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ABSTRACT: Identification of gene-environment interaction (G × E) is important in understanding the etiology of complex
diseases. However, partially due to the lack of power, there have been very few replicated G × E findings compared to
the success in marginal association studies. The existing G × E testing methods mainly focus on improving the power for
individual markers. In this paper, we took a different strategy and proposed a set-based gene-environment interaction test
(SBERIA), which can improve the power by reducing the multiple testing burdens and aggregating signals within a set. The
major challenge of the signal aggregation within a set is how to tell signals from noise and how to determine the direction of
the signals. SBERIA takes advantage of the established correlation screening for G × E to guide the aggregation of genotypes
within a marker set. The correlation screening has been shown to be an efficient way of selecting potential G × E candidate
SNPs in case-control studies for complex diseases. Importantly, the correlation screening in case-control combined samples
is independent of the interaction test. With this desirable feature, SBERIA maintains the correct type I error level and can
be easily implemented in a regular logistic regression setting. We showed that SBERIA had higher power than benchmark
methods in various simulation scenarios, both for common and rare variants. We also applied SBERIA to real genome-wide
association studies (GWAS) data of 10,729 colorectal cancer cases and 13,328 controls and found evidence of interaction
between the set of known colorectal cancer susceptibility loci and smoking.
Genet Epidemiol 37:452–464, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

Both genetic (G) and environmental (E) factors impact
common complex diseases, such as cancer, diabetes, or
cardiovascular diseases. For most of these diseases, several
environmental factors and a rapidly increasing number of
genetic factors have been identified [Hindorff et al., 2009].
However, little is understood about the interplay between
G and E. Some exceptions include an observed interactions
between smoking and the GSTM1 deletion and a tag SNP in
NAT2 in bladder cancer [Garcı́a-Closas et al., 2005; Rothman
et al., 2010], ADH7 variants and alcohol consumption
in upper aerodigestive cancers [Hashibe et al., 2008], or
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GRIN2A variants and coffee consumption in Parkinson’s
disease [Hamza et al., 2011].

Although measurement error and data harmonization is-
sues across studies for the environmental factors may have
contributed to the limited numbers of confirmed gene-
environment interactions (G × E), probably more impor-
tantly, the statistical power to detect an interaction is much
smaller compared to detecting a main effect. In fact, it has
been shown that the detection of an interaction needs at least
approximately four times as many subjects as are needed to
detect a main genetic effect of comparable effect size [Smith
and Day, 1984]. A number of methods have been proposed
to enhance the power of detecting G × E, which includes
the case-only test [Chatterjee and Carroll, 2005; Piegorsch
et al., 1994], the empirical Bayes method [Mukherjee and
Chatterjee, 2008], and the Bayesian model averaging method
[Li and Conti, 2009]. Two types of screening methods have
also been proposed to reduce the multiple testing burden in

C© 2013 WILEY PERIODICALS, INC.



genome-wide G × E search: the correlation-based screening
[Murcray et al., 2009] and the marginal association based
screening [Kooperberg and Leblanc, 2008]. Toward this end,
several recent methods were developed to combine and take
advantage of different screening and testing techniques, such
as the hybrid method by Murcray et al. [2011] and cocktail
method by Hsu et al. [2012].

The above-mentioned efforts focus on improving the
power of detecting G × E for individual markers. On the
other hand, the set-based association testing has attracted in-
creasing interest. A set-based method can not only enhance
the power by aggregating multiple signals in the same set, but
also greatly reduce the number of tests to be performed and
thus reduce the multiple testing burden. Most of the exist-
ing set-based methods are for detecting genetic main effects,
which means testing the association between a set of SNPs
and a phenotype. Tzeng et al. [2011] provided a nice sum-
mary of those methods, which include burden tests that com-
pute weighted sum of genotypes across markers [Gauderman
et al., 2007; Li et al., 2009; Wang and Abbott, 2008; Wang and
Elston, 2007], methods that exploit the pairwise genetic sim-
ilarity among samples [Beckmann et al., 2005; Dempfle et al.,
2007; Mukhopadhyay et al., 2010; Schaid et al., 2005; Tzeng
et al., 2003, 2009; Wei et al., 2008; Wessel and Schork, 2006],
variance component methods [Goeman et al., 2004; Kwee et
al., 2008; Neale et al., 2011; Schaid 2010; Tzeng and Zhang,
2007; Wu et al., 2010], a method that combines P-values
within a gene [Liu et al., 2010], group additive regression
[Luan and Li, 2008], Tukey’s model [Chatterjee et al., 2006],
and an entropy-based method [Zhao et al., 2005]. Set-based
methods have drawn more attention in the sequencing stud-
ies because of the rarity of the variants, for example, several
variations of the burden tests [Han and Pan, 2010; Li and
Leal, 2008, 2009; Madsen and Browning, 2009; Morgenthaler
and Thilly, 2007; Morris and Zeggini, 2010; Price et al., 2010]
and variance component tests [Neale et al., 2011; Wu et al.,
2011] have been proposed for sequencing data. In contrast,
few methods have been proposed for set-based G × E tests.
Tzeng et al. [2011] developed a method to test for interac-
tion between a set of markers and an environment variable
by extending the set-based genetic similarity method to the
G × E setting [Tzeng et al., 2011]. As there is no competing
method, they compared the new method with the benchmark
minimum P-value method and their method showed favor-
able performance. However, their method was designed for a
continuous outcome and cannot be applied to a case-control
study for complex diseases.

A natural approach to developing a set-based G × E test is
directly extending the set-based main effect test by treating
the interaction term (usually the product of G and E) as a
new genetic variable. For example, the existing burden test
computes the (un)weighted sum of the genotypes (minor
alleles counts) across SNPs in the set and test whether the
sum is associated with the phenotype. A simple extension
of burden tests to the G × E setting would be to sum the
interaction terms (products) of G and E instead of summing
over the G’s alone. However, this kind of approach has sev-
eral disadvantages. First, assumptions that are reasonable for

main effects may not be reasonable for G × E, i.e., the power
of burden tests for rare variants depends on the assumption
that most rare missense variants are deleterious but it is not
reasonable to assume all G × E’s have the same direction. In
addition, this simple extension fails to exploit some unique
characteristics of G × E. For instance, one major difficulty in
the set-based main effect test is the lack of prior information
on which SNPs are null and what directions the effects are. In
contrast, this valuable information can be partially obtained
for interaction effect from established screening statistics for
G × E tests.

To overcome the aforementioned drawbacks, we proposed
a novel set-based gene-environment interaction (SBERIA)
test for case-control studies. The proposed method uses the
correlation between the environmental variable and the SNPs
in a set as a guide to aggregate the genotypes. The aggregated
genotype is then used to test for interaction in a regular lo-
gistic regression model. SBERIA is easy to implement and
efficient in computation. It can be applied to both common
and rare variants. We demonstrate through simulation that
our proposed method is more powerful compared to the
benchmark methods under a wide range of scenarios, in-
cluding both genome-wide association studies (GWAS) and
rare variant settings. We also applied SBERIA to real GWAS
data and found evidence of interaction between the set of
previously identified colorectal cancer (CRC) susceptibility
loci and smoking.

Material and Methods

Notations and Models

Suppose there are N subjects and the disease status is de-
noted by Di (= 0 or 1) for subject i, i = 1, . . . , N. Assume E i is
the environmental variable, Xi = (X i1, . . . , X iq) is a vector of
q potential confounder covariates, and Gi = (G i1, . . . , G ip ) is
a vector of p genetic markers. The interaction model between
the set of p markers and the environmental variable is

logit(Di) = α0 + α1E i + Giα2 + Xiα3 + E iGiβ, (1)

where logit() is the logit link function; α0 is the intercept;
α1 is the coefficient for the main effect of E i ; α2 is the px1
vector of coefficients for Gi;α3 is the qx1 vector of coefficients
for Xi; E iGi = (E iG i1, . . . , E iG ip ); β = (β1, . . . , βp )T is the
px1 vector of interaction coefficients. The null hypothesis for
interaction effects is H0 : β = 0.

Two Benchmark Methods

A typical method of testing H0 : β = 0 is the likelihood ratio
test, which compares the likelihood of models (1) with and
without the interaction terms and then tests the hypothesis
with a p degree of freedom (DF) chi-square test. We will refer
this test as the LR test in the rest of the paper. A problem of
the LR test in this case is that the relatively large number of
markers or high LD among markers could result in numerical
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instability, leading to inflated type I error, which we will show
in the simulation.

Another commonly used method is the so-called minimum
P-value (min-p) method. The min-p method tests interaction
for each marker j in the set individually with the following
model:

logit(Di) = γ0 + γ1E i + γ2G ij + Xiγ3 + βj E iG ij , (2)

and the hypothesis to be tested is H0 : βj = 0, for j = 1, . . . , p.
From the p interaction P-values for the p SNPs, the min-
p method selects the smallest P-value and corrects it for
multiple comparisons using permutation or by estimating
the effective number of DF [Gao et al., 2008; Moskvina and
Schmidt, 2008]. In our simulation, we will use 10,000 per-
mutations to determine the corrected P-value for the min-p
method. As we can see, the min-p method avoids the prob-
lem of potential large number of predictors in the LR test by
modeling each marker individually instead of jointly. How-
ever, the min-p method is not efficient in situations where
causal SNPs are in LD with multiple SNPs or when multiple
independent signals exist in the set, as it only considers the
minimum P-value.

The SBERIA Method

The main motivation for performing a set-based analysis
is that aggregating signals of markers can potentially boost
the power. However, as described in the Introduction, one
difficulty in the signal aggregation is how to tell signals from
noise and how to determine the direction of the signals. In the
set-based main effect tests, there have been several attempts
trying to solve this issue. Han and Pan [2010] used the signs
of the marginal effect to determine the direction of the main
effect [Han and Pan, 2010]. Lin and Tang [2011] used the
corresponding regression coefficient plus a constant as the
weight for each marker [Lin and Tang, 2011]. Cai et al. [2012]
proposed to weight each marker based on the z-score of its
effect [Cai et al., 2012]. One common characteristic of these
methods is that the statistics used to weight the markers are
not independent of the main effect test. Hence, permutation
is needed to estimate the null distribution and maintain
the correct type I error, which is computationally intensive.
Fortunately for G × E, there are screening statistics that are
informative for weighting the markers but still independent
with the interaction test. Therefore, it would be appealing to
take advantage of this desirable feature of the G × E test.

Correlation screening has been established as an efficient
screening tool for the G × E test [Murcray et al., 2009]. Let
us consider the following simple example to see the rationale
of the correlation screening. Suppose there is a rare disease
D, an environmental variable E (= 0 or 1), and a genetic vari-
able G (= 0 or 1). G and E are assumed to be independent in
controls (and because of the rarity of the disease, also approx-
imately independent in general population). Assume there is
a positive interaction between E and G such that the disease
risk would only increase when both E = 1 and G = 1. Then
we expect to see more E = 1 and G = 1 combinations in the

cases, which means G and E will be positively correlated in
the cases. As G and E are independent in controls, they will
be also positively correlated in the combined case-control
samples. On the other hand, if E and G impact D indepen-
dently without interaction, it can be shown (supplementary
material) that E and G are approximately when the disease is
rare. From this simple example, we can see that the correla-
tion between G and E combined case-control samples can be
useful as a screening statistic for interaction between G and
E. In addition, the direction of the correlation can inform the
direction of the interaction. More importantly, as the corre-
lation screening is conducted on the case-control combined
samples and it does not use the phenotype information, it
has been shown both by Murcray et al. [Murcray et al., 2009]
and Dai et al. [Dai et al., 2012] that the correlation screening
in combined case-control samples is asymptotically indepen-
dent of the G × E test, no matter whether G and E are inde-
pendent or not. This motivates us to propose the following
method.

We first compute the correlation between E i and G ij (j =

1, . . . , p) in (1) by either fitting a logistic regression (when E i

is binary) or a linear regression (when E i is continuous) with
E i as the response and G ij as the predictor. Then for each SNP
j (j = 1, . . . , p), we get a Z-score Z j for the correlation between
E i and G ij . Then we fit the following logistic regression:

logit(Di) = α0 + α1E i + Giα2 + Xiα3 + ρE iGiŵ, (3)

where ŵ = (ŵ1, . . . , ŵp )T is the weight vector and ŵj =

I (|Z j | > θN )sign(Z j ) + ε. I (x) is an indicator function, which
equals 0 when x is false and 1 when x is true. sign(x) = 1 when
x > 0, –1 when x < 0, and 0 when x = 0. θN = o(N1/2) and ε are
prespecified positive constants. The hypothesis of interest is
H0 : ρ = 0.

As we can see, E iGiŵ is the weighted sum of the interaction
terms and the weight, which can be 1, –1, or 0 (if we ignore ε),
is determined by correlation Z-score Z j . |Z j | measures the
strength of the correlation signal so I (|Z j | > θN ) only selects
markers showing correlation signals that are greater than a
threshold. θN = o(N1/2) because we expected I (|Z j | > θN ) to
converge to 0 as N → ∞ when there is no correlation be-
tween G and E in the combined sample and converge to 1
when there is correlation. For the selected marker (markers
with I (|Z j | > θN ) = 1), the direction of the interaction term
is determined by the direction of the correlation (sign(Z j )).
This is inspired by the observation that the directions of in-
teraction and correlation tend to agree in the simple example
above. The addition of a constant ε ensures that a weight will
be assigned if no marker is selected.

θN and ε need to be specified for SBERIA. In practice,
we found through simulation that the power of SBERIA did
not change substantially as θN changes for a given N between
2,000 and 20,000 (results not shown). Hence in this paper, we
set θN to a constant such that Prob(|Z j | > θN ) ≈ 0.1 under
the null. ε is set to a very small value (0.0001) so that it does
not affect the weight if I (|Z j | > θN )sign(Z j ) is not 0.

In summary, SBERIA first selects markers of which the
correlation signal strength is greater than a threshold. For
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the selected markers, we compute a weighted sum of their
interaction terms, where the weight = 1 if the corresponding
correlation is positive and –1 otherwise. As the correlation
statistic is independent of the interaction test, regular logistic
regression can be used to test the hypothesis without requir-
ing permutation. The validity of our method is proved in the
supplementary material. We also conduct extensive simula-
tion to evaluate the type I error rate and power of SBERIA.

Simulation

To evaluate the performance of SBERIA, we conducted
extensive simulation under various settings.

Set-Based G × E in GWAS settings

A Gene-Based Marker Set

We mimicked the real GWAS data by generating a set
of markers based on the realistic LD structure within the
SMAD7 gene. SMAD7, short for SMAD family member 7,
is a gene located at 18q21.1. It is known to interact with
the TGF-beta receptor and several SNPs in this region have
been found to associate with CRC risk [Broderick et al.,
2007; Peters et al., 2011; Tenesa et al., 2008; Tomlinson
et al., 2008]. SMAD spans from 44,700k bp to 44,731k bp
and has 48 SNPs from Hapmap II release 24 [The Interna-
tional HapMap Project 2003], which is close to the median
number (= 43) of SNPs per gene [Huang et al., 2011]. Out
of the 48 SNPs, 21 were genotyped in Illumina Human1M.
We extracted the haplotypes of the 21 SNPs from the phased
Hapmap data and randomly paired haplotypes such that the
simulated marker set maintains the same LD structure as the
21 SNPs in the Hapmap. The LD structure of the 21 SNPs
is shown in supplementary Figure S1. We chose two SNPs
rs4939827 and rs7351039 from the 21 SNPs and make them
the hidden causal SNPs in the simulation. The two SNPs were
chosen such that one is common (rs4939827, MAF = 0.49)
and one is less common (rs7351039, MAF = 0.08). The two
chosen SNPs are not in LD with each other and both SNPs
were tagged by some other SNPs. The other 19 SNPs were
considered as the marker set in the simulation.

The disease status was generated based on the following
model:

logit(Di) = α0 + γE i + α1G i1 + α2G i2 + β1E iG i1 + β2E iG i2,

(4)
where α0 = exp(–5), representing a relatively rare disease.
G i1 and G i2 are the simulated genotypes (= 0, 1, or 2) for
rs4939827 and rs7351039, respectively. E i is the environmen-
tal variable. We tried two ways of generating E i : (1) E i is con-
tinuous: E i ∼ N(0, 1); (2) E i is binary: E i ∼ Bernoulli(p =

0.3).
Type I error. To evaluate the type I error rate, we set β1 =

β2 = 0 in (4). We let α1 = α2 = 0 or log(1.5). As described
above, we used the four different ways to generate E i . For
each simulation scenario, we randomly generated 1,000 cases
and 1,000 controls. Then we performed the set-based G × E

tests using the LR test, the min-p method and SBERIA. The
procedure was repeated 2,000 times to estimate the type I
error rate with significance level 0.05.

Power. To evaluate the power, we set β1 = log(1.05),
log(1.10), log(1.15), log(1.20), log(1.25), or log(1.3) when E i

is continuous and β1 = log(1.1), log(1.2), log(1.3), log(1.4),
log(1.5), or log(1.6) when E i is binary. The values of β1 were
chosen such that the power was in a reasonable range. For
each value of β1, β2 can take three values β1, –β1, or 0, which
represents situations where two signals are in the same di-
rection, in the different direction, or when there is only one
signal, respectively. The main effects α1 and α2 were set to 0.
We also tried other values for the main effects and the results
were quantitatively similar. Same as above, we randomly gen-
erated 1,000 cases and 1,000 controls. We evaluated SBERIA,
the min-p method and the LR test for the power performance.
Each parameter setting for the simulation was repeated 2,000
times and we used significance level 0.05.

A Set of Independent Markers

In the simulation above, the 21 SNPs in the set were not
independent with each other as they were generated based
on the LD structure in the SMAD7 gene. In addition to
grouping SNPs by genes, there are other ways of forming
a marker set in practice. For example, it is common practice
to pull together previously identified susceptibility loci for
a given trait and study them as a set. To mimic this situa-
tion, we generated 20 independent SNPs. For each SNP, its
MAF is generated from uniform distribution U(0.1, 0.5) un-
der Hardy-Weinberg equilibrium. We randomly chose two
SNPs as potential causal SNP for G × E. The disease status
was generated based on the following model:

logit(Di) = α0 + γE i +

20∑

j =1

αj G ij + β1E iG i1 + β2E iG i2,

(5)
where G i1 and G i2 are the genotypes for two chosen causal
G × E SNPs. The main effects αj ’s were generated from
U(log(1.05), log(1.5)).

A wide adopted way of summarizing information from
previously identified susceptibility loci is to calculate the ge-
netic risk score (GRS), which is the sum of risk alleles from
all SNPs. Hence in this simulation scenario, we also tried to
perform the set-based G × E test by computing GRS and test
the interaction between GRS and E using a regular logistic
regression. The same parameters and procedures as the first
simulation scenario were used to evaluate type I error and
power for SBERIA, the min-p method, LR test, and the GRS
method.

Correlated G and E

G and E were assumed to be independent in the simu-
lation so far, which is a reasonable assumption in real ap-
plications [Cornelis et al., 2012]. However, in rare situa-
tions, G and E can be correlated in the general population.
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As shown in Murcray et al. [2011] and Hsu et al. [2012],
the correlation screening is not efficient when G and E are
negatively correlated. Hence, they proposed to use some
combinations of correlation screening and marginal screen-
ing (which uses the marginal association test of each SNP as
a screening for interaction test). In the current simulation
scenario, we also tried a simple modification to SBERIA that
combines correlation and marginal screenings in way simi-
lar to Gauderman et al. [2012]. Specifically, instead of using
ŵj = I (|Z j | > θN )sign(Z j ) + ε in (3), we define

ŵj = I (Sj > τN )sign(Cj ) + ε, (6)

where Sj = Z 2
j + M2

j and Mj is the Wald statistic of the
marginal association for marker j (j = 1, . . . , p); Cj = Z j if
Z 2

j > M2
j else Cj = Mj . τN is also defined such that Prob(Sj >

τN ) = 0.1 under the null.
The same settings were used as the first simulation scenario

when β1 = β2, except that E i was generated to be correlated
with G. We considered two scenarios:

1. E is correlated with the two causal SNPs. In this set-
ting, E i is either positively correlated with G i1 and
G i2: logit(E i) = logit(0.3) + b1G i1 + b2G i2, where b1 =

b2 = log(1.2) or E i is negatively correlated with G i1 and
positively correlated with G i2 (b1 = –b2 = – log(1.2)).

2. E is correlated with two random selected null SNPs.
Similar as above, E i can also be positively or negatively
correlated with the two null SNPs.

Same procedures as before were used to evaluate the type I
error and power of SBERIA, the min-p method, LR test, and
the modification to SBERIA.

Set-Based G × E in Rare Variant Setting

We also conducted simulations to evaluate the performance
of SBERIA if the variants in the marker set are less common,
as in sequencing data. In the simulation experiment, we fol-
lowed the simulation setup proposed in Lin and Tang [2011]
to generate the genotypes for rare variants [Lin and Tang,
2011]. Specifically, we generated 10 variants G ij (j = 1, . . . ,10)
with MAF = 0.005 × j under Hardy-Weinberg equilibrium.
As it is less likely for rare variants to correlate with the envi-
ronmental variable, we generated E i either as a continuous
variable from N(0,1) or a binary environmental variable E i

from Bernoulli(0.3).
The disease status was generated from the following model:

logit(Di) = α0 + γE i +

10∑

j =1

αj G ij +

10∑

j =1

βj E iG ij , (7)

where α0 is set to exp(–5) and γ is set to be log(1.2) as in
the GWAS simulation. As there is no competing set-based G
× E method in the rare variant setting, in addition to min-p
and LR test, we decided to compare SBERIA with the simple
extension of the burden test as described in the Introduction.
We will denote this method as burden G × E. Specifically,
burden G × E creates a new variable G i =

∑10
j =1 G ij , which is

the total number of minor alleles across the 10 rare variants.

Then it tests the interaction by fitting the following model
and tests H0 : λ = 0:

logit(Di) = α0 + γE i +

10∑

j =1

αj G ij + λE iG i (8)

Type I error. To evaluate the type I error rate, the coeffi-
cients βj ’s (j = 1, . . . ,10) were set to 0. We randomly generated
αj ’s from a uniform distribution U(log(1.2), log(3)). As be-
fore, we randomly sampled 1,000 cases and 1,000 controls.
The procedures were replicated 2,000 times to estimate the
type I error rate for SBERIA, min-p, LR test, and burden G
× E with significance level 0.05.

Power. To evaluate the power, we first randomly selected
m ( = 8, 5, or 2) markers as the causal variants from the 10
variants. Then we randomly generated the effect size of the
selected variants from U(log(1.2)c, log(3)c). As the sample
size of our simulation is only 2,000, c was chosen to be 1.5
such that the power was in a reasonable range. In practice,
the sample size should be much larger to study rare variant.
As we can see, in this way all effects are positive, which may
not be realistic in G × E setting. Hence, we randomly set the
direction of the interaction effect for a subset of causal SNPs
to negative (proportion = 0.2, 0.4, or 0.5). One thousand
cases and 1,000 controls were generated and the power was
estimated from 2,000 replications with significance level 0.05.
We only presented the results from the binary E i ’s because
the results from continuous E i ’s were similar.

A Real Data Application

To evaluate the performance of SBERIA in real applica-
tion, we applied SBERIA to the GWAS data of Genetics and
Epidemiology of Colorectal Cancer Consortium (GECCO).
Specifically, GECCO included the following nested case-
control studies in prospective US cohorts Health Profes-
sionals Follow-up Study (HPFS); Multiethnic Cohort Study
(MEC); Nurses’ Health Study (NHS); Physician’s Health
Study (PHS); Prostate, Lung, Colorectal and Ovarian Cancer
Screening Trial (PLCO); VITamins And Lifestyle (VITAL);
Woman’s Health Initiative (WHI); and the following case-
control studies from the US, Canada, and Europe [Colorectal
Cancer Studies 2&3 (Colo2&3); Darmkrebs: Chancen der
Verhuetung durch Screening (DACHS); Diet, Activity and
Lifestyle Survey (DALS); Ontario Familial Colorectal Cancer
Registry (OFCCR); and Postmenopausal Hormone Study-
Colon Cancer Family Registry (PMH-CCFR). Numbers of
cases and controls, age, and sex distributions are listed in
supplementary Table S1. Study-specific descriptions, includ-
ing eligibility and matching criteria, is available in Peters
et al. [2013]. CRC cases were defined as colorectal adenocarci-
noma and confirmed by medical records, pathology reports,
or death certificates. Colorectal adenoma cases were con-
firmed by medical records, histopathology, or pathologic re-
ports. Controls for adenoma cases had a negative colonoscopy
(except for NHS and HPFS controls matched to cases with
distal adenoma, which either had a negative sigmoidoscopy
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Table 1. Previously identified CRC susceptibility loci

SNP Refa Chromosome Count allele CAFb ORc(95% CId)

rs6691170 Houlston et al. [2010] 1q41 G 0.63 0.94 (0.92–0.97)
rs6687758 Houlston et al. [2010] 1q41 A 0.80 0.92 (0.89–0.94)
rs10936599 Houlston et al. [2010] 3q26.2 C 0.77 1.08 (1.04–1.10)
rs1321311 Dunlop et al. [2012] 6p21 A 0.25 1.10 (1.07–1.13)
rs16892766 Tomlinson et al. [2008] 8q23.3 A 0.92 0.80 (0.76–0.84)
rs10505477 Zanke et al. [2007] 8q24 A 0.50 1.17 (1.12–1.23)
rs6983267 Tomlinson et al. [2007], Zanke et al. [2007],

Haiman et al. [2007], Hutter et al. [2010]
8q24 G 0.50 1.21 (1.18–1.24)

rs7014346 Tenesa et al. [2008] 8q24 A 0.36 1.19 (1.15–1.23)
rs719725 Zanke et al. [2007], Kocarnik et al. [2010] 9p24 A 0.62 1.07 (1.03–1.12)
rs10795668 Tomlinson et al. [2008] 10p14 A 0.31 0.89 (0.86–0.91)
rs3824999 Dunlop et al. [2012] 11q13.4 G 0.51 1.08 (1.05–1.10)
rs3802842 Tenesa et al. [2008] 11q23 A 0.71 0.90 (0.87–0.93)
rs7136702 Houlston et al. [2010] 12q13.13 C 0.68 0.94 (0.93–0.96)
rs11169552 Houlston et al. [2010] 12q13.13 C 0.73 1.09 (1.05–1.11)
rs4444235 Tomlinson et al. [2011], Houlston et al. [2008] 14q22.2 C 0.46 1.09 (1.06–1.12)
rs1957636 Tomlinson et al. [2011] 14q22.2 C 0.59 0.92 (0.90–0.95)
rs16969681 Tomlinson et al. [2011] 15q13 C 0.91 0.84 (0.80–0.90)
rs4779584 Tomlinson et al. [2011], Jaeger et al. [2008] 15q13 C 0.82 0.87 (0.84–0.91)
rs11632715 Tomlinson et al. [2011] 15q13 A 0.48 1.12 (1.08–1.16)
rs9929218 Houlston et al. [2008] 16q22.1 A 0.30 0.91 (0.89–0.94)
rs4939827 Tenesa et al. [2008], Broderick et al. [2007] 18q21 C 0.48 0.83 (0.81–0.86)
rs10411210 Houlston et al. [2008] 19q13.1 C 0.90 1.15 (1.10–1.20)
rs961253 Tomlinson et al. [2011], Houlston et al. [2008] 20p12.3 A 0.36 1.12 (1.09–1.15)
rs4813802 Tomlinson et al. [2011], Peters et al. [2011] 20p12.3 G 0.34 1.09 (1.06–1.12)
rs4925386 Houlston et al. [2010], Peters et al. [2011] 20q13.33 C 0.69 1.08 (1.05–1.10)

a Ref, references for identifying allele, and for ORs presented.
b CAF, count allele frequency in European decent populations.
c OR, odds ratio.
d CI, confidence interval.
Only the first reference’s OR of the SNPs with more than one reference is shown in the table. The same situation applies for the Studies in Previous Publications column.

or colonoscopy exam). All participants gave written informed
consent and studies were approved by their respective Insti-
tutional Review Boards. Genotyping were done on various
platforms and imputed to Hapmap II. Please see a detailed
description of genotyping, quality control, and imputation
in GECCO in the supplementary material.

A number of loci have been identified to associate with
CRC risk [Broderick et al., 2007; Dunlop et al., 2012;
Houlston et al., 2008, 2010; Jaeger et al., 2008; Peters et al.,
2011; Tenesa et al., 2008; Tomlinson et al., 2007, 2008, 2011;
Zanke et al., 2007]. These CRC susceptibility loci are use-
ful for genetic risk profiling and allow the stratification of
population subgroups at different genetic risks [Lubbe et al.,
2012]. To get a more comprehensive understanding of CRC
risk, it is also of interest to explore possible interactions be-
tween the genetic risk factors and environmental variables. In
this paper, we included the genotypes of 25 known CRC loci
(Table 1) in GECCO and treated them as a marker set. We then
tested for interaction between this marker set and smoking
status (ever/never). Smoking status is a dichotomous variable
harmonized across all studies. Please see the supplementary
material for details of the harmonization procedure.

Specifically, we created a pooled dataset of 10,729 cases and
13,328 controls for the 25 known CRC loci by combining the
studies in GECCO. Each directly genotyped SNP was coded
as 0, 1, or 2 copies of the variant allele. For imputed SNPs, we
used the expected number of copies of the variant allele (the
“dosage”). Both genotyped and imputed SNPs are treated as
continuous variable (i.e., log-additive effects). We then ap-
plied SBERIA in (3) to the pooled dataset. The covariates

X we adjusted for include age, sex, the first three principle
components, study indicators, and the interaction between
principle components and study indicator. As a comparison,
we also tried two possible benchmark methods: the min-p
method, which computes the interaction P-value for each
of the 25 SNPs separately and selects the minimum P-value
while correcting for multiple comparisons using the Bonfer-
roni method; the second alternative method is to compute
GRS and test the interaction between GRS and smoking status
using a regular logistic regression.

Results

Set-Based G × E in GWAS Settings

A Gene-Based Marker Set

The estimated type I error for SBERIA, min-p, and the LR
test are summarized in Table 2. It can be seen that both SBE-
RIA and the min-p method always maintain the correct type I
error (0.05). However, the LR test generally gives inflated type
I error, which is a result of its numerical instability due to the
relatively large number of variables. Figure 1 shows the power
comparison results for this simulation scenario. It can be seen
that when β1 = β2, SBERIA has better power than both min-
p and the LR test. The average power gain of SBERIA over
min-p is 13.9% with a range of –6% to 24.3% (excluding
data points where the power of min-p is less than 0.1 to pre-
vent numeric instability). Also as expected, SBERIA is still
more powerful than the min-p method (average percent of
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Table 2. Type I error rate (95% CI) for SBERIA, min-p, and LR test
in simulation scenario 1 (a gene-based marker set) in GWAS
settings

SBERIA Min-p LR test

E i is continuous and independent of G i1 and G i2

α1 = α2 = 0 0.044 (0.035 0.052) 0.045 (0.036 0.054) 0.061 (0.051 0.071)
α1 = α2 = log(1.5) 0.045 (0.036 0.054) 0.042 (0.033 0.05) 0.062 (0.052 0.073)

E i is binary and independent of G i1 and G i2

α1 = α2 = 0 0.049 (0.04 0.058) 0.046 (0.037 0.055) 0.070 (0.059 0.081)
α1 = α2 = log(1.5) 0.042 (0.033 0.051) 0.046 (0.036 0.055) 0.063 (0.052 0.074)

power gain is 12.5% with a range from 5.2% to 19.5%) when
the two causal SNPs have interaction effects in opposite di-
rections (β1 = –β2), which demonstrates that the correlation
screening is able to predict the direction of interaction effect
fairly well. With inflated type I error, the LR test still only gives
power that was close to or less than SBERIA. For the scenario
where there was only one causal SNP (β2 = 0), SBERIA still
performs better than the other two methods (average percent
of power gain over min-p is 11.5% with a range from 0.4% to
18.2%). This could be attributed to the fact that SBERIA ag-
gregates information from several LD SNPs of the causal vari-
ant and thereby increases the power. The advantage of SBE-
RIA is more apparent if one considers the fact that the min-p
method requires often time-consuming permutation to get
the corrected P-value (otherwise the simple Bonferroni cor-
rection using the number of markers in the set would be too
conservative).

A Set of Independent Markers

The type I error for this simulation scenario was summa-
rized in Table 3. All except the LR test maintain the correct
type I error. From Figure 2, it can be seen that SBERIA al-
most always gives the best power. When β1 = β2, the average
percent of power gain of SBERIA over min-p is 24.8% with a
range from 8.2% to 49.0%; when β1 = –β2, the average per-
cent of power gain of SBERIA over min-p is 15.9% with a
range from 3.9% to 27.6%; when β2 = 0, the average per-
cent of power gain of SBERIA over min-p is 10.7% with a
range from –8.6% to 25.2%. The GRS method always gives
the lowest power.

Correlated G and E

From Table 4, it can be seen that only LR test gives in-
flated type I error. As SBERIA uses the correlation between
G and E in case-control combined samples as the screen-
ing tool, it is expected that the power of SBERIA would be
impacted if gene-environment correlation exists in the gen-
eral population. The top left plot of Figure 3 show that the
power of SBERIA is further boosted if the gene-environment
correlations in the general population are positive for both
causal variants. As shown in the top right plot of Figure 3,
the power of SBERIA drops if the correlation in the gen-
eral population is in a different direction compared with
the interaction, which is in line with expectation. As ex-

pected, the simple modification of SBERIA shows a desirable
performance in this case. Compared with the unmodified
version, it has almost the same magnitude of power gain
when the correlations are positive and have little power loss
when the correlation is in a different direction compared to
the interaction. If there are correlation between null SNPs
and E, the two plots on the bottom of Figure 3 shows that
the power advantage of SBERIA and SBERIA-M is reduced,
which is expected because the correlation between null SNPs
and E would make the null SNPs more likely to be selected
and therefore dilute the interaction signal. It is worth not-
ing, however, that gene-environment correlation in popu-
lation is relatively rare in real applications [Cornelis et al.,
2012].

Set-Based G × E in Rare Variant Setting

From Table 5, it can be seen that both SBERIA and the bur-
den G × E test maintain the correct type I error. However,
the min-p method seems to be conservative, which could
be due to the rarity of the SNPs. On the other hand, the
LR test is highly inflated. Figure 4 shows the power com-
parison between various methods. LR test always has the
best power, however, given its highly inflated type I error,
it is not applicable in practice. It can be seen that SBE-
RIA is always more powerful than the min-p and burden
G × E method in the simulation. The advantage of SBERIA
is most obvious when around half of the causal loci have
negative interaction with E and the others have positive in-
teraction. Again, this shows that correlation screening did
a good job informing us about the direction of interaction
effects.

A Real Data Application

The results for testing for interaction between the known
CRC marker set and smoking status using GECCO GWAS
data are summarized in Table 6. It can be seen that SBE-
RIA reaches the significance level 0.05 and the GRS method
also gives a P-value close to the significance level. Hence,
there is evidence that the genetic risk of CRC is interacting
with the smoking status. On the other hand, SBERIA gives
a more significant P-value compared to the min-p and the
GRS method, which demonstrates the potential advantage of
SBERIA. In addition, when exploring which SNPs contribute
to the interaction signal in the marker set, we found that
rs10936599 shows the strongest evidence—it was selected by
the correlation screening of SBERIA and it also has the small-
est interaction P-value in min-p.

Discussion

In this paper, we proposed a novel method to test for
interaction between a set of markers and an environmental
variable in case-control studies. SBERIA takes advantage of
the unique features of G × E test by using the correlation
screening to inform the aggregation of interaction effects

458 Genetic Epidemiology, Vol. 37, No. 5, 452–464, 2013



E ~ N(0,1); beta2=beta1

beta1

P
ow

er

0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SBERIA
min−p
LR test

E ~ N(0,1); beta2=−beta1

beta1

P
ow

er

0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SBERIA
min−p
LR test

E ~ N(0,1); beta2=0

beta1

P
ow

er

0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SBERIA
min−p
LR test

E binary; beta2=beta1

beta1

P
ow

er

0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SBERIA
min−p
LR test

E binary; beta2=−beta1

beta1

P
ow

er

0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SBERIA
min−p
LR test

E binary; beta2=0

beta1

P
ow

er

0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SBERIA
min−p
LR test

Figure 1. Power comparison between SBERIA, the min-p method, and the LR test in simulation scenario 1 (a gene-based marker set) of GWAS
settings. The three plots on the left are results when E i was generated as continuous variable and the plots on the right are for binary E i ’s. The
top plots are for simulation scenarios where β1 = β2; the plots in the middle are for scenarios where β1 = −β2; the bottom plots are for scenarios
where β2 = 0.

Table 3. Type I error rate (95% CI) for SBERIA, min-p, LR test, and
GRS method in simulation scenario 2 (a set of independent
markers) in GWAS settings

SBERIA Min-p LR test GRS test

E i is continuous and independent of G i1 and G i2

0.044 (0.035 0.054) 0.042 (0.034 0.051) 0.059 (0.049 0.069) 0.044 (0.035 0.053)
E i is binary and independent of G i1 and G i2

0.050 (0.040 0.059) 0.054 (0.044 0.063) 0.060 (0.049 0.070) 0.050 (0.040 0.059)

within the marker set. Because the correlation screening in
combined case-control samples is independent of the interac-
tion test, SBERIA maintains the correct type I error without
requiring permutation. SBERIA uses the regular logistic re-
gression model so it is computationally efficient and easy to be
implemented. We showed that SBERIA has appealing power
compared with the benchmark methods in both GWAS and
rare variant settings.
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Figure 2. Power comparison between SBERIA, the min-p method, the LR test, and the GRS test in simulation scenario 2 (a set of independent
markers) of GWAS settings. The three plots on the left are results when E i was generated as continuous variable and the plots on the right are for
binary E i ’s. The top plots are for simulation scenarios where β1 = β2; the plots in the middle are for scenarios where β1 = −β2; the bottom plots are
for scenarios where β2 = 0.

Table 4. Type I error rate (95% CI) for SBERIA, min-p, LR test, and the modification of SBERIA in simulation scenario 3 (correlated G and
E) in GWAS settings

SBERIA Min-p LR test SBERIA-modified

E i is positively correlated with G i1 and G i2

α1 = α2 = 0 0.052 (0.042 0.062) 0.042 (0.033 0.05) 0.061 (0.051 0.071) 0.054 (0.044 0.064)
α1 = α2 = log(1.5) 0.050 (0.040 0.059) 0.050 (0.040 0.059) 0.063 (0.052 0.074) 0.048 (0.038 0.057)

E i is negatively correlated with G i1 and positively correlated with G i2

α1 = α2 = 0 0.058 (0.048 0.069) 0.046 (0.036 0.055) 0.062 (0.052 0.073) 0.057 (0.047 0.067)
α1 = α2 = log(1.5) 0.044 (0.035 0.054) 0.046 (0.037 0.055) 0.065 (0.054 0.076) 0.052 (0.042 0.062)
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Figure 3. Power comparison between SBERIA, the min-p method, the LR test, and SBERIA-M, the modification to SBERIA (as defined in equation
6, in simulation scenario 3 (E correlated with G) of GWAS settings. The two plots on the top are results when E i was correlated with two causal
SNPs G i 1 and G i 2 and the two plots on the bottom are results when E i was correlated with two randomly selected null SNPs. The plots on the left
are for scenarios where E i is positively with both SNPs and the plots on the right are for scenarios where E i is positively correlated with one SNP
and negatively correlated with the other.

Table 5. Type I error rate (95% CI) for SBERIA and burden G × E in rare variant settings

SBERIA Burden G × E Min-p LR test

E i ∼ N(0,1) 0.045 (0.036 0.054) 0.050 (0.040 0.060) 0.031 (0.023 0.039) 0.085 (0.072 0.097)
E i ∼ Bernoulli(0.3) 0.046 (0.037 0.055) 0.051 (0.041 0.061) 0.031 (0.023 0.039) 0.095 (0.082 0.108)

While applying SBERIA to real data, we found evidence
of interaction between genetic risk and smoking status for
CRC. rs10936599, the SNP showing the strongest signal, is
located at 3q26.2 in the MYNN gene. MYNN encodes a zinc
finger domain-containing protein family, which is involved
in the control of gene expression. Given that the function of
MYNN is largely unknown so far, further functional charac-
terization is needed in order to evaluate and interpret this
potential interaction. In the real data application, we in-
cluded the advanced colorectal adenomas because they are
well-known precursor lesions of CRC. As a result, this im-
proves our statistical power to identify G × E that act early in
the adenoma-cancer sequence, where adenomas and cancer
have a shared etiology. We recognize that the adenoma cases
will not show signals for G × E’s that act later in the carcino-
genic process (i.e., on progression from adenoma to cancer)
or G × E’s that act through adenoma independent pathways.

There are several possible improvements that can be made
to SBERIA. First, we chose θN such that it corresponds to
P-value cutoff 0.1. We also tried other P-value cutoffs such
as 0.05 and 0.2 in the simulation and the power of SBERIA
does not change substantially (results not shown). However,
it should be noted that the minor allele frequency affects the
power of the correlation screening, and the SNPs with larger
MAF will be more likely to pass the screening compared to
less common SNPs. Hence, it is of interest to let the threshold
vary with MAF. More work should be done to find an optimal
θN . In addition, the current weighting of SBERIA is either 1,
–1, or 0. Further work should explore whether the use of
more advanced weight, such as the effect size of the correla-
tion screening or the main effect, would increase power. In
SBERIA, the main effect is modeled separately for each SNP
in the set. It would be interesting to model main effects also in
a set-based manner, which could potentially increase power.
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Figure 4. Power comparisons between SBERIA (S), min-p (M), LR test (L), and the burden G × E method (B) for different simulation scenarios in
rare variant settings. The results are categorized by combinations of the number of causal variants and the proportion that a causal variant has a
negative interaction effect.

Table 6. The results for testing interaction between the known
CRC loci marker set and smoking status using different methods

SBERIA Min-p GRS

P-value 5.92 × 10–3 0.28 5.41 × 10–2

Furthermore, more sophisticated methods can be built upon
the framework of our method. For example, SBERIA drops
the markers that are not selected based on screening. How-
ever, as the screening is not perfect, those SNPs can still con-
tain useful information. Hence, it could potentially increase
power to apply the traditional method (i.e., variance compo-
nent based method) to the unselected SNPs and combine the
results from the selected and unselected SNPs. SBERIA uses
the correlation screening to combine SNPs in case-control
studies. The strength of the correlation screening is mainly
driven by the correlation between G and E in cases when
there is G × E interaction. Hence, it is expected that if there
are much more controls than cases, the correlation signal will
be weakened and the power of correlation screening will be
reduced.

In summary, SBERIA shows a promising performance both
in simulation and real data application. With its easy imple-
mentation and fast computation time, SBERIA provides an
attractive approach to detecting set-based gene-environment
interactions.

Acknowledgments

GECCO: National Cancer Institute, National Institutes of Health, U.S. De-
partment of Health and Human Services (U01 CA137088; R01 CA059045).

ASTERISK: a Hospital Clinical Research Program (PHRC) and supported
by the Regional Council of Pays de la Loire, the Groupement des Entreprises
Françaises dans la Lutte contre le Cancer (GEFLUC), the Association Anne
de Bretagne Génétique and the Ligue Régionale Contre le Cancer (LRCC).

COLO2&3: National Institutes of Health (R01 CA60987).
DACHS: German Research Council (Deutsche Forschungsgemeinschaft,

BR 1704/6–1, BR 1704/6–3, BR 1704/6–4, and CH 117/1–1), and the German
Federal Ministry of Education and Research (01KH0404 and 01ER0814).

DALS: National Institutes of Health (R01 CA48998 to M.L.S).
Guangzhou-1: National Key Scientific and Technological Project—

2011ZX09307–001–04 and the National Basic Research Program—
2011CB504303, People’s Republic of China.

HPFS is supported by the National Institutes of Health (P01 CA 055075,
UM1 CA167552, R01 137178, and P50 CA 127003), NHS by the National

462 Genetic Epidemiology, Vol. 37, No. 5, 452–464, 2013



Institutes of Health (R01 137178, P01 CA 087969, and P50 CA 127003), and
PHS by the National Institutes of Health (CA42182).

MEC: National Institutes of Health (R37 CA54281, P01 CA033619, and
R01 CA63464).

OFCCR: National Institutes of Health, through funding allocated to the
Ontario Registry for Studies of Familial Colorectal Cancer (U01 CA074783);
see CCFR section below. OFCCR is supported by a GL2 grant from the On-
tario Research Fund, the Canadian Institutes of Health Research, and the
Cancer Risk Evaluation (CaRE) Program grant from the Canadian Cancer
Society Research Institute. Thomas J. Hudson and Brent W. Zanke are re-
cipients of Senior Investigator Awards from the Ontario Institute for Cancer
Research, through generous support from the Ontario Ministry of Economic
Development and Innovation.

PLCO: Intramural Research Program of the Division of Cancer Epi-
demiology and Genetics and supported by contracts from the Division
of Cancer Prevention, National Cancer Institute, NIH, DHHS. Control
samples were genotyped as part of the Cancer Genetic Markers of Sus-
ceptibility (CGEMS) prostate cancer scan, supported by the Intramu-
ral Research Program of the National Cancer Institute. The datasets
used in this analysis were accessed with appropriate approval through
the dbGaP online resource (http://www.cgems.cancer.gov/data_acess.html)
through dbGaP accession number 000207v.1p1.c1 (National Cancer Insti-
tute (2009) Cancer Genetic Markers of Susceptibility (CGEMS) data website
http://cgems.cancer.gov/data_access.html; Yeager et al., 2007). Control sam-
ples were also genotyped as part of the GWAS of Lung Cancer and Smoking
[Landi et al., 2009]. Funding for this work was provided through the Na-
tional Institutes of Health, Genes, Environment and Health Initiative [NIH
GEI] (Z01 CP 010200). The human subjects participating in the GWAS are
derived from the Prostate, Lung, Colon and Ovarian Screening Trial and the
study is supported by intramural resources of the National Cancer Institute.
Assistance with genotype cleaning, as well as with general study coordina-
tion, was provided by the Gene Environment Association Studies, GENEVA
Coordinating Center (U01 HG004446). Assistance with data cleaning was
provided by the National Center for Biotechnology Information. Funding
support for genotyping, which was performed at the Johns Hopkins Uni-
versity Center for Inherited Disease Research, was provided by the NIH
GEI (U01 HG 004438). The datasets used for the analyses described in this
manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap
through dbGaP accession number phs000093.

PMH: National Institutes of Health (R01 CA076366 to P.A.N.).
VITAL: National Institutes of Health (K05 CA154337).
WHI: The WHI program is funded by the National Heart, Lung,

and Blood Institute, National Institutes of Health, U.S. Department of
Health and Human Services through contracts HHSN268201100046C,
HHSN268201100001C, HHSN268201100002C, HHSN268201100003C,
HHSN268201100004C, and HHSN271201100004C.

ASTERISK: We are very grateful to Dr. Bruno Buecher without whom
this project would not have existed. We also thank all those who agreed
to participate in this study, including the patients and the healthy control
persons, as well as all the physicians, technicians, and students.

DACHS: We thank all participants and cooperating clinicians, and Ute
Handte-Daub, Renate Hettler-Jensen, Utz Benscheid, Muhabbet Celik, and
Ursula Eilber for excellent technical assistance.

GECCO: The authors would like to thank all those at the GECCO Coor-
dinating Center for helping bring together the data and people that made
this project possible.

HPFS, NHS, and PHS: We would like to acknowledge Patrice Soule and
Hardeep Ranu of the Dana Farber Harvard Cancer Center High-Throughput
Polymorphism Core who assisted in the genotyping for NHS, HPFS, and
PHS under the supervision of Dr. Immaculata Devivo and Dr. David Hunter,
Qin (Carolyn) Guo and Lixue Zhu who assisted in programming for NHS
and HPFS, and Haiyan Zhang who assisted in programming for the PHS. We
would like to thank the participants and staff of the Nurses’ Health Study and
the Health Professionals Follow-Up Study, for their valuable contributions
as well as the following state cancer registries for their help: AL, AZ, AR, CA,
CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ,
NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY.

PLCO: The authors thank Drs. Christine Berg and Philip Prorok, Divi-
sion of Cancer Prevention, National Cancer Institute, the Screening Center

investigators and staff or the Prostate, Lung, Colorectal and Ovarian (PLCO)
Cancer Screening Trial, Mr. Tom Riley and staff, Information Management
Services, Inc., Ms. Barbara O’Brien and staff, Westat, Inc., and Drs. Bill Kopp,
Wen Shao, and staff, SAIC-Frederick. Most importantly, we acknowledge the
study participants for their contributions to making this study possible.

PMH: The authors would like to thank the study participants and staff of
the Hormones and Colon Cancer study.

WHI: The authors thank the WHI investigators and staff for their
dedication, and the study participants for making the program possi-
ble. A full listing of WHI investigators can be found at: https://cleo.whi.
org/researchers/Documents%20%20Write%20a%20Paper/WHI% 20Inves-
tigator%20Short%20List.pdf

References

Beckmann L, Thomas DC, Fischer C, Chang-Claude J. 2005. Haplotype sharing analysis
using mantel statistics. Hum Hered 59:67–78.

Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, Lubbe
S, Spain S, Sullivan K, Fielding S and others. 2007. A genome-wide association
study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat
Genet 39:1315–1317.

Cai T, Lin X, Carroll RJ. 2012. Identifying genetic marker sets associated with pheno-
types via an efficient adaptive score test. Biostatistics (Oxford, England) 13:776–790.

Chatterjee N, Carroll RJ. 2005. Semiparametric maximum likelihood estimation
exploiting gene-environment independence in case-control studies. Biometrika
92:399–418.

Chatterjee N, Kalaylioglu Z, Moslehi R, Peters U, Wacholder S. 2006. Powerful multilo-
cus tests of genetic association in the presence of gene-gene and gene-environment
interactions. Am J Hum Genet 79:1002–1016.

Cornelis MC, Tchetgen EJT, Liang L, Qi L, Chatterjee N, Hu FB, Kraft P. 2012. Gene-
environment interactions in genome-wide association studies: a comparative study
of tests applied to empirical studies of type 2 diabetes. Am J Epidemiol 175:191–202.

Dai JY, Kooperberg C, Leblanc M, Prentice RL. 2012. Two-stage testing procedures with
independent filtering for genome-wide gene-environment interaction. Biometrika
99:929–944.

Dempfle A, Hein R, Beckmann L, Scherag A, Nguyen TT, Schäfer H, Chang-Claude
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