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Abstract—Genome-wide association study (GWAS) has been successful in

identifying genetic variants that are associated with complex human diseases. In

GWAS, multilocus association analyses through linkage disequilibrium (LD),

named haplotype-based analyses, may have greater power than single-locus

analyses for detecting disease susceptibility loci. However, the large number of

SNPs genotyped in GWAS poses great computational challenges in the detection

of haplotype associations. We present a fast method named HapBoost for finding

haplotype associations, which can be applied to quickly screen the whole genome.

The effectiveness of HapBoost is demonstrated by using both synthetic and real

data sets. The experimental results show that the proposed approach can achieve

comparably accurate results while it performs much faster than existing methods.

Index Terms—SNP, haplotype, genome-wide association studies, linkage

disequilibrium

Ç

1 INTRODUCTION

GENOME-WIDE association study (GWAS) has proven to be a
valuable tool to unravel the etiology of complex diseases. Recent
technological developments have enabled researchers to investi-
gate the entire genome with relative low cost, allowing for the
identification of many new and unexpected associations that relate
regions of the genome to disease risk. Along with the development
of GWAS, one major question emerges: How do we make the best
usage of the GWAS data? To date, researchers have mostly used
single-marker-based methods to analyze single nucleotide poly-
morphisms (SNPs) in GWAS, looking for statistical disease-related
associations. Although some susceptibility SNPs have been
identified, these SNPs can only explain a small portion of genetic
contributions to complex diseases, which is known as the “missing
heritability.” Multilocus association analyses through linkage
disequilibrium (LD), named haplotype-based analyses, may be
more informative for association analyses [1]. A haplotype is a
combination of alleles at adjacent locations on a chromosome that
are transmitted together. A haplotype includes several loci or an
entire chromosome depending on the number of recombination
events that have occurred for a given set of loci [2]. The reasons that
haplotype association analysis is more informative are as follows:

. For genes that contain two or more functional mutations,
haplotypes have potential impact on gene functions.
Particular combinations of amino acids are responsible
for protein folding, which is directly influenced by genetic
sequence variations.

. Haplotype analyses can reveal risk factors that show
little individual effects but jointly produce significant
associations. Identifying these risk factors may provide
more insights in understanding complex diseases.

. Haplotype analyses can have greater power than additive
models in the analysis of joint effect of multiple loci
because they incorporate LD among loci that can poten-
tially reduce the degrees of freedom of test statistics.

Recently, haplotype association analyses have started to draw
great attention [3]. However, the large number of SNPs genotyped
in GWAS poses great computational challenges in the detection of
haplotype associations.

There have been extensive studies [4], [5], [6], [7], [8], [9] on
haplotype association analyses. One strategy adopted by most
recent studies is to first partition the whole genome into small
blocks and then focus on the analysis of major haplotypes within
each block. Because haplotypes are not directly observable from
genotype data in most cases, haplotypes need to be inferred in each
block and associations will be assessed between the estimated
haplotypes with a phenotype of interest.

The first well-known method to obtain haplotype information
from genotype data was published by [10]. This algorithm requires
that some individuals have unambiguous haplotypes (individuals
with at most one heterozygous marker). However, with many
markers, it often happens that all subjects are heterozygous at
multiple loci and no individual has known haplotypes. Methods
based on the Expectation-Maximization (EM) algorithm [11] were
proposed to estimate haplotype frequencies for a small number of
polymorphisms. But for larger numbers of markers, the EM
method is computationally expensive and loses accuracy by using
a suboptimal model for haplotype frequencies. Some work
translate the haplotype inference into the task of missing haplotype
allele imputation [12]. More accurate phasing (inferring haplotypes
from genotype data) can be achieved with better a priori modeling
of probabilities of haplotype configurations [13], as is done by the
coalescent-based and hidden Markov model (HMM) methods [14],
[15], [16], [17]. However, haplotype inference in GWAS may still
take several days and remain a bottleneck. A recent work [18] used
the EGEE computing grid (more than 40,000 CPUs) to analyze
haplotype associations in the coronary artery disease (CAD) data
from the Wellcome Trust Case Control Consortium (WTCCC) [19].
This analysis took around 45 days to finish.

In this work, we propose a new method to accelerate haplotype
association analysis of GWAS data. Instead of working on haplotype
estimation improvement to speed up the analysis of haplotype
association, we use a different strategy. Intuitively, we know that
among the large number of markers queried in GWAS, only a small
portion of them may be relevant with the phenotype. It is
computationally inefficient to estimate haplotypes in those irrele-
vant regions. If we could remove those irrelevant regions, then the
entire process will be significantly faster. Therefore, our proposed
method begins with an efficient screening process, which directly
scans the genotype data to select possible association regions in a
fast manner. Then the haplotype estimation and the association
analysis are conducted only in the selected regions. The main
components of the proposed method are summarized as follows:

. Screening. A sliding-window approach is applied to
partition the whole genome into multiple overlapping
short windows. Each window is evaluated by the two-
locus haplotype-based testing and those windows passing
a specified threshold are selected. The motivation behind
this screening step is the assumption that any disease-
associated haplotype should contain at least one two-locus
haplotype segment.

. Phasing. The genotype data in the selected windows are
analyzed to obtain the haplotype information.

. Testing. A conditional testing is first applied to remove
the redundant SNP markers in the estimated haplotypes
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and then produce the core haplotypes. Next, the classical
chi-square test is used to measure the association
significance of these core haplotypes.

Experiments on the WTCCC data sets show that our method is
much faster than current methods. Meanwhile, it can find the same
results in the CAD data as those in [18]. With this computational
efficiency, we also identify some interesting haplotype association
patterns from the data sets of other diseases. The source code of our
method is publicly available at: http://bioinformatics.ust.hk/
HapBoost.

2 METHOD

We assume a case-control design in which n independent subjects
are genotyped at L SNPs. We denote the phenotype of each
subject by Y , with Y ¼ 0 corresponding to control subjects and
Y ¼ 1 to case subjects. Because SNPs are biallelic markers, we
code each allele as 0 (major allele) or 1 (minor allele). We use
capital letters (e.g., A, B; . . . ) to denote major alleles and
lowercase letters (e.g., a, b; . . . ) to denote minor alleles. The three
genotypes of each SNP, homozygous reference genotype (AA),
heterozygous genotype (Aa), and homozygous variant genotype
(aa), are coded as 0; 1; 2, respectively.

2.1 Screening

The screening process is based on the two-locus haplotype
association testing. Here, we first show how to efficiently test the
haplotype association of two loci. Then we present the details of
the screening process. Let fAB;Ab; aB; abg denote four haplotypes
at two loci and fh;0 and fh;1 denote the frequency of haplotype
h 2 fAB;Ab; aB; abg in controls and cases (see Table 1). Given four
haplotype frequencies of two loci in both control group and case
group, we can test the haplotype association by calculating the
following absolute z value [20]

z ¼ logðRÞ � logðSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEðRÞ þ SEðSÞ

p
�����

�����; ð1Þ

where

R ¼ fAB;1fab;1
fAb;1faB;1

; SEðRÞ ¼ 1

fAB;1
þ 1

fAb;1
þ 1

faB;1
þ 1

fab;1
;

S ¼ fAB;0fab;0
fAb;0faB;0

; SEðSÞ ¼ 1

fAB;0
þ 1

fAb;0
þ 1

faB;0
þ 1

fab;0
:

The haplotype frequencies (fh;0,fh;1) are unknown but can be
estimated from the genotype data. See [21] for details. Here, we
briefly explain the estimation procedure for the sake of
completeness. Table 2 explains the estimation of the haplotype
frequencies from the genotype distribution of two loci in the case
group (the estimation method in the control group is the same).
Among nine genotypes, only one combination ðAa;BbÞ of the
genotypes gives ambiguous haplotype configurations.

We use � to denote the proportion of the haplotype configura-
tion of {AB, ab} from the genotype combination ðAa;BbÞ. We
denote the probabilities of the four haplotypes in the case group as
pAB;1, pAb;1, paB;1, and pab;1, respectively. Then the frequencies of
these four haplotypes can be calculated as in Table 3.

Assuming Hardy-Weinberg equilibrium (HWE), the probability
of obtaining the genotype ðAa;BbÞ is pAB;1 pab; 1þ paB;1 pAb;1. Then
the proportion of the haplotype configuration of AB, ab is

� ¼ pAB;1 pab;1
pAB;1 pab;1 þ pAb;1 paB;1

: ð2Þ

Here, ph can be estimated with fh=2n, where n is the number of
samples. Notice that (2) is a cubic function of �, which has a
closed-form solution. Correspondingly, the haplotype frequencies
in Table 3 can be estimated straightforwardly and association
effects of these haplotypes can be measured efficiently.

Based on the fast estimation of two-locus haplotype association,
we design a computationally efficient screening method to select
the candidate regions from the whole genome. We consider sliding
windows of W adjacent SNPs. Within each window, we compute
the z scores of all SNP pairs and use their average �z1 as an
approximation of haplotype association of this window. The
window width W is specified by users and the adjacent windows
are overlapped by W � 1 SNPs. All �z are collected and sorted. The
windows with their �z in the top T percent will be selected. If two
selected windows overlap with more than W=2 SNPs, they will be
merged into one short genomic region for further examination.

2.2 Phasing

After the screening stage, we expect only a limited number of
genomic regions to remain. Therefore, the inference of haplotypes
for selected regions can be done quickly. In our method, we use
HaploRec [22], a statistical haplotype reconstruction algorithm
developed for large-scale studies. It is particularly suitable for data
sets with a large number of subjects. With sample sizes large
enough, its results appeared to be the best compared to many
other methods such as Phase [14] and fastPhase [16] in the
simulation studies. It is several orders of magnitude faster than
fastPhase and its running time is roughly linear with respect to the
number of subjects and the number of markers. The reader is
referred to [22] for details of HaploRec.

2.3 Testing

After the phasing stage, we obtain the haplotype information for
all selected regions. Given one selected genomic region G1;...;k (k is
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TABLE 1
Haplotype Frequency Table for Two Loci

TABLE 2
Haplotype Representation of Joint
Genotype Distribution at Two Loci

Only the genotype combination ðAa;BbÞ gives ambiguous haplotype
configurations.

TABLE 3
Estimating Haplotype Frequencies from

the Genotype Data of Two Loci

1. The reason we use mean instead of median is due to the computing
efficiency. The mean can be computed in one iteration, but the calculation of
the median needs sorting. There are at least 105 z values for each window.
Thus, the outliers have negligible effect on the mean.



the number of SNPs in the region) with the estimated haplotype
set H ¼ fhig1�i�s (s is the number of estimated haplotypes), an
intuitive method to test the haplotype association is to first collect
a count table as Table 4 and then compute the test-statistic as
described in (3)

X2 ¼
X1

i¼0

Xs
j¼1

ðxij � uijÞ2

uij
; uij ¼

NiMj

N
: ð3Þ

Under the null hypothesis that fhig1�i�s and the disease trait are
independent from each other, X2 has an asymptotic �2 distribution
with ðs� 1Þ degrees of freedom. However, the power of this test
may be compromised by the large number of rare haplotypes
consisting of unimportant markers (unimportant in the sense of
showing insignificant phenotype association) in the selected
regions. Therefore, it may not be optimal to analyze all the
haplotypes constructed from all markers in the region.

In our method, we design a sequential selection procedure to
remove those markers uninformative for association signals. In this
procedure, a SNP will be removed unless it contributes a
significant amount of information to the phenotype association.
The typical single-locus-based analysis without utilizing haplotype
information cannot be applied here because it may remove those
loci that individually display weak association but jointly show
strong haplotype associations. Instead, we use the Mantel-
Haenszel test statistic [23], which is often used in the analysis of
stratified categorical data. In Mantel-Haenszel test, the data are
arranged in a series of associated 2� 2 contingency tables. The null
hypothesis is that the observed response is independent of the
factor used in any 2� 2 contingency table.

Given the genomic region G1;...;k with the estimated haplotype
set H ¼ fhig1�i�s, we sequentially check every SNP. Suppose
Glð1 � l � kÞ is the one to be evaluated. We first remove Gl from H

to form a subhaplotypes HnGl
(i.e.., H without Gl). For each

hi 2 HnGl
, we collect the allelic contingency table (shown in Table 5)

between Gl and the phenotype Y .
The Mantel-Haenszel test statistic for Gl is computed using

MHGl
¼

P
hi

xhi11 �
N
hi
1
�Mhi

1

Nhi

� �� �2

P
hi

M
hi
0
�Mhi

1
�Nhi

0
�Nhi

1

Nhi �Nhi �ðNhi�1Þ

: ð4Þ

The null hypothesis in this test is that Gl and Y are not associated
in samples with any haplotype hi. Under the null hypothesis,
MHGl

has an asymptotic �2 distribution with one degree of
freedom. Given a confidence interval (0.90 for a typical setting) of
�2ð1Þ, we can decide if we should keep Gl in the haplotype
association analysis or not. This process will be repeated until
there is no SNP to be removed. Then we build the core
haplotypes and conduct the association test as described above
(3). The P -value is adjusted using the Bonferroni correction. In
our method, one test corresponds to the evaluation of one
genomic region. Since the screening process in our method checks
every SNP as a starting point of a window, the number of SNPs is
used in the Bonferroni correction.

2.4 Algorithm

To summarize, Algorithm 1 describes three stages of haplotype
association detection method.

Algorithm 1. HapBoost

Given: G1���n(genotype data with n SNPs), W (window

width), T (selection threshold)

Screening:

for 0 � i < n�W do

for i � s; t < iþW do

Estimate � for Gs and Gt using Eq. (2)

Compute zs;t using Eq. (1)

end for

�zi ¼ Average(zs;t)

end for

Sort �zi and select the top T percent and denote their

indices as fI1 � � � Ipg
Phasing:

for 1 � s; t � p do

if jIs � Itj < W then

Merge Is and It

end if

end for

Call HaploRec to estimate haplotypes on the merged

genomic regions.

Testing:

for each Gi
1���k with the estimated haplotypes Hi do

for 1 � l � k do

Remove Gi
l from Hi and build Hi

nGi
l

Compute MHGi
l

using Eq. (4)

if MHGi
l
� 2:70 then

/*2.70 corresponds the 0.90 percentile of �2ð1Þ*/

Remove Gi
l from Gi

1���k
Hi ¼ Hi

nGi
l

end if

end for

Compute the test statistic X2 using Eq. (4) and output

the P -value.

end for

Adjust P -values using the Bonferroni correction with the

number of SNPs n

3 RESULTS

3.1 Simulation Studies

In this section, we compare our method HapBoost with BEAGLE
[17], HapMiner [24], and the locfdr program [25] using the
synthetic data:

. BEAGLE is a powerful and popular method for the
analysis of large-scale genetic data sets with hundreds of
thousands of markers genotyped on thousands of samples.
It uses the localized haplotype clustering and fits the data
using an EM method. It outperforms many methods in
terms of both computational speed and measures of
accuracy for large whole-genome data sets.
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TABLE 4
Observed Contingency Table for Haplotype h

TABLE 5
Observed Contingency Table

between Gl and Y for Haplotype hi



. HapMiner is a data mining approach that utilizes a
density-based clustering algorithm to find haplotype
associations. The approach considers haplotype segments
as data points in a high-dimensional space. Clusters are
then identified based on a similarity measure using the
density-based clustering algorithm. The association sig-
nificance of each cluster is then evaluated. It has been
shown that HapMiner can effectively obtain meaningful
information from noisy data sets.

. The locfdr program extends the original false discovery
rate (FDR) [26] to the local FDR using the two-group
model. The z value of each SNP can be computed using the
Cochran-Armitage trend test. It assumes that zi with i 2 G0

comes from the null distribution f0ðzj�0Þ with probability
p0 and others come from the alternative distribution
f1ðzj�1Þ with probability p1 ¼ 1� p0, where �0, �1 are
parameters of the distributions f0 and f1, respectively.
Under mild assumptions, p0, �0, p1, and �1 can be
accurately estimated from data. We note that the locfdr

program was developed for broader applications and it is
used here to illustrate the power of single marker analysis.

3.1.1 Data Generation

To simulate realistic LD patterns of SNP data, we use the

Hapmap configuration to generate the synthetic data. We down-

load a genomic region of chromosome 10, which contains

2,000 SNPs in 280 haplotype blocks. The number of SNPs in

each block ranges from 2 to 35. We use the configuration of this

region to generate a Markov chain, in which each block is a state

that consists of several common haplotypes controlled by an

emission distribution. The connections between adjacent haplo-

type blocks are specified by a transition probability matrix. In

more details, each block consists of a number of markers, the

common haplotypes with their population frequencies, and

the transition probabilities of each common haplotype connecting

the common haplotypes in the next block. A random walk in this

chain will generate one chromosome of one sample. Repeating

this process will generate the sample pool. Fig. 1 in the

supplementary document, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.org/10.

1109/TCBB. 2013.6, displays the LD patterns in the generated

sample pool. It matches the LD patterns in the same genomic

region of Hapmap data.
To generate the case-control data, we first randomly select

one haplotype block (containing 7 major haplotypes) as the

block containing the causal variant, denoted as Hd, and then

use the following logistic regression model to assign class

labels to samples

PrðY ¼ 1jXHd
¼ fhi; hjgÞ ¼

expð�0 þ �i þ �jÞ
1þ expð�0 þ �i þ �jÞ

; ð5Þ

where Y is the case-control label, fhi; hjg are the two haplotypes of

the sample X in the block Hd, �i, and �j indicate the association

effect of hi and hj, respectively. Here, we assume the additive

model of the disease risk on the log scale.
This simulation study aims to compare our method with other

methods in the situation that the marginal effect of single SNP is

weak, but the haplotype effect (joint effect of multiple SNPs)

is significant. This situation poses a challenging issue in the

analysis of GWAS data. Given the association effects �1;...;s for all

haplotypes in Hd, we can compute the expectation of z score for

every marker in Hd. However, given the expectation of z score for

every marker in Hd, there is no closed-form solution to compute

the association effects �1;...;s. Thus, in the simulation, we design a

brute-force strategy to estimate �1;...;s. In this strategy, a threshold

of z score is first given. Next, the association effects �1;...;s for all

haplotypes are randomly assigned and the absolute z score for

every marker is computed. The process repeats until the maximum

absolute z score of markers is less than the given threshold.
The one with the maximum absolute z score will be considered

as the causal variant. We use three thresholds ð2:0; 3:0; 4:0Þ to

control the z score of the causal variant in Hd to generate different

data sets. For each threshold, we generate 100 data sets. Each data

set contains 2,000 samples and 2,000 markers.

3.1.2 Performance Comparison

The performance of these methods using ROC curve (a plot of true

positive rate versus false positive rate) is shown in Fig. 1. When the

effect of the causal variant is weak, HapBoost performs the best. As

the effect of the causal variant increases, all the methods shows

similar performance. It may not be surprising that HapBoost and

BEAGLE outperform the locfdr method. The main advantage of

locfdr is to detect SNPs with differentiable marginal effects from a

large number of makers without any effects. It cannot find SNPs

with mild or weak marginal effects while their residing haplotypes

show strong associations with phenotype. However, it seems

surprising that HapMiner does not perform as well as locfdr even

though it also uses the haplotype information to find associations.

It displays a high-false positive rate. The possible explanation is

maybe the parameter sensitivity of HapMiner [27]. HapMiner is a

density-based clustering method that needs five parameters to

specify the clustering process. It is usually difficult to automati-

cally determine the parameter values and thus the user input is

required. A large number of trials are needed to obtain the best

combination of five parameters in HapMiner. Using the default

setting may underestimate the power of HapMiner.
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Fig. 1. The performance comparison of HapBoost, BEAGLE, HapMiner, and locfdr using ROC curve. From left to right, the z score of the causal marker is 2.0, 3.0, and
4.0, respectively.



3.1.3 Null Simulation for Testing Type I Errors

To show the type I errors of our method, we conduct null

simulation in two scenarios:

. Scenario 1—with LD. The generation of the haplotype pool
is the same as the process described in the comparison
experiment. The sample is generated by merging two
haplotypes randomly selected from the haplotype pool.
We generate 5,000 null data sets, each of which contains
2,000 SNPs and 2,000 samples.

. Scenario 2—without LD. We generate 5,000 null data sets.
Each data set contains 2,000 SNPs and 2,000 samples. All
SNPs are generated independently with major allele
frequencies (MAFs) uniformly distributed in ½0:05; 0:5�.

The result is shown in Fig. 2. It can be seen that the type I errors

of our method in both settings agree with the nominal error rates.

Due to the LD pattern that reduces the degrees of freedom, the

error rates in Scenario 2 are lower than those in Scenario 1.

3.2 Experiments on WTCCC Data Sets

We have applied our method to analyze the data (14,000 cases in

total and 3,000 shared controls) from the WTCCC on seven

common human diseases: bipolar disorder (BD), CAD, Crohn’s

disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1

diabetes (T1D) and type 2 diabetes (T2D). The quality control

procedure is the same as that used in [19], including missing

value process, HWE test and removing SNPs with minor allele

frequencies less than 0.05. The number of SNPs for the haplotype

analysis and the number of identified genomic regions for seven

diseases are reported in Table 6. The details about each region are

provided in the online supplementary document.

3.2.1 CAD

In [18], the authors identified the SLC22A3-LPAL2-LPA gene

cluster in chromosome 6 as a strong disease-associated genetic

region. Our method exactly repeats this finding (see Table 1 in the

online supplementary document). The uncorrected P value is

4:59� 10�8, which is very close to 4:34� 10�8 reported in [18]. The

minor difference is due to the small difference of estimated

haplotypes. Please note that the minimum uncorrected P value of

individual marker in this region is 0.001, which is very weak in the

large-scale hypothesis testing. Thus, the single-locus-based meth-

od, such as the locfdr program, cannot identify this region.

BEAGLE and HapMiner cannot be directly applied to analyze the
data set because they need to estimate the haplotypes from the
data before conducting the analysis.

3.2.2 Other Diseases

In other diseases, we have identified some interesting suscept-
ibility regions (see Tables 2, 3, 4, 5, and 6 in the online
supplementary document) besides the well-known major histo-
compatibility complex (MHC) region. Many of these regions only
contain markers with weak marginal effects. In BD, we report a
region (rs1635003-rs12704342) in chromosome 7, which contains
gene GRM3. A similar result has been reported in [28] that one
SNP rs6465084 in gene GRM3 was associated with a fourfold
increased risk of lifetime history of psychotic symptoms, and thus
the authors confirmed that psychosis and relapse in BD are related
to gene GRM3. Another reported region (rs2893863-rs10994594) in
chromosome 10 contains gene CDK1, whose function is closely
related to gene GSK3 [29]. The pharmacological inhibition of GSK3
activity lithium is the most common treatment for BD [30].

3.3 Computation Time

From a practical point of view, a key issue of finding haplotype
associations in GWAS is the computational efficiency. As we
mentioned above, [18] spent 45 days to finish the analysis of
one data set from WTCCC using the EGEE computing grid. For
the same data set, our method was able to finish the analysis of the
haplotype association within one day using a standard 3.0-GHz
desktop with 4 G memory running Windows XP system. The
computational efficiency is significantly improved.

3.4 Parameter Sensitivity

There are two parameters to be specified in HapBoost. One is the
selection threshold T for selecting candidate regions and the other
is the window width W in the sliding window screening. The
default settings are T ¼ 0:01 and W ¼ 15. HapBoost is robust to T
because we find increasing T does not change the results but it will
increase the running time linearly. The window width W is a key
parameter of HapBoost. If the distance between the causal variant
and the closest linkage marker is bigger than W and the LD
between them is weak, then HapBoost may not identify the
genomic region covering the causal variants. In this regards, a
large W is desired. However, W cannot be too large since the
running time spent on phasing will be significantly increased.
More importantly, a large W will give rise to a large number of
haplotypes. With a limited number of samples, the power, and the
stability will be significantly reduced. We have conducted one
experiment to show the performance of our method under
different settings of W . Please see Fig. 2 in the online supplemen-
tary document for details. As the experimental result displays, our
method performs slightly different for different setting of W .

4 CONCLUSION

During the last few years, there have been growing interests in
developing and applying computational and statistical approaches
to finding haplotype associations. However, this task is computa-
tionally challenging in GWAS due to the large number of SNPs.
Presently, the majority of existing methods have been focusing on
detecting signals from a small number of loci. In this paper, we
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Fig. 2. The type I error rates in null simulation. (a) Null simulation with LD. (b) Null
simulation without LD.

TABLE 6
The Numbers of Diseased-Associated Genomic Regions Identified from Seven Diseases Data Sets



have presented HapBoost to analyze seven data sets from WTCCC.
Our experimental results have demonstrated that HapBoost is both
computationally efficient and statistically powerful in GWAS.

There are some limitations of HapBoost. HapBoost has mainly
focused on the genome-wide case-control studies, i.e., the disease
phenotype can be represented as a binary variable. In the current
stage, our method cannot be applied to genome-wide association
studies involving continuous phenotypes unless those continuous
phenotypes can be discretized. Another limitation is that HapBoost
uses the two-locus haplotype testing to preselect candidate
regions. In the situation that the LD of any two loci in the region
containing the casual variant is weak, HapBoost may not find this
region and the multilocus haplotype testing has to be applied. At
present, multilocus (more than 2) haplotype testing involves
inferring haplotypes from samples, which is not fast enough to
be applied at the genome-wide scale. We will investigate this issue
in the future work.

REFERENCES

[1] A. Clark, “The Role of Haplotypes in Candidate Gene Studies,” Genetic
Epidemiology, vol. 27, pp. 321-333, 2004.

[2] Wikipedia, “Haplotype—Wikipedia, the Free Encyclopedia,” http://en.
wikipedia.org/wiki/Haplotype, 2004.

[3] J. Kang, S. Kugathasan, M. Georges, H. Zhao, and J. Cho, “Improved Risk
Prediction for Crohn’s Disease with a Multilocus Approach,” Human
Molecular Genetics, vol. 20, no. 12, pp. 2435-2442, 2011.

[4] D. Schaid, C. Rowland, D. Tines, R. Jacobson, and G. Poland, “Score
Tests for Association between Traits and Haplotypes When Linkage
Phase Is Ambiguous,” The Am. J. Human Genetics, vol. 70, no. 2,
pp. 425-434, 2002.

[5] D.O. Stram, C. Leigh Pearce, P. Bretsky, M. Freedman, J.N. Hirschhorn,
D. Altshuler, L.N. Kolonel, B.E. Henderson, D.C. Thomas, “Modeling
and E-M Estimation of Haplotype-Specific Relative Risks from Genotype
Data for a Case-Control Study of Unrelated Individuals,” Human
Heredity, vol. 55, pp. 179-190, 2003.

[6] L. Zhao, S. Li, and N. Khalid, “A Method for the Assessment of Disease
Associations with Single-Nucleotide Polymorphism Haplotypes and
Environmental Variables in Case-Control Studies,” Am. J. Human Genetics,
vol. 72, no. 5, pp. 1231-1250, 2003.

[7] D. Lin, “An Efficient Monte Carlo Approach to Assessing Statistical
Significance in Genomic Studies,” Bioinformatics, vol. 21, no. 6, pp. 781-787,
2005.

[8] A. Morris, “A Flexible Bayesian Framework for Modeling Haplotype
Association with Disease, Allowing for Dominance Effects of the Under-
lying Causative Variants,” Am. J. Human Genetics, vol. 79, no. 4, pp. 679-694,
2006.

[9] T. Druet and M. Georges, “A Hidden Markov Model Combining Linkage
and Linkage Disequilibrium Information for Haplotype Reconstruction and
Quantitative Trait Locus Fine Mapping,” Genetics, vol. 184, no. 3, pp. 789-
798, 2010.

[10] A. Clark, “Inference of Haplotypes from PCR-Amplified Samples of
Diploid Populations,” Molecular Biology and Evolution, vol. 7, no. 2,
pp. 111-122, 1990.

[11] L. Excoffier and M. Slatkin, “Maximum-Likelihood Estimation of Molecular
Haplotype Frequencies in a Diploid Population,” Molecular Biology and
Evolution, vol. 12, no. 5, pp. 921-927, 1995.

[12] Y. Wang, Z. Cai, P. Stothard, S. Moore, R. Goebel, L. Wang, and G. Lin,
“Fast Accurate Missing SNP Genotype Local Imputation,” BMC Research
Notes, vol. 5, no. 1, article 404, 2012.

[13] S. Browning and B. Browning, “Haplotype Phasing: Existing Methods and
New Developments,” Nature Rev. Genetics, vol. 12, no. 10, pp. 703-714, 2011.

[14] M. Epstein and G. Satten, “Inference on Haplotype Effects in Case-Control
Studies Using Unphased Genotype Data,” Am. J. Human Genetics, vol. 73,
no. 6, pp. 1316-1329, 2003.

[15] M. Stephens and P. Donnelly, “A Comparison of Bayesian Methods for
Haplotype Reconstruction from Population Genotype Data,” Am. J. Human
Genetics, vol. 73, no. 5, pp. 1162-1169, 2003.

[16] P. Scheet and M. Stephens, “A Fast and Flexible Statistical Model for Large-
Scale Population Genotype Data: Applications to Inferring Missing
Genotypes and Haplotypic Phase,” Am. J. Human Genetics, vol. 78, no. 4,
pp. 629-644, 2006.

[17] S. Browning and B. Browning, “Rapid and Accurate Haplotype Phasing
and Missing-Data Inference for Whole-Genome Association Studies by Use
of Localized Haplotype Clustering,” Am. J. Human Genetics, vol. 81, no. 5,
pp. 1084-1097, 2007.
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