9) 41.9 [38] (26.1) 1.2 [1] (0.6)√

d Grace 6.2 (2.4) 18.5 (3.0) 4.2 [4] (0.8) 14.0 [12] (12.7) 0.8 [1] (0.5)
aGrace 7.4 (4.2) 18.8 (3.0) 4.5 [4] (1.0) 24.1 [13] (25.6) 0.9 [1] (0.6)

L∞ 6.1 (2.1) 18.1 (2.9) 5.2 [6] (1.3) 15.7 [13] (9.7) 0.8 [1] (0.5)
aL∞ 8.0 (3.1) 20.1 (3.9) 5.2 [6] (1.3) 13.3 [12] (8.4) 0.8 [1] (0.5)

TTLPI 4.7 (2.2) 16.0 (2.7) 4.9 [6] (1.3) 10.2 [5] (15.9) 0.7 [1] (0.5)
LTLPI 6.1 (2.2) 18.2 (2.8) 5.6 [6] (0.8) 45.0 [46.5] (27.6) 1.3 [1] (0.6)

The true numbers of TP are 22, 12, and 6, and the true numbers of TFs are 2, 2, and 1 for the three set-ups, respectively.

Since the sample size was relatively small, we ran each
method 20 times on each dataset. In each of 20 runs, each
dataset was randomly split into the training, tuning, and test
sets with almost equal sample sizes (i.e., with 95, 95, 96 ob-
servations for the Wang data, and 95, 95, 105 for the van
de Vijver data). We compared the methods’ performance in
PE, selection of the breast cancer (BC) genes and model size,
all averaged over 20 runs. For each method, we used fivefold
cross-validation to select the tuning parameter values by min-
imizing the PRSS and then used the selected tuning param-
eters to fit a final model to the whole dataset. As before, we
explored the use of two weights, wj = 1 and wj = √

dj; since

for this dataset, it is known that some important cancer hub
genes, like TP53, had only moderate to small effect sizes, and
it is desirable to select those hub genes (Chuang et al., 2007),
we present the results only for using weight wj = √

dj that
favored the selection of hub genes, though similar conclusions
were reached with the other weight.

For the Wang data, as shown in Table 4, averaged over the
20 runs, our proposed TTLPI selected most BC genes at 2.90,
followed by the LTLPI and aGrace at 1.35 and 1.30, respec-
tively, all much higher than those from other methods, though
our two methods tended to select slightly larger models with
slightly larger PEs than those of the other methods. It is
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Table 3
Simulation I: Mean, SD, and MSE of regression coefficient estimates from 100 simulated datasets in each set-up

Set-up w Methods β1 = 5 β2 = 1.58 β11 = 1.58

Mean SD MSE Mean SD MSE Mean SD MSE

1 1 Lasso 7.10 1.66 9.92 0.98 1.03 2.46 0.93 0.99 2.40
Enet 5.20 1.69 5.71 1.19 0.91 1.82 1.15 0.94 1.95
Grace 1.99 0.73 10.11 1.93 0.22 0.21 1.91 0.24 0.22
aGrace 3.96 2.17 10.46 1.46 0.96 1.86 1.39 1.01 2.05

L∞ 1.09 0.34 15.49 1.88 0.98 2.00 1.94 1.04 2.28
aL∞ 2.03 0.20 8.93 2.03 0.28 0.36 2.04 0.24 0.32

TTLPI 4.35 2.51 12.96 1.68 0.94 1.76 1.69 0.83 1.40
LTLPI 4.05 1.93 8.32 1.64 0.77 1.18 1.69 0.70 0.98√

d Grace 4.70 0.42 0.44 1.49 0.19 0.08 1.48 0.20 0.09
aGrace 5.35 1.16 2.79 1.29 0.72 1.12 1.21 0.78 1.36

L∞ 3.93 0.54 1.73 1.47 0.60 0.73 1.55 0.63 0.80
aL∞ 4.95 0.47 0.44 1.54 0.38 0.29 1.59 0.23 0.11

TTLPI 5.28 1.08 2.42 1.52 0.79 1.25 1.53 0.61 0.73
LTLPI 5.16 0.90 1.65 1.44 0.63 0.82 1.52 0.58 0.66

β1 = 5 β2 = −1.58 β11 = 1.58

Mean SD MSE Mean SD MSE Mean SD MSE
2 1 Lasso 3.83 1.39 5.18 −0.04 0.31 2.57 0.92 0.97 2.29

Enet 2.89 1.05 6.64 −0.03 0.38 2.69 1.08 0.89 1.82
Grace 1.66 1.12 13.66 0.36 0.44 4.16 1.29 0.72 1.13
aGrace 2.35 1.24 10.10 −0.26 0.81 3.05 1.34 0.92 1.73

L∞ 0.15 0.23 23.64 0.07 0.39 3.02 1.59 1.24 3.04
aL∞ 0.70 0.79 19.75 0.09 0.95 4.59 1.60 1.01 2.01

TTLPI 3.23 1.78 9.44 −0.61 1.33 4.46 1.70 0.79 1.27
LTLPI 2.77 1.43 9.05 −0.40 1.27 4.64 1.53 0.71 1.00√

d Grace 2.90 0.53 4.97 0.24 0.38 3.62 1.07 0.54 0.85
aGrace 3.88 0.83 2.63 −0.51 0.75 2.27 1.15 0.75 1.31

L∞ 2.18 0.77 9.13 −0.10 0.65 3.04 1.34 0.86 1.51
aL∞ 3.94 0.78 2.32 −0.31 1.24 4.65 1.31 0.36 0.34

TTLPI 3.73 1.30 4.97 −0.33 1.10 3.99 1.36 0.77 1.23
LTLPI 3.55 0.96 3.95 −0.29 1.08 3.99 1.30 0.66 0.95

β1 = 5 β2 = 0 β11 = 1.58

Mean SD MSE Mean SD MSE Mean SD MSE
3 1 Lasso 5.15 1.22 2.98 0.13 0.35 0.25 1.01 0.93 2.05

Enet 4.47 1.20 3.14 0.20 0.41 0.37 1.08 0.90 1.87
Grace 2.45 1.76 12.62 0.81 0.56 1.28 1.27 0.62 0.86
aGrace 3.94 1.61 6.28 0.25 0.53 0.62 1.20 0.98 2.04

L∞ 0.43 0.29 21.05 0.66 0.66 1.30 1.81 1.11 2.51
aL∞ 1.26 0.48 14.44 1.05 0.69 2.07 1.56 0.57 0.64

TTLPI 4.91 2.13 9.02 0.33 0.71 1.10 1.20 0.98 2.06
LTLPI 3.94 1.50 5.62 0.40 0.71 1.16 1.31 0.71 1.07√

d Grace 3.45 0.86 3.90 0.71 0.38 0.79 1.11 0.46 0.66
aGrace 4.37 1.05 2.58 0.22 0.55 0.66 1.11 0.80 1.50

L∞ 2.46 0.52 6.98 0.59 0.50 0.85 1.42 0.77 1.21
aL∞ 3.55 0.54 2.68 0.74 0.80 1.81 1.21 0.32 0.34

TTLPI 4.82 1.86 6.88 0.40 0.72 1.20 1.13 0.90 1.83
LTLPI 4.14 1.07 3.02 0.43 0.68 1.10 1.23 0.65 0.97

interesting to note that our two new methods and aGrace
selected the three hub genes, BRCA1, BRCA2, and TP53,
most frequently over the 20 runs. Furthermore, our two new
methods were the only ones selecting all three hub genes (and
another BC gene) in their final models.

For the van de Vijver data (Table 5), compared to the
Wang data, although all the methods tended to select slightly
smaller models, we reached the same conclusion. As before,
our proposed TTLPI selected most BC genes, including the
three hub genes, both across the 20 runs and in the final
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Table 4
Results for the Wang data with w = √

d: PE (SE), mean [median] (SE) of the frequencies of selecting breast cancer (# BC)
genes and all genes (# Genes) over 20 runs and in the final models

Method PE # BC # Genes

Lasso 0.235 (0.004) 0.30 [0.00] (0.13) 8.80 [8.00] (1.91)
Final — 1 30
Enet 0.227 (0.003) 0.20 [0.00] (0.09) 9.90 [1.00] (2.60)
Final — 2 51
Grace 0.227 (0.003) 0.70 [1.00] (0.16) 9.50 [2.50] (2.38)
Final — 2 49
aGrace 0.229 (0.003) 1.30 [1.00] (0.25) 10.20 [6.00] (2.10)
Final — 2 52
L∞ 0.236 (0.005) 0.10 [0.00] (0.07) 10.35 [7.50] (1.97)
Final — 0 3
aL∞ 0.239 (0.005) 0.10 [0.00] (0.07) 10.20 [7.50] (2.43)
Final — 0 3
TTLP 0.282 (0.015) 2.90 [3.00] (0.34) 12.00 [8.00] (2.68)
Final — 4 30
LTLP 0.256 (0.009) 1.35 [1.50] (0.28) 11.10 [8.00] (2.07)
Final — 4 30

Frequency of the three tumor genes being selected (Freq)
Frequency of other genes selected � 5 times (Freq)

Lasso BRCA1 (1), BRCA2 (0), TP53 (1)
MAPK9 (10), TOP1 (6)

Enet BRCA1 (0), BRCA2 (0), TP53 (0)
ERCC2 (6), MAPK9 (7), TOP1 (6)

Grace BRCA1 (7), BRCA2 (2), TP53 (2)
BRCA1 (7), ERCC2 (5), MAPK9 (7), TOP1 (6)

aGrace BRCA1 (10), BRCA2 (4), TP53 (9)
ERCC2 (5), MAPK9 (8)

L∞ BRCA1 (0), BRCA2 (0), TP53 (0)
CD74 (6), HIF1A (5), MAPK9 (12), RFC1 (5), TOP1 (7)

aL∞ BRCA1 (0), BRCA2 (0), TP53 (0)
HIF1A (5), MAPK9 (11), TOP1 (7), CEBPZ (5)

TTLPI BRCA1 (20), BRCA2 (10), TP53 (20),
MAPK9 (8), TOP1 (5)

LTLPI BRCA1 (9), BRCA2 (5), TP53 (9)
HIF1A (5), MAPK9 (9) TOP1 (7)

The frequencies of selecting the three tumor suppressor genes (BRCA1/BRCA2/TP53) and other genes selected � 5 times are given.
The BC genes are underlined.

model, though LTLPI and aGrace also performed well. In
particular, in agreement with the biological knowledge and
with the results from the Wang data, again our two methods
TTLPI and LTLPI along with aGrace selected the three tumor
suppressor genes more often than any other method. Also note
that the fitted final models from our two new methods selected
almost the same set of the genes with almost equal regression
coefficient estimates for each dataset. Figure 1 shows the se-
lected genes in the final models for TTLPI .

Since the Wang data also contained the time to metasta-
sis, possibly right censored, we fitted penalized linear regres-
sion models to approximate penalized proportional hazards
models. As shown in Web Appendix C, we reached similar
conclusions: our proposed methods were more likely to select
the three tumor hub genes and other BC genes. We also ap-
plied the methods to an RNA-seq gene expression dataset for
breast cancer tumor and normal samples as shown in Web
Appendix C.

5. Discussion

In this article, we have proposed a network-based penalized
regression approach with a novel penalty TTLPI containing
two penalty terms for two different goals: the first uses a
TLP for variable selection while the second (TLPI) smooths
approximate indicators of the nodes’ being selected over a
network. We have also considered one of its modifications
by replacing the TLP by the Lasso for variable selection for
not-too-sparse models. Our main contribution is that, in con-
trast to previously developed network-based methods aiming
to smooth the (weighted) regression coefficients or their ab-
solute values over a network (Li and Li, 2008, 2010; Pan et
al., 2010), we adopt a less stringent assumption to smooth
the indicators of the regression coefficients’ being non-zero.
Specifically, for any two neighboring nodes j ∼ j′ in a network,
rather than assuming and thus encouraging βj/wj ≈ βj′/wj′ or
|βj|/wj ≈ |βj′ |/wj′ , our method assumes and aims to smooth
I(|βj|/wj �= 0) ≈ I(|βj′ |/wj′ �= 0). As shown in our simulation
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Table 5
Results for the van de Vijver data with w = √

d: PE (SE), mean [median] (SE) of the frequencies of selecting breast cancer
(# BC) genes and all genes (# Genes) over 20 runs and in the final models

Method PE # BC # Genes

Lasso 0.192 (0.005) 0.70 [1] (0.16) 7.35 [6] (0.97)
Final — 1 10
Enet 0.189 (0.004) 0.75 [1] (0.18) 8.00 [6] (1.64)
Final — 1 9
Grace 0.190 (0.004) 0.80 [1] (0.17) 7.90 [5] (1.65)
Final — 1 9
aGrace 0.189 (0.003) 1.25 [1] (0.18) 8.20 [7] (1.61)
Final — 1 9
L∞ 0.193 (0.006) 0.65 [1] (0.13) 7.10 [6] (0.96)
Final — 1 2
aL∞ 0.193 (0.006) 0.65 [1] (0.13) 7.15 [6] (0.97)
Final — 1 2
TTLPI 0.217 (0.008) 1.50 [1] (0.26) 4.90 [4] (0.44)
Final — 4 12
LTLPI 0.203 (0.005) 1.00 [1] (0.21) 6.45 [4] (1.15)
Final — 4 13

Frequency of the three tumor genes being selected (Freq)
Frequency of other genes selected � 5 times (Freq)

Lasso BRCA1 (1), BRCA2 (0), TP53 (0)
E2F1 (6), JAK2 (7), STAT5A (5), TK1 (8), USP4 (6)

Enet BRCA1 (1), BRCA2 (0), TP53 (0)
E2F1 (5), JAK2 (5), TK1 (8), PCAF (7)

Grace BRCA1 (2), BRCA2 (0), TP53 (1)
E2F1 (5), TK1 (7), PCAF(7)

aGrace BRCA1 (5), BRCA2 (3), TP53 (5)
E2F1 (5), TK1 (6), PCAF (6)

L∞ BRCA1 (0), BRCA2 (0), TP53 (0)
GSK3B (5), JAK2 (7), RPL5 (5), TK1 (10), USP4 (7), BTG2 (5)

aL∞ BRCA1 (0), BRCA2 (0), TP53 (0)
GSK3B (5), JAK2 (7), RPL5 (5), TK1 (10), USP4 (7)

TTLPI BRCA1 (8), BRCA2 (2), TP53 (11),
E2F1 (5), TK1 (7), USP4 (5)

LTLPI BRCA1 (5), BRCA2 (0), TP53 (5)
E2F1 (5), JAK2 (6), TK1 (8), USP4 (6)

Final model: selected genes (β̂j × 100)

TTLPI ANXA3 (−5.88), BRCA1 (−4.53), BRCA2 (−1.70), JAK2 (−3.52),
PPA1 (−6.83), MED1 (3.91), RPL5 (−1.51), TK1 (1.94)
TP53 (−7.02), USP4 (−9.75),BTG2 (−3.13), PCAF (4.86)

The frequencies of selecting the three tumor suppressor genes (BRCA1/BRCA2/TP53) and other genes selected � 5 times are given.
The final model for TTLPI with the selected genes (their regression coefficient estimates ×100) are listed. The BC genes are underlined.

studies, if the former assumption holds, then some existing
methods, such as Grace and aL∞, which fully incorporate this
former assumption, may be more efficient; however, even in
this situation, our proposed methods seem to be robust with
good performance. More generally, if this assumption does not
hold, or even if this assumption holds but the weights wj are
mis-specified, then our proposed methods perform much bet-
ter. In particular, in our real data application, we have demon-
strated the effectiveness of the proposed methods in selecting
biologically important hub genes with only small to moder-
ate effect sizes. We also note that our proposed methods have
broad applications beyond microarray gene expression data:
since no assumption is imposed on the distribution of the pre-

dictors, we can equally apply our methods (as other penalized
regression methods) to risk prediction and phenotype model-
ing with RNA-seq, DNA sequence, and other high-throughput
genomic data, for example. In summary, we regard our pro-
posed methods as a useful tool complementary to existing
methods.

We note that, although our methods encourage simultane-
ous selection (or elimination) of any two nodes connected in a
network, it is related to but significantly different from group
variable selection. A main difference is that group variable
selection only encourages indirectly, through shrinkage and
soft-thresholding, simultaneous elimination, but not necessar-
ily simultaneous selection. Consider a simple case with two
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Figure 1. The genes selected in the final models by TTLPI

with the Wang data and the van de Vijver data in the used
PPI subnetwork: the 5 genes (in hexagons) appearing in both
models, 25 genes (in triangles) only in the model with the
Wang data, and 7 genes (in large circiles) only in the model
with the van de Vijver data; the 5 BC genes are BRCA1,
BRCA2, TP53, TK1, and CHEK2.

orthogonal covariates and β = (β1, β2)
′: with a group Lasso

penalty (i.e., the L2-norm), as shown in Yuan and Lin (2006),
the penalized estimate is β̂ = (1 − √

2λ/||β̃||)+β̃, where β̃ is
the OLSE. While the simultaneous elimination effect of the
group Lasso is clear with the soft-thresholding, the shrink-
age effect is also persistent: we always have |β̂j| ≤ |β̃j| for any

component j. Hence, if β̃1 = 0 (or close to 0), no matter how
large is β̃2 �= 0, we will never have β̂1 �= 0 (or larger than β̃1);
in contrast, with our proposed penalty, it is possible to have
β̂1 �= 0 (or larger than β̃1), in which sense we say that our
methods can perform simultaneous selection (while the group
Lasso cannot). Furthermore, existing penalties for group vari-
able selection, for example, the Lγ -norm for γ > 1, have strong
shrinkage effects on parameter estimation, often leading to
severely biased parameter estimation, as demonstrated by the
L∞ method compared here. In addition, although we focus on
network-based regression, our proposed penalty can be also
applied to more general grouping problems (Pan, 2009; Shen
and Huang, 2010); for example, with no given network, we
can construct a complete graph with an edge connecting each
pair of nodes, or we can form a linear chain graph as used in
the fused Lasso (Tibshirani et al., 2005), before applying our
methods. More studies are needed.

Computationally, we have developed a DC method to re-
lax a non-convex minimization problem into iterative convex
programs to be solved. Currently we use the existing Matlab
package CVX for convex programming; a more efficient imple-
mentation for high-dimensional data is desired. In particular,
to save computing time, we used a common tuning parameter
τ for both variable selection and network smoothing; using
two different τ1 and τ2 might perform better. In addition,
due to the presence of multiple tuning parameters, we only
searched a limited number of grid points (4–5) for each tuning

parameter, which might not be optimal. Developing more effi-
cient computational algorithms and further investigating the
properties of our proposed methods are worthwhile for future
study.

Matlab code will be posted at http://www.biostat.umn.

edu/∼weip/prog.html.

6. Supplementary Materials

Web Appendices A–C referenced in Sections 2–4 are available
with this paper at the Biometrics website on Wiley Online
Library.
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