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ABSTRACT We consider resequencing studies of associated loci and the problem of prioritizing sequence variants for functional
follow-up. Working within the multivariate linear regression framework helps us to account for the joint effects of multiple genes; and
adopting a Bayesian approach leads to posterior probabilities that coherently incorporate all information about the variants’ function.
We describe two novel prior distributions that facilitate learning the role of each variable site by borrowing evidence across phenotypes
and across mutations in the same gene. We illustrate their potential advantages with simulations and reanalyzing a data set of
sequencing variants.
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GENOME-WIDEassociation studies (GWAS)haveallowed
human geneticists to compile a rather long list of loci

where DNAvariation appears to be reproducibly associated to
phenotypic variability (National Human Genome Research
Institute 2015). While these might represent only a subset
of the portion of the genome that is important for the traits
under study (Manolio et al. 2009), there is little doubt that
understanding the characteristics and mechanisms of func-
tional variants at these loci is a necessary next step. As
resequencing becomes ever more affordable, follow-up inves-
tigations of GWAS loci often start with a comprehensive
catalog of their genetic variants in a sample of thousands
of individuals, raising the question of how to sort through
these results.

Among the many challenges, let us discuss two. First,
common variants are often correlated and it is difficult to
distinguish their roles without accounting for the broader
genetic background of the individuals who carry them.
Second, rare variants are present in a small enough portion
of the sample that statistical statements become impossible.
With this in mind, it has been noted that (a) it is important to
account for correlation between variants to obtain useful

ranking, (b) we should increasingly be able to take advantage
of the information gathered through other studies, and (c)
Bayesian models provide a principled approach to guide
variant prioritization. To adequately select among variants
in the same locus (defined as a genomic region that might
encompass multiple genes but that corresponds to the same
association signal in a GWAS study), researchers have
resorted to model selection approaches (Valdar et al. 2012)
or approximations of the joint distribution of univariate test
statistics (Faye et al. 2013; Hormozdiari et al. 2014). Prior
information on variant annotation has been incorporated in
models for eQTL (Veyrieras et al. 2008) andmore recently for
general traits (Chung et al. 2014; Kichaev et al. 2014; Pickrell
2014), and annotation programs increasingly attempt to in-
clude information on identified genetic loci (Wang et al.
2010). Prioritization often relies on Bayes’ theorem, and
Bayesian methods have received renewed attention in the
context of GWAS data analysis (Guan and Stephens 2011;
Peltola et al. 2012a,b), genomic prediction (Gianola 2013),
and the evaluation of heritability (Zhou et al. 2013).

In this context, we explore the advantages of a careful
specification of the prior distributions on variants, by allowing
sharing of information across multiple phenotypes and across
neighboring rare variants.We aremotivated by the analysis of
an exome resequencing study (Service et al. 2014) in which
individual-level data are available for exomic variants at mul-
tiple genomic loci that have demonstrated evidence in GWAS
of association to lipid traits. By design, the vast majority of
measured variants are coding or in UTRs, that is, in portions
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of the genome with high prior probability of harboring func-
tional mutations. Annotation can help distinguish the role of
synonymous variants, and conservation scores can be used to
predict the effect of nonsynonymous ones; but annotation
cannot be used to discount the importance of a large number
of noncoding variants that one can expect to occur in awhole-
genome sequencing data set. Measures on levels of high-
density lipoprotein (HDL), low-density lipoprotein (LDL),
and triglycerides (TG) are available for the study subjects,
and we are interested in capitalizing on themultidimensional
nature of the phenotype. Prior analyses of this data set
(Service et al. 2014; Bogdan et al. 2015) have illustrated
the importance and the challenges of multivariate linear
models, and we explore here the advantages offered by care-
fully selecting priors for Bayesian models. Abstracting from
the specifics of this data set, we show how hierarchical prior
distributions can be adapted to learn about the functionality
of a variant by (i) looking across multiple phenotypes and (ii)
aggregating the effects of multiple rare variants in the same
gene. Since the power of Bayesian methods in borrowing in-
formation is well known, it is not surprising that others have
explored their application in this context. For example, Yi
et al. (2011) illustrate the use of priors to model a group
effect for multiple rare variants, while Stephens (2013) de-
scribes models for the analysis of multiple traits. Our ap-
proach, however, is distinct from others in that it strives to
achieve all of the following: (1) constructing a multivariate
linear model that simultaneously accounts for the contribu-
tions of multiple genes and genomic loci; (2) providing in-
ference on variant-specific effects—while linking information
across traits and genomic sites; and (3) accounting for the
large number of variants tested, effectively enacting a form of
multiple-comparison adjustment.

This article is organized as follows. We devote Prior Dis-
tributions on Genetic Variants to introducing the novel priors
in the context of the genetic model, using an approximation
of the posterior distribution to illustrate their inferential im-
plications.Methods describes theMCMC scheme used to sam-
ple the posterior, the setting used for simulations, and the
criteria for comparison of methods. Results presents the re-
sults of simulation studies highlighting the potential of our
proposal, as well as the description of the analysis of the
motivating data set.

Prior Distributions on Genetic Variants

Onecharacteristicof agenetic studybasedonresequencing, as
contrasted to genotyping, is that researchers aim to collect a
comprehensive catalog of all genetic variants. This has impli-
cations for the statistical models used to analyze the data and
the prior assumptions. Let n be the number of subjects in the
study and p the number of polymorphic sites assayed. We use
yi to indicate the phenotypic value of subject i and Xiv to in-
dicate the genotype of this subject at variant v (typically
coded as minor allele count). The simplest genetic model
for a heritable phenotype is of the form

yi ¼
X
k2T

Gik þ zi;

where the zi incapsulate all nongenetic effects and Gik for
k 2 T represent the contributions of a set T of genes that
act additively and independently. Without loss of generality
and following a standard practice in GWAS, we assume that
the effects of nongenetic determinants of the phenotypes
have been regressed out from yi so that zi can be considered
independent “error” terms. Let us assume that the genetic
effects are a linear function of minor allele counts so that

yi ¼
X
v2V

bv Xiv þ ei (1)

for a set V of causal variants with ei independent and identi-
cally distributed (i.i.d.)Nð0; 1=rÞ: Although this assumption
is substantial, it has the role of only simplifying notation.
While (1) represents the true genetic architecture of the trait,
the membership of V is unknown in a typical association
study, so the relation between the phenotype and genetic
variants is expressed as

yi ¼
Xp
v¼1

bv Xiv þ ei; ei �i:i:d:N
�
0;
1
r

�
; (2)

summing over all variable sites and with the understanding
that only an (unknown) subset ofb ¼ ðb1; . . . ;bpÞ is different
from 0. Below we use the compact matrix notation
y ¼ Xbþ e: Using (2) to describe the relation between traits
and genotypes depends heavily on the assumption that a
resequencing study assays all variants. In GWAS, on the other
hand, causal variants might be untyped, which means their
contributions are partially captured by correlated variants
and partially included in the error term. It would still be
meaningful in that context to use a linear model to link phe-
notype and genotypes. However, in GWAS, the errors cannot
be assumed independent, and the interpretation of the coef-
ficients of X—as well as their prior distribution—is substan-
tially more complicated. We note that mixed-effects models
can be used to address the first concern (Kang et al. 2010).

The parameters inmodel (2) areb and r; we now focus on
their prior distribution. Following standard practice, we take
r � Gammaðar; lrÞ: (See Guan and Stephens 2011 for an-
other approach that specifically targets GWAS and relies on
heritability information.) On the vector b, we want a prior
that reflects ourmodel selection goals and our understanding
of the genetic architecture. There are several aspects to con-
sider: (a) given the exhaustive nature of the genotyping pro-
cess, we believe that most of the variants available do not
directly influence the trait; (b) it seems reasonable that a
variant that influences one trait (so that its effect size is def-
initely not zero) might also influence other traits; and finally
(c) it appears likely that if a rare variant influences the out-
come, other nearby rare variants might also have an effect.
Our main goal is to describe prior distributions on b that
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incorporate these beliefs. We start by recalling one class of
priors that reflect aspect a and then move on to generaliza-
tions that account for the sharing of information implied by
aspects b and c. In what follows, we assume that the allele
counts in the column of X have been standardized to have
mean zero and variance one.

Priors incorporating sparsity

Theprior belief that only a fraction of the typedvariants has an
effect on the phenotype is but one instance of what is a
common assumption in high-dimensional statistics, i.e., that
the parameter b of interest is sparse. To specify a prior on b

that gives positive probability to vectors with a number of
coordinates equal to zero, we rely on a construction by
George and McCulloch (1993) and introduce a vector of
indicator variables Z such that Zv ¼ 0 implies bv ¼ 0: The
Zv are i.i.d. Bernoulli with parameter v, which governs the
sparsity of the model and has a BetaðAv;BvÞ prior. Let
bZ indicate the collection of elements of b corresponding
to nonzero elements of Z, and let XZ be the corresponding
columns of X. It has been found useful to assume
ðbZjZ; r; tÞ � N ð0; ðt2=rÞSZÞ; where SZ is a known matrix
and t� Unifðt1; t2Þ links the error variance to the size of
the b coefficients. In the literature, SZ mainly has one of
two forms: IjZj (the identity matrix of size jZj, where jZj indi-
cates the number of nonzero components of the vector Z) or
nðXT

ZXZÞ21; which is referred to as the g prior (Zellner 1986)
(and is a viable choice only when jZj, n). Various views on
the choice of SZ have been put forth (Chipman et al. 2001;
Heaton and Scott 2010; Guan and Stephens 2011), but the
strongest argument for the g prior is that it provides compu-
tational benefits (see below). For either choice of SZ; all of its
diagonal entries are equal, resulting in an equal prior vari-
ance for each of the bv: Given the standardization of the
columns of X, this implies that the original effect sizes are
expected to be larger for rare variants than for common var-
iants, which is reasonable.

One of the advantages of the prior summarized in Figure 1 is
that the derived posterior distribution can be analytically inte-
gratedwith respect tov,b, and r. While aMCMC is still needed
to fully explore the posterior and carry out inference,we can rely
on a collapsed Gibbs sampler that focuses only on t and the
indicator variables Z. This reduces the computation at each iter-
ation and improves its convergence rate (Liu 1994). The prior
densities for t and Z are denoted, respectively, as ftðtÞ and
fZðZÞ—the latter being easily obtained from the b-binomial dis-
tribution assumed for jZj: As shown in Appendix A, integratingb
and r out gives the marginal posterior density

fZ;tðZ; tjyÞ} ftðtÞfZðZÞ
 
lr þ

S2
Z
2

!2ðn=2þarÞ
detðVZÞ1=2

tjZjdetðSZÞ1=2
;

(3)

where V21
Z ¼ XT

ZXZ þ t22S
21
Z and S2

Z ¼ yTy2 yTXZVZXT
Zy:

Choosing SZ as in the g prior leads to a simplification of the

ratio in (3), thereby avoiding the evaluation of one determi-
nant at each iteration.

Despite the need to evaluate numerically interesting sum-
maries of the posterior of Z, we obtained an approximation
(whose derivation and applicability are described in Appendix
A) to gain a general understanding of how hyperparameters
and data contribute to the final inferential results. Specifi-
cally, we focus on the posterior expected value of Zv; the in-
dicator of variant v, conditional on the indicators of all other
variants Z½2v�: In the case of orthogonal regressors, this ex-
pectation can be approximated as

E½ZvjZ½2v�; t; y�21 � 1

þ t
ffiffiffi
n

p Bv þ p2
���Z½2v�

���2 1

Av þ
���Z½2v�

���
�
12h2

v

�n=2
; (4)

where hv ¼ xTv y=
ffiffiffiffiffiffiffiffiffiffiffi
nyTy

p
is approximately the correlation be-

tween variant v and the trait. From (4), one gathers that
increasing jZ½2v�j; which is the number of variants already
used to explain the trait, increases the chance of an additional
variant v to be considered relevant. This is a consequence of
the fact that the parameter v; which describes the sparsity of
b and hence the degree of polygenicity of the trait, is learned
from the data (rather than set at a predetermined value).
When a large number of variants have been found relevant,
the trait is estimated to be highly polygenic and hence it is
judged more likely that an additional variant might contribute
to its variability. On the other hand, augmenting the total num-
ber of genotyped sites p will make it harder for any specific
variant v to be judged important; this is adjusting for the look-
everywhere effect, an important step in gene-mapping studies.

Now thatwe have introduced this basic framework,we can
considermodifications that facilitate learningabout the roleof
a variant across multiple traits and in the context of neigh-
boring sites. We start with the first problem.

Learning across traits

One of the characteristics of current genetic data sets is the
increased availability ofmultidimensional phenotypes. This is
due partly to the automation with which many traits are
measured and partly to the increased awareness that precise
phenotypicmeasurements areneeded tomakeprogress in our
understanding of the underlying biological pathways. Having
records of multiple traits in the same data set allows for cross-
pollination of genetic information. On the one hand, if a
genetic variant is functional, it can be expected to affect more
than one phenotype. On the other hand, even if noise in one
phenotypemakes it hard todistinguish thepredictivepowerof
a causal variant from that of a noncausal neighboring variant,
it is much less likely that multiple traits would have noise
correlated in suchawaythat causal andnoncausal variantsare
indistinguishable for all of them. With this in mind, let us
generalize the variant selection problem described in the
previous section to handle multiple traits.
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Extending the notation, let yt be the standardized values
for trait t, bt be the coefficients of X in the mean E½yt�; and Zt

be the corresponding indicator vector. We organize these by
column in a n3 q matrix Y, a p3 q matrix b, and a p3 q
matrix Z. Also let sv ¼ StZvt denote the number of traits
associated with variant v, let bZt

be the entries of bt corre-
sponding to entries equal to one in Zt; and let XZt be the
corresponding columns of X. The data-generating model is
yt ¼ XZtbZt

þ et with et � Nð0; ð1=rtÞInÞ; and the priors on
rt are simple extensions of the one used previously: rt i.i.d.
Gammaðar; lrÞ: Note that this model assumes that, condi-
tionally on the genetic variants that influence them, the
traits are independent; specifically, there are no shared en-
vironmental effects. This assumption might or might not be
appropriate, depending on context, but the prior distribu-
tion on b that we are about to describe can be used also for
models that do not rely on this assumption.

Wewant a prior forb that continues to enforce sparsity but
that allows learning about the role of a variant across traits.
One possibility, first proposed by Jia and Xu (2007), is to
introduce a variant-specific probability of functional effect
nv; constant across traits and a priori independent with
nv � BetaðAv;BvÞ; where Av and Bv can capture annotation
information. Following the setup of the previous section, we
then take ðZvtjnvÞ independent BernoulliðnvÞ; set bvt ¼ 0 when-
ever Zvt ¼ 0; and let ðbZt

jZt; rt; tÞ be independent across
twith distributionNð0; ðt2=rtÞSZtÞ: As before, t� Unifðt1; t2Þ:

As detailed in Appendix B, we can derive an approximation
analogous to (4),

E

h
ZvtjZ½2ðvtÞ�; t;Y

i21
� 1

þ t
ffiffiffi
n

p Bv þ q2 sv;½2t�2 1
Av þ sv;½2t�

�
12h2

vt

�n=2
; (5)

where hvt ¼ xTv yt=
ffiffiffiffiffiffiffiffiffiffiffiffi
nyTt yt

p
and sv;½2t� ¼ Sℓ 6¼tZvℓ tallies the

number of phenotypes for which the variant v has been
judged relevant. This highlights a consequence of the se-
lected prior distribution: as the total number of phenotypes
q here has taken the role of p in (4), the role of each variant is
judged not in reference to all the other variants but only in
comparison to the effect of the same variant across traits. In
other words, while there is learning across phenotypes, there
is no adjustment for the multiplicity of queried variants.
Bottolo et al. (2011) previously observed that sparsity of Zt

could not be controlled by specification of the priors in this
approach and proposed letting Zvt have Bernoulli parameter
nvvt with independent priors on each factor.

We propose a different remedy by introducing another
layer in the hierarchical priors. Let W be a vector of in-
dicator variables of length p: if Wv ¼ 0; then nv ¼ 0; and if
Wv ¼ 1; nv � BetaðAv;BvÞ: We take Wv i.i.d. BernoulliðvWÞ
with vW � BetaðAW ;BWÞ; the ðZvtjnvÞ are independent
BernoulliðnvÞ; as before. The schematic in Figure 2 summa-
rizes this prior proposal. The existence of a specific parameter
nv for each site v allows variation in the average number of
affected traits per variant; some variants can be highly pleio-
tropic, while others are relevant for one trait only. The spar-
sity parameter is once again estimated from the data,
allowing for multiplicity adjustment. The introduction of
W effectively specifies a hierarchical prior on n1; . . . ; np;

among the many possible ways to accomplish this, the one
we adopt emphasizes the role of the sparsity parameter vW

and is easily interpretable. Appendix B presents an indicative
approximation of the posterior conditional expected values of
Wv similar to (4) and (5). It depends on all phenotypes (en-
abling learning across traits), but the total number of variants
p has again become the leading factor for effective multiplic-
ity correction. We refer to this prior as learning across traits.
We include the first proposal in some comparison studies,
indicating it as the unadjusted approach to emphasize the fact
that it does not include an adjustment for multiplicity.

This may be an appropriate point at which to clarify the
relation between the prior we are proposing and the tradi-
tional investigation of pleiotropy vs. coincident linkage. The
latter terminology derives from linkage studies, where the
nature of the signal is such that the localization of variants
with possible pleiotropic effects is possible only up to a cer-
tain genomic interval. This interval might contain one variant
affecting multiple traits or contain different variants, each
affecting a subgroup of the traits. First, it is worth noting that
in this article we are working in the context of association
studies, which allow for a much finer resolution than linkage
studies. The occurrence of multiple variants affecting multi-
ple traits within the same linkage disequilibrium block is less
likely, given that linkage disequilibrium (LD) blocks are
shorter than linkage regions. Second, ours is a fixed-effects
model using sequence data. We are aiming to estimate the
specific effect of each variant rather than simply identifying a
locus with a random-effects model. Our framework, then,
automatically considers two options: one variant affecting
multiple traits or multiple variants affecting separate traits.
The choice between these two alternatives is made on the
basis of the posterior probability of the two models. This
being said, it is important to recall that if two neighboring

Figure 1 Schematic representation of the sparse
prior distribution on b. Hyperparameters are in-
dicated in blue. The red portion describes all
random objects and their dependency struc-
ture; unless explicitly indicated, random var-
iables are independent. Boxes identify variables
that share one of the distributions depicted
in black.
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variants in LD affect two separate traits, the posterior proba-
bilities of the two alternative models might be similar. The
prior we introduce favors pleiotropy in the sense that it rec-
ognizes as likely that some variants affect multiple genes, but
it does not exclude the alternative explanation, allowing the
data to tilt the posterior in either direction. We have investi-
gated this with simulations in Supporting Information, File S1.

Learning across sites

We now consider another form of “learning from the experi-
ence of others” to improve our ability to identify functional
variants.We focus on rare variants, which are observed in just
a handful of subjects and for which it might be impossible to
estimate individual effects. It is reasonable to assume that if
one rare variant in a gene has an impact on a trait, other rare
variants in the same gene also might be functional; with an
appropriate hierarchical prior we might increase our ability
to learn the effects of these variants. Of course a similar as-
sumption might also be reasonable for common variants, but
given that we observe these in a sufficiently large sample, we
aim to estimate their individual effect without convolving
their signal with that of others.

Thedata-generatingmodel is again (2).Wedefine rgroups
of variants, and we use gðvÞ to indicate the group to which
variant v belongs. Let G ¼ ðG1; . . . ;GrÞ be a vector of indica-
tor variables associated to the groups; we use these to link
information from different variants. Specifically, if Gg ¼ 0;
then the proportion ng of causal variants in group g is equal
to zero; otherwise, ng � BetaðAg;BgÞ (setting ng ¼ 1 for
groups composed of only one variant). The variant-specific
indicators Zv are i.i.d. Bernoulli with parameter ngðvÞ: Simi-
larly to prior specifications, ðGgjvGÞ are i.i.d. BernoulliðvGÞ
with vG � BetaðAG;BGÞ: This results in the partially ex-
changeable prior on b represented in Figure 3; the parameter
ng allows sharing information on functionality across all
variants in the same group.

As described in Appendix C, the posterior conditional prob-
ability that a variant v belongs to the model depends on the
overall number of groups, the number of groups considered
relevant, and the number sg ¼ SgðvÞ¼gZv of variants in the

same group that are deemed functional. The prior distribu-
tion in Figure 3, which we refer to as learning across sites,
allows one to achieve an effect similar to that of burden
tests, while still providing some variant-specific information
(which is in contrast, for example, to the proposal in Yi
et al. 2011).

Methods

MCMC sampling

While we have resorted to some analytical approximation for
expository convenience, we explore the posterior distribu-
tion with MCMC. As previously mentioned, we can focus on
sampling t and all indicator variables. We use a Metropolis-
within-Gibbs scheme, with the proposal distributions described
below. For t, the common practice of using a truncated Gaussian
works well. The discrete indicator variables pose a greater
challenge, even though having integrated out b allows us to
work with a sample space of fixed dimension, eliminating the
need for a reversible-jump MCMC. When there is only one
layer of indicator variables Z, the proposal consists of first
choosing with equal probability whether to add or remove
a variant and then choosing uniformly among the candidate
variants the one for which to propose a change of status. If the
prior distribution is described using higher-level indicators as
well, then proposed changes to both levels must be consis-
tent. If an entry of W is changed from one to zero, the asso-
ciated entries of Z also have to be zeroed; when proposing
to change an entry of W from zero to one, the associated
entries of Z are selected from the priormarginal. Additionally,
there are proposal moves that leave W unchanged but then
randomly select one of its nonzero entries and draw a pro-
posal for the associated entries of Z in a fashion analogous
to that described previously. Details of the algorithm are in
File S1.

These simple proposal distributions will have trouble in
two situations. The most common is when two or more
variants are strongly associated with a phenotype but are also
strongly correlated with each other due to LD. Any specific
Markov chain will tend to include one of the variants in the

Figure 2 Schematic representation of
the across-traits prior distribution on b.
Hyperparameters are indicated in blue.
The red portion describes all random
objects and their dependency structure;
unless explicitly indicated, random vari-
ables are independent. Boxes identify
variables that share one of the distribu-
tions depicted in black.
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model, leaving out the rest. Another problematic situation is
when the effects of two variants on a phenotype depend upon
each other, so neither variant is likely to enter the model by
itself, even if their joint inclusion would be favored by the
posterior distribution. Others (Guan and Stephens 2011;
Peltola et al. 2012a,b) have described proposal distributions
that overcome these difficulties and that can be reasonably
applied to our setting—even though we do not investigate
this in detail, focusing on the description of novel priors.

The average Z of realized values of Z can be used to
summarize the evidence in favor of each variant. Given its
practical importance, the basic convergence checks incor-
porated in our package are based on Z: By default, the R
code distributed in the package ptycho starts four chains
from different points, runs each chain for a specified num-
ber of MCMC iterations, computes the averages for each
chain separately, and then checks the range DZ of these
averages. Details on the MCMC can be found in File S1.
The algorithm is implemented in the R package ptycho
(Stell 2015).

Evaluation of variant selection performance

To investigate the performance of the proposed priors, we
apply them to simulated and real data. The posterior distri-
bution can be summarized in multiple ways. One can look for
the indicator configuration that receives the highest posterior,
for example, ormakemarginal inferenceoneachvariant. Both
computational and robustness considerations make it practi-
cal to rely on posterior averages Zvt for comparisons. In the
Bayesian models, then, we consider selecting variant v for
trait t if the posterior average Zvt is larger than a certain
threshold j 2 ð0; 1Þ : St [ fv : Zvt . jg For benchmarking
purposes, we also analyze the data sets with some non-
Bayesian approaches. Specifically we consider (a) the Lasso
(Tibshirani 1996); (b) a set of univariate linear regressions
(one for each trait and variant), leading to t statistics used to
test the hypotheses of no association Hvt: bvt = 0 with multi-
plicity adjustment for the pq hypotheses via the Benjamini–
Hochberg (BH) procedure at level a (Benjamini and Hochberg
1995); and (c) multivariate regression including all possible
variants, with subsequent tests on the pq null hypotheses for
each coefficient incorporating adjustment via the BH proce-
dure at level a. The set of selected variants is equivalent
in approach a to the set of estimated nonzero coefficients

and in approaches b and c to the set of variants for which
the Hvt: bvt = 0 are rejected. We refer to these approaches as
(a) Lasso, (b) BH marginal, and (c) BH full.

The threshold j for Bayesian selection, the penalty of the
Lasso, and the level a of BH can all be considered tuning
parameters. We compare the results of different procedures
as these are varied (see details in File S1). We base our com-
parison on an empirical evaluation of power and false discov-
ery rate (FDR) associated with the different methods.
Specifically, for each simulation and each method of analysis,
we calculate the proportion of causal variants that are iden-
tified and the proportion of selected variants that are in fact
false discoveries. The average of these values across multiple
simulations is what we refer to as power and FDR in the
results. The Bayesian methods also provide an estimate of
FDR: if Zvt is approximately the probability that variant v is
causal for trait t, then the mean of (12 Zvt) over the selected
variants is the Bayesian false discovery rate. We letbBFDR
denote this mean and explore how well it approximates (or
not) the realized false discovery proportion (FDP), evaluated
across all traits and variants.

Genotype and phenotype data

Our work has been partially motivated by a resequencing
study: Service et al. (2014) analyzed targeted exome rese-
quencing data for 17 loci in subjects of Finnish descent [from the
1966 Northern Finland Birth Cohort (NFBC) and the Finland–
United States Investigation of Non–Insulin-Dependent Dia-
betes Mellitus (NIDDM) Genetics study (FUSION)].
While the original study considered six quantitative meta-
bolic traits, we focus here on the fasting levels of HDL, LDL,
and TG, transformed and adjusted for confounders as in
the initial analyses (see File S1). The genotype data were
obtained by sequencing the coding regions of 78 genes from
17 loci that had been found by previous GWASmeta-analyses
to have a significant association to one of the six traits. In
addition, we had access to the first five principal components
of genome-wide genotypes. The goal in Service et al. (2014)
is to identify which variants in these loci are most likely
to directly influence the observed variability in the three dis-
tinct lipid traits.

Data cleansing and filtering are described in detail in File
S1; here we limit ourselves to note that for the purpose of the
simulation study, the collection of variants was pruned to

Figure 3 Schematic representation of the across-
sites prior distribution on b. Hyperparameters
are indicated in blue. The red portion describes
all random objects and their dependency struc-
ture; unless explicitly indicated, random variables
are independent. Boxes identify variables that
share one of the distributions depicted in black.
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eliminate 550 variants observed only once and to obtain a set
of variants with maximal pairwise correlation of 0.3 by re-
moving another 558 variants. We excluded singletons from
consideration since it would not be possible to make infer-
ence on their effect without strong assumptions. Multiple
considerations motivated our choice of selecting a subset
with only modest correlations: (a) correlated variants make
the convergence of MCMC problematic, which might impair
our ability to understand the inference derived from the pos-
terior distribution; more importantly, (b) it is very difficult to
evaluate and compare the performance of model selection
methods in the presence of a high correlation between vari-
ants; and finally, (c) statistical methods cannot really choose
between highly correlated variants and the selection among
these needs to rely on experimental studies. Let us expand on
these last two points. Procedures that build a multivariate
linear model, such as the Lasso, would select one of multiple
highly correlated variants that have some explanatory power
for the response; approaches such as BH marginal would in-
stead tend to select them all; and Bayesian posterior proba-
bilities for each of the variants would reflect the fact that
substitutes are available: there will be multiple variants with
elevated (if not very high in absolute terms) posterior
probability.

It becomes difficult to meaningfully compare FDR and
power across these methods, substantially reflecting the fact
that the problem is somewhat ill-posed: if multiple highly
correlated variants are available, any of themcan stand for the
others, and it is arbitrary to decide on purely statistical
grounds that one belongs to the model while the others
do not. Since our goal here is to understand the operating
characteristics of the procedures,we found it useful to analyze
them in a context where the target is well identified and the
results easily comparable.

After the described pruning, the genetic data used in the
simulations contain 5335 subjects and 768 variants. Geno-
typeswere codedwithminor allele counts, andmissing values
(0.04% of genotypes) were imputed using variant average
counts for consistencywithprevious analysis.Observedminor
allele frequencies range from 23 1024 to 0.5, with a median
of 0.0009 and a mean of 0.02. There are 628 variants
with minor allele frequency (MAF) , 0.01. Annotation in-
formation was obtained as in Service et al. (2014), resulting
in 61% coding, 34% UTR, and the remainder intragenic.
Prior to applying the selection methods, the five genetic
principal components along with the intercept were re-
gressed out of both X and Y, and the columns of both were
then standardized.

When studying a real data set, however, investigators
might not be comfortable with such a stringent level of
pruning; onemight be concerned that variantswith important
effect are eliminated and that one is essentially reducing the
information content of the sample. Indeed, when analyzing
real data, we used a much more comprehensive approach,
as described in Case study: the influence of 17 genomic loci
on lipid traits.

Simulation scenarios

We constructed two simulation scenarios: one to simply
illustrate the advantages of the proposed priors and the other
to investigate their potential in a setup that models a real
genetic investigation.

Illustrative example: orthogonal X: We set n = 5000, P =
50, q = 5, and X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 1Þ=ðn=pÞ

p
ðIp   Ip . . . IpÞT so that

XTX ¼ ðn2 1ÞIP: In generating b and the responses, we want
to cover a range of different signal-to-noise ratios. To achieve
this, we sample values of the parameters, using the distribu-
tional assumptions that we described in the specification of
the priors. To explore the performance of the across-traits
and across-sites models—both when they provide an accu-
rate description of reality and when they do not—we use
three rules to generate the probability with which each var-
iant is associated to each trait: (a) we sample one sparsity
parameter v for each trait and keep it constant across vari-
ants; (b) we sample a probability nv for each variant and keep
it constant across traits; and finally, (c) we define groups of
five variants and sample one probability ng of causality for
each group of variants and each trait. Rules a–c are most
closely reflected in the prior structure of the basic, across-
traits and across-sites models, respectively; and we indicate
them as exchangeable variants, pleiotropy, and gene effect. We
generate 100 data sets per rule, each with q responses, and
analyze them with the described set of approaches. When
using Bayesian methods, we rely on noninformative priors
(see File S1 for details).

Actual genotypes X: To explore the potential power and FDR
in the analysis of the data set with three lipid traits, we
generate artificial phenotypes starting from the available
pruned genotypes. We consider a mixture of possible genetic
architectures. In the construction of each data set, (a) one
gene is selected uniformly at random for each phenotype and
3–4 of its rare variants are causal (gene effect); (b) 40 distinct
common variants are selected uniformly at random and each
has probability of 0.1 to be causal for each of the phenotypes
(thereby substantially representing trait-specific variants);
and, finally, (c) 10 additional common variants are selected
uniformly at random and each has a probability of 0.9 to be
causal for each phenotype (pleiotropic effects). This results in
traits that are on average determined by 3–4 rare variants in
one gene, 4 common variants with effects on one trait only,
and 9 common variants with effects across multiple traits. We
generated a total of 100 such data sets, as detailed in File S1.

Data availability

The sequencing and phenotype data are available on dbGaP.
The Northern Finland Birth Cohort 1966 (NFBC1966) study
accession number is phs000276.v2.p1. The Finland–United
States Investigation of NIDDM Genetics (FUSION) study ac-
cession number is phs000867.v1.p1, with the sequencing
data in substudy phs000702.v1.p1. In both cases, the
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sequencing data used in this article have molecular data type
equal to “targeted genome” rather than “whole exome.”

Results

Simulations

Illustrative example: Figure 4 showcases the possible advan-
tages of the priors we have described. The plots on the top
row compare the empirical FDR and power of the different
variant selection methods on the data sets with orthogonal X.
Points along the curves are obtained by varying tuning pa-
rameters and averaging the resulting FDP and power across
100 simulated data sets. Our setting is such that BH full, BH
marginal, Lasso and the basic Bayes model have very similar
behaviors: the across-traits and unadjusted models achieve
the highest power per FDR in the presence of pleiotropy and
the worst power per FDR in the presence of gene effects; in
contrast, the across-sites model has maximal power in the
presence of gene effects and worse power in the presence
of pleiotropy. While it is not surprising that the most effective
prior is the one that matches more closely the structural char-
acteristics of the data, it is of note that the loss of power
deriving from an incorrect choice of the across-traits or the
across-sites model is minimal for FDR values,0.2, which are
arguably the range scientists might consider acceptable (see
File S1, Figure C for a detail of these values). In the bottom
row of Figure 4, we compare the estimatedbBFDR with the
actual FDR for the Bayesian models; here the most serious
mistake is in underestimating FDR, which would lead to an
anticonservative model selection. Once again it can be seen
that the best performance is obtained with the prior that
matches the data-generating process. Besides this, it is useful
to analyze the behavior of the unadjusted approach: its
power increase per FDR in the presence of pleiotropy is less
pronounced than that of the across-traitsmodel, substantially
because the unadjusted approach is too liberal, with abBFDR
that is significantly underestimated. This is in agreement
with the lack of adjustment for multiplicity indicated by
(5). Results for alternate hyperparameters are in File S1,
Figure D and Figure E.

Generating phenotypes from actual genotype data: Figure
5 shows the performance of the variant selection methods in
the analysis of traits generated from actual genotype data,
further emphasizing the potential gains associated with the
proposed strategies. For a given FDR, both the across-traits
and across-sites priors lead to an increase in power over the
other methods. This is due to the fact that phenotypes are
generated assuming both pleiotropy and contributions from
multiple rare variants in the same gene (gene effects). In the
bottom row of Figure 5, we separate the power to recover
rare variants with gene effects from that for trait-specific
common variants ðv ¼ 0:1Þ and from that for common vari-
ants with pleiotropic effects ðv ¼ 0:9Þ: As expected, the gains
of across traits and across sites are for the portion of genetic

architecture that is accurately reflected in these priors.
The estimatesbBFDR are accurate, indicating that all three
Bayesian priors correctly learned t and the probabilities of
function.

Finally, while we have relied on receiver-operator-like
curves to compare different approaches as the value of their
tuning parameters vary, it is useful to focus on the operating
characteristics of the standard ways of selecting the tuning
parameters. By convention, the target FDR for BH is usually
0.05. For Lasso selection, the function cv.glmnet provides two
choices for l: minimizing the cross-validation error and using
the one standard error (1-se) rule. In Bayesian approaches,
one can select variants so that globalbBFDR# 0:05: Table 1
compares FDR and power for these selection parameters; the
Bayesian methods appear to control the target FDR and ar-
guably result in better power. Analogous summaries for other
decision rules are in File S1, Table B; here we simply remark
that including variants such thatbBFDR# 0:05 in this data set
was practically equivalent to selecting variants with posterior
probability .0.7. We capitalize on this observation for the
real data analysis.

File S1, Figure F shows the results of another set of simu-
lations along the lines of a traditional investigation of pleiot-
ropy vs. coincident linkage; we give a very brief summary
here. In the case of separate causal variants, the across-traits
prior may have a slight loss of power but is still much better
than BH with P-values from the full model. In the case of
pleiotropy, however, the across-traits prior clearly has greater
power per FDR.

Case study: the influence of 17 genomic loci on
lipid traits

We now turn to the analysis of the three lipid traits in the
Finnish data set. While resequencing data come from 17 loci
identified via GWAS, prior evidence of association is available
only between some of these loci and some traits. In particular,
four loci havenodocumentedassociationwithanyof the three
lipid traits we study;we include variants from these loci in the
analysis as negative controls. (This is different from the work
in Service et al. 2014, which examines only variants in loci
specifically associated with each trait.) Service et al. (2014)
relied on univariate regression to test the association be-
tween each trait and each variant with MAF. 0:01 and on
burden tests to evaluate the role of nonsynonymous rare
variants. Bogdan et al. (2015) reanalyzed the data relative
to HDL with a set of model selection approaches, including
the novel methodology Sorted L1 Penalized Estimation
(SLOPE); to facilitate comparison with their results, we add
SLOPE to the analysis methods considered so far. Groups for
the across-sites model were defined tomimic the burden tests
in Service et al. (2014), which means a group with more than
one variant contains all nonsynonymous variants with
MAF, 0:01 in the same gene.

We start by analyzing the pruned subset of variants used in
the simulation studies and postpone a more exhaustive search,
noting again that this allows for a more straightforward
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comparison of the variants selected by different methodolo-
gies. Table 2 compares the number of variants selected by
various methods with specified tuning parameters. The col-
umn labeled V* shows the number of selected variants that
are in a locus lacking any prior evidence of association to lipid
traits. The Lasso with l chosen to minimize cross-validated
prediction error clearly results in far too many selections,
so we discard this approach for the remaining results. For
Bayesian approaches, the threshold j ¼ 0:7 results in aver-
agebBFDR approximately controlled at the 0.05 level.

Figure 6 illustrates the model selection results for HDL.
(Analogous displays for the other two phenotypes are in File
S1, Figure G and Figure H. Also, File S1, Table C, Table D, and
Table E detail differences in selections between approaches.)
Each display corresponds to a locus, with turquoise shading
(rather than orange) used to indicate prior evidence of asso-
ciation to HDL. Variants are arranged according to their ge-
nomic positions in the loci, and the values of their estimated
coefficients are plotted on the y-axis; with the exception of
marginal BH, we display only nonzero coefficients. When
available, a vertical black line indicates the position of the
SNPs originally used to select the locus (“Array SNP”).

There is substantial overlap among the results of various
methods.Model selection approaches seem togenerally agree

with the findings in Service et al. (2014) (with Lasso 1-se the
most discrepant, missing a number of the associations iden-
tified in Service et al. 2014; see File S1, Table C). Still, we can
point to some significant differences. With the across-traits
approach we select two variants in two loci where no other
method identifies any signal: in CELSR2 and FADS1. These
two loci have prior evidence of association to LDL and to all
three lipid traits, respectively, and the across-traits approach
identifies pleiotropic effects. In contrast, the across-traits ap-
proach does not select four very rare ðMAF, 0:001Þ variants
considered relevant by more than one alternative method.
While we do not know where the truth lies at this point,
it is very hard to evaluate the effect of a rare variant on purely
statistical grounds, and the outcome of the across-traits
model might well be the more reliable.

The across-sites approach identifies four variants that other
approaches overlook. Three are rare variants in ABCA1: two
missense rare ð0:01.MAF.0:001Þ and one nonsense very
rare (MAF = 0.00016); their discovery is facilitated by the
fact that they are included in a group with multiple other
significant variants. The fourth is a common variant in the
MVK locus, for which there is prior evidence of association to
HDL. Other approaches do not recover this simply because
the signal in the locus is, in the data set analyzed here, barely

Figure 4 Power (top) andbBFDR (bottom) as a function of empirical FDR in the illustrative example. Each color indicates a different variant selection
approach (see key at the top). Displays in different columns are for different data-generating mechanisms.
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below the detection threshold; across sites has a slight advan-
tage over the other Bayesian methods because grouping re-
duces the number of comparisons to account for.We note that
ABCA1 is a gene in which rare variants were found to have a
role by the burden test analysis in Service et al. (2014).

Wehave relied on the pruneddata set since low correlation
across variants greatly facilitates the comparison of the selec-
tion results by different methods. However, mindful of the
concerns of scientists unwilling to prescreen the genotypic
information, we have also carried out a more comprehensive

analysis of this data set, showcasing that this is indeed an
option available to researchers. Details for these analyses are
in File S1, but we summarize them here. First, we have com-
pared the results of four different levels of pruning (correla-
tion ,0.3, 0.5, 0.7, and 0.9). We have found that very few
values of Zvt change by .0.05 when different levels of prun-
ing are used and that less stringent levels of pruning do not
lead to substantially more findings—unlike when applying
BH to marginal P-values. In fact, there is a greater tendency
for variants to drop out of the selection set as correlated

Figure 5 Top row shows power andbBFDR as a function of empirical FDR in the simulation from actual genotype data. Bottom row shows power
calculated separately for the different types of variants: rare, common with trait-specific effects, and common with pleiotropic effects.
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variants are added to X. Second, to completely eliminate
pruning, we analyzed all variants in one locus along the lines
of Servin and Stephens (2007), Hormozdiari et al. (2014),
Kichaev et al. (2014), and Chen et al. (2015), using the basic
prior and assuming that the number of significant regressors
jZj is no greater than five or six (depending on the total
number of possible variants in the locus). We have restricted
our attention to two loci only, those that showed stronger
evidence of influencing HDL via multiple variants. File S1,
Table H offers a precise comparison of results, but it suffices
here to note that the set Z of variants with the largest poste-
rior density is equal to the variants selected among the orig-
inal pruned set (correlation ,0.3) by the basic prior for one
locus and, for the other locus, the two sets substantially
overlap.

Discussion

As the genetics community devotes increasing effort to follow
up GWAS hits with resequencing, a number of suggestions on
how to prioritize variants have emerged. In truth, while
dealing with the same broad scientific goals, many of these
contributions address different aspects of the problem and
therefore should be seen as complementary rather than al-
ternatives; taken together they provide scientists with useful
suggestions. Annotation information has been shown to be
quite useful when the set of variants under consideration is
sufficiently diverse. It is important to account for the corre-
lation across variants to avoid paying attention to SNPs that
are only “guilty by association.” Bayes’ theorem and Bayesian
statistics are a natural way of dealing with the decision of
which variants to pursue. In this context, others have studied
(a) how to choose priors that incorporate annotation infor-
mation, tuning their parameters with available data sets; (b)
how to approximate posterior distributions of variant effects;
(c) how to sample from the posterior distribution using effi-
cient MCMC or variational schemes; and (d) how to effi-
ciently evaluate posterior probabilities for a set of variants.
Here we focus on another aspect of prior selection: describing
how partial exchangeability assumptions can be used to
borrow information across traits and neighboring sites, while
maintaining an effective control for multiplicity across vari-
ants and fitting multivariate regression models that esti-
mate the specific contribution of each associated site, while
accounting for others. We briefly refer to some of the most

direct antecedents of our proposed priors to underscore
relevant differences.

Yi et al. (2011) proposed the use of hierarchical priors to
capture effects of rare variants through groups, similar to the
across-sites model. However, their proposal does not incor-
porate sparsity considerations, resulting in the estimate of a
nonzero effect for each variant and each group and therefore
not engaging in model selection. Quintana et al. (2011,
2012) took an additional step toward the across-sites model
by incorporating sparsity via the indicator variable Z. They
considered only rare variants, used the same effect size for
all rare variants in a genomic region, used the maximum-
likelihood estimate for the effect sizes rather than integrating
them out, and, most importantly, controlled sparsity by using
Ag ¼ 1 and Bg ¼ pg in the prior for ng rather than introducing
another layer of indicator variables in the hierarchical prior—
all of which means their approach has less flexibility and
less learning.

Theacross-sites prior also echoes theproposal of Zhou et al.
(2010), who suggested the use of group penalization in Lasso
to estimate multivariate sparse models while encouraging
coordinated selection of rare variants in the same gene. This
computationally appealing approach has not become as pop-
ular in genetics as in many other fields, possibly because of
the difficulties connected with the selection of its tuning pa-
rameters whenmodel selection is the goal. Cross-validation is
often used to determine the appropriate level of penalization;
while this works well for prediction purposes, its perfor-
mance is less than satisfactory in identifying variants with
truly nonzero coefficients (as illustrated by our case study).
Alexander and Lange (2011), Valdar et al. (2012), and, most
recently, Sabourin et al. (2015) explore coupling resampling
techniques with Lasso penalization to improve model selec-
tion. This not only increases computational costs but also
greatly reduces the initial simplicity of the model. As docu-
mented in Bogdan et al. (2015), identifying a single l-value
that performs FDR control is challenging; Yi et al. (2015) in-
vestigate this task in the context of GWAS and provide guide-
lines. The final model selection of these machine-learning

Table 1 FDR and power for specific choices of selection parameters
applied to simulated traits with actual genotype data

Variant selection criteria FDR Power

BH full with a = 0.05 0.037 0.32
BH marginal with a = 0.05 0.079 0.37
Lasso minimum error l 0.810 0.63
Lasso 1 2 SE l 0.046 0.26
BasicbBFDR # 0.05 0.039 0.37
Across-traitsbBFDR # 0.05 0.054 0.45
Across-sitesbBFDR # 0.05 0.051 0.40

Table 2 Summary of selections for BH with a = 0.05, Lasso with l

chosen by cv.glmnet, and Bayesian approaches with j = 0.7

HDL LDL TG

Variant selection R V* bBFDR R V* bBFDR R V* bBFDR
BH full P-values 13 0 3 0 5 0
BH marginal
P-values

22 0 6 0 10 0

Lasso minimum
error l

134 12 40 4 80 6

Lasso 1 2 SE l 16 0 0 0 4 0
Basic 21 0 0.046 4 0 0.012 8 0 0.011
Across traits 19 0 0.084 8 0 0.059 9 0 0.029
Across sites 25 0 0.064 5 0 0.063 8 0 0.007

The columns labeled R and V* give, respectively, the number of variants selected
across the entire study and in the four loci with no prior evidence of association to
any of the lipid traits analyzed (CRY2, G6PC2, MTNR1B, and PANK1).bBFDR reports,
for Bayesian methods, the Bayesian FDR computed separately for each trait.
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approaches uses complex rules; in contrast, the Bayesian mod-
els we described are based on easy to interpret parameters.

The use of hierarchical Bayesian methods has ample
precedents in expression QTL studies, where they have been
used to correct for multiplicity (Kendziorski et al. 2006) and to
increase power of detecting variants affecting multiple traits.
In our presentation of the unadjusted and across-traits ap-
proaches, we referred to methods proposed by Jia and Xu
(2007) and Bottolo et al. (2011). More recent work (Flutre
et al. 2013; Li et al. 2013) has focused on the identification of
local (cis) effects across tissue and considered models with
only one functional variant. The recent contribution by
Chung et al. (2014)—which appeared while this work was
in preparation—underscores as we do the importance of
learning both across sites and across traits to prioritize vari-
ants. These authors, however, work with P-values from GWAS
studies, rather than actual resequencing data.

Having clarified the scope of our contribution, we briefly
mention how it could be extended and combined with sug-
gestions by others. First, let us point out that while in the

simulations and in the analytical approximationswe assumed
n. p; this restriction is by no means necessary to the Bayesian
model we describe. On the contrary, the priors we propose—
by learning sparsity and giving positive probabilities to con-
figurations with some bv ¼ 0—are well suited to the case
n, p: The real challenge in dealing with GWAS-type data
would be from a computational standpoint: increased mixing
for MCMC as described in Guan and Stephens (2011) and Xu
et al. (2014) or other algorithmic improvements (Carbonetto
and Stephens 2012; Hormozdiari et al. 2014) would make
our approach more widely applicable.

Another extension that is easily achieved is the combination
of the across-traits and across-sites priors. Most immediately,
the group indicators G in Figure 3 can be made trait-specific
and linked across phenotypes with the same approach used to
link the Zt in Figure 2.

It is certainly possible to combine the partial exchange-
ability aspects of our models with a prior that incorporates
annotation information. Refer, for example, to the across-traits
prior in Figure 2. Currently, the distribution on W1; . . . ;Wp;

Figure 6 Estimated variant effects
on HDL. Each panel corresponds to a
locus; the x-axis indicates the variant’s
genomic position, and the y-axis shows
its regression coefficient (with the ex-
ception of BH marginal, only nonzero
coefficients are represented). The color
code of the panel titles indicates the
presence/absence of prior evidence
of association between the locus and
HDL (turquoise/orange, respectively).
Model selection methods are distin-
guished using plotting symbols, as in-
dicated in the key at the top.

450 L. Stell and C. Sabatti



indicators of functionality of the variants, is a beta-binomial.
However, it is trivial to change it to a mixture of independent
logits, with the linear model component including an intercept
effect—which would capture the overall sparsity—and a linear
combination of annotation indicators (Veyrieras et al. 2008;
Kichaev et al. 2014; Pickrell 2014).

Since our focus has been on specification of the prior, we
have not paid much attention to the data-generating model,
which could certainly be improved. Specifically, we under-
score the fact that using a mixed-model approach might be
advisable to account for population structure (Kang et al.
2010) and when analyzing many phenotypes whose quanti-
tative value might be influenced by confounders (Zhou and
Stephens 2014) or simply by genetic variants not included in
the model.

In conclusion, we emphasize the increasing importance in
human genetics of models that account for pleiotropy. “Big
data” in genetics have often been equated with the abun-
dance of sequences, and these certainly pose a number of
management and interpretation challenges. Our increased
acquisition capacity will also result, however, in the collection
of a large number of phenotypes; gene expression, magnetic
resonance imaging scans, and mass spectrometry are just
some examples of the large-scale phenotyping efforts under-
way. Now that DNA variation has been extensively described,
annotating this appears to be a fundamental challenge; the
rich phenotypic collections increasingly available have a ma-
jor role to play. After all, what better way of establishing
whether a variant has some functional impact than looking
for its association with any trait available? Bayesian models
that allow one to estimate the probability with which a var-
iant has functional effects across phenotypes are likely to be
very useful. In this article, we have described a first step in
this direction.
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Appendices

Appendix A: Mathematical Details for the Basic Prior

First we integrate b out of the posterior distribution as in Chen et al. (2015). Since y ¼ XZbZ þ e with
ðbZjZ; r; tÞ � N ð0; ðt2=rÞSZÞ and e � Nð0; ð1=rÞInÞ;

ðyjZ; r; tÞ � N
�
0;
1
r
In þ

t2

r
XZSZXT

Z

�
: (A1)

While the likelihood can be written directly from this, a few manipulations give it in a more convenient form. Sylvester’s
determinant theorem (Harville 2008, p. 420) implies

det
�
In þ t2XZSZXT

Z

�
¼ det

�
IjZj þ t2SZXT

ZXZ

�
¼ t2jZj

detðSZÞ
detðVZÞ

;

and a generalization of the Woodbury matrix identity (Harville 2008, p. 428) implies�
In þ t2XZSZXT

Z

�21
¼ In2XZ

�
t22S21

Z þ XT
ZXZ

�21
XT
Z ¼ In 2XZVZXT

Z :

Consequently, PrðyjZ; r; tÞ ¼
�

r

2p

�n=2 detðVZÞ1=2

tjZjdetðSZÞ1=2
e2rS2

Z=2: For the null model Z= 0, (A1) shows that the covariance matrix

is r21In; so in this case S2
Z ¼ yTy and the ratio of determinants is set equal to one.

Next multiply PrðyjZ; r; tÞ by the prior density function for r and integrate to obtain

detðVZÞ1=2

tjZjdetðSZÞ1=2

Z
rn=2e2rS2

Z=2rare2lrrdr}
detðVZÞ1=2

tjZjdetðSZÞ1=2

 
lr þ

S2
Z
2

!2ðn=2þarÞ
;

since the integrand is the density function of Gamma ðar þ n=2; lr þ ð1=2ÞS2
ZÞ; up to a normalizing factor. Hence, the marginal

posterior for Z and t is given by (3).
Along the lines of Malsiner-Walli and Wagner (2011), we present an approximation of the posterior expected value

E
�
ZvjZ½2v�; t; y

	
. If Z and ~Z are equal except that Zv ¼ 0 and ~Zv ¼ 1 for one v, then

fZ;t


~Z; t
��y�

fZ;tðZ; tjyÞ
¼

Pr


Zv ¼ 1jZ½2v�; t; y

�
Pr


Zv ¼ 0jZ½2v�; t; y

� ¼ E
�
ZvjZ½2v�; t; y

	
12E

�
ZvjZ½2v�; t; y

	: (A2)

We use several assumptions to simplify the expression on the left and then solve forE
�
ZvjZ½2v�; t; y

	
Consider the case when the

columns of X are orthogonal, which implies XTX � nIp and the two choices of SZ are essentially the same. Furthermore,
hxv; yi ¼ hxv;Xbþ ei � nbv þ hxv; ei; which is distributed as Nð0; ðn=pÞðZvnt2 þ 1ÞÞ; in this context, distinguishing signal
from noise requires nt2 � 1; so we assume this to be the case. Consequently, V21

Z � ðnþ t22ÞIp � nIp; which in turn implies
S2
Z is approximately equal to the residual sum of squares (RSS) for the model indicated by Z. Finally, reflecting the results of

current GWAS,we assume that the portion of variance explained (PVE) by the loci in consideration is rather small, so RSS is not
much less than yTy � n for any model. If one further chooses ar ¼ lr � n=2; then

fZ;t


~Z; t
��y�

fZ;tðZ; tjyÞ
� 1

t

fZ


~Z
�

fZðZÞ

 
det


V~Z

�
detðSZÞ

det


S~Z

�
detðVZÞ

!1=2 
S~Z
2

S2
Z

!2n=2

: (A3)

Properties of the beta and gamma functions give that the ratio of fZ values is ðAv þ jZjÞ=ðBv þ p2 jZj2 1Þ: Furthermore,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðV~ZÞdetðSZÞ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðS~ZÞdetðVZÞ

p
� 1=

ffiffiffi
n

p
: Finally, S2

Z � yTy2 ð1=nÞSu:Zu¼1ðxTuyÞ
2; so

S~Z
2

S2
Z
�

S2
Z 2 ð1=nÞ



xTv y

�2
S2
Z

� 12



xTv y

�2
nyTy

[ 12h2
v :

Substituting these results into (A2) and (A3) gives (4).
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Appendix B: Mathematical Details for Learning Across Traits

While the unadjusted prior is not useful, we include its marginal posterior density here for completeness. Its derivation is very
similar to that of the basic model, so we focus on the differences. A priori the rows of Z are independent and each has a beta-
binomial distribution, so fZðZÞ ¼ P

p
v¼1BðAv þ sv;Bv þ q2 svÞ=BðAv;BvÞ: Furthermore, the columns of Y are independent given

Z, b, and r, and similarly for the columns of b; so

fZ;tðZ; tjYÞ} ftðtÞfZðZÞ
Yq
t¼1

 
lr þ

S2
Zt

2

!2ðn=2þarÞ
detðVZt Þ

1=2

tjZt jdetðSZtÞ
1=2

: (B1)

If Z and ~Z are equal except that Zvt ¼ 0 and Zvt ¼ 1 for one v and one t, then the same calculations as for the basic model give
that (A3) simplifies as

fZ;t


~Z; tjy

�
fZ;tðZ; tjyÞ

� 1
t
ffiffiffi
n

p Av þ sv
Bv þ q2 sv 2 1



12h2

vt
�2n=2

:

This leads to the approximation (5).
Next we consider the across-traits prior. The posterior density is the same as in (B1) except that fZ is replaced by

fW;ZðW;ZÞ ¼
Z

PrðZjW; nÞPrðWjvWÞPrðnÞPrðvWÞdndvW

¼
B


AW þ jWj;BW þ p2 jWj

�
BðAW ;BWÞ

Y
v:Wv¼1

B


Av þ sv;Bv þ q2 sv

�
BðAv þ BvÞ

;

provided that Zvt ¼ 0 for all v such that Wv ¼ 0—otherwise, fW;ZðW;ZÞ ¼ 0:
To derive the approximation for the posterior expected values, consider W and ~W that are equal except that Wv ¼ 0 and

~Wv ¼ 1 for one v. Choose Z consistent withW, which means fW;ZðW;ZÞ 6¼ 0: Since we are using a subscript to denote a column
of a matrix, we use a superscript as in Zv to denote row v of Z. Furthermore, Z½2v� denotes the submatrix of Z obtained by
deleting row v. Straightforward modification of (A2) givesP

~Z fW;Z;t

�
~W; ~Z; tjY

�
fW;Z;t

�
W;Z; tjY

� ¼
E
�
WvjW½2v�;Z½2v�; t;Y

	
12E

�
WvjW½2v�;Z½2v�; t;Y

	;
where the summation is over all ~Z such that ~Z

½2v� ¼ Z½2v�: Furthermore, for any such ~Z;

fW;Z;t

�
~W; ~Z; tjY

�
fW;Z;t

�
~W; ~Z; tjY

� �
AW þ jW½2v�j

BW þ p2 jW½2v�j2 1
B


Av þ ~sv;Bv þ q2~sv

�
BðAv;BvÞ

Y
t:~Zvt¼1

1
t
ffiffiffi
n

p


12h2

vt
�2n=2

:

Hence, E
�
WvjW½2v�;Z½2v�; t;Y

	21 � 1þ 1=hv
�
W½2v�; t;Y

�
with

hv
�
W½2v�; t;Y

�
¼

AW þ jW½2v�j
BW þ p2 jW½2v�j2 1

X
Zv

"
BðAv þ jZvj;Bv þ q2 jZvjÞ

BðAv;BvÞðt
ffiffiffi
n

p
ÞjZ

vj

Y
t:Zvt¼1



12h2

vt
�2n=2

#
;

where the summation is over all 2q possible values of Zv:

Appendix C: Mathematical Details for Learning Across Sites

The derivation of the marginal posterior for learning across sites consists of straightforward modifications of previous
calculations. The marginal posterior distribution is as in (3) except that the prior fZðZÞ is replaced by the joint prior for Z
and G, which is

fG;ZðG;ZÞ ¼
BðAG þ jGj;BG þ r2 jGjÞ

BðAG;BGÞ
Y

g:Gg¼1;
pg . 1

BðAg þ sg;Bg þ pg2 sgÞ
BðAg;BgÞ

;
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provided that Zv ¼ 0 if GgðvÞ ¼ 0; and Zv ¼ 1 if GgðvÞ ¼ 1 and pgðvÞ ¼ 1—otherwise, fG;ZðG;ZÞ ¼ 0: Similar to the preceding
approximations, E½GgjG½2g�;Z½2g�; t; y�21 � 1þ 1=hgðG½2g�; t; yÞ; where for pg . 1

hg
�
G½2g�; t; y

�
¼

AG þ jG½2g�j
BG þ r2 jG½2g�j2 1

X
Zg

24BðAg þ jZgj;Bg þ pg 2 jZgjÞ
BðAg;BgÞðt

ffiffiffi
n

p
ÞjZgj

Y
v:gðvÞ¼g;

Zv¼1



12h2

v
�2n=2

35
with the summation being over all 2pg possible values of Zg: When pg ¼ 1; however, the summation is replaced by
ð12h2

v Þ
2n=2=ðt

ffiffiffi
n

p
Þ; where v is the lone variant in group g. Hence, the posterior conditional probability of Gg depends upon

the overall number of groups and the number of groups considered relevant, while the posterior conditional probability of Zv
given that Gg ¼ 1 depends on the number sg of variants in the same group that are deemed functional.
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File S1

Materials and methods

Choice of hyperparameters

We state here the hyperparameters used in most of our computations; the effect of alternate hyperparameters

is discussed below. For fine-mapping, there is considerable uncertainty about the likely value of ω, so we use the

uninformative prior with Aω = Bω = 1. Since n ≥ 5000 in our examples, we use αρ = λρ = 10 to ensure that

αρ = λρ � n
2
.

The bounds on the uniform prior for τ justify additional explanation. The lower bound could be zero, but this may

lead to increased computational times because very small τ implies small nonzero values in β are more likely, which

may make the MCMC iteration accept larger models. The assumption nτ2 � 1 suggests choosing τ1 ≈ 1/
√
n instead.

Furthermore, τ2/ρ is approximately the variance of the nonzero coefficients since the diagonal entries of either ΣZ

are approximately one. The standardization of y and the assumption of small PVE implies ρ ≈ 1. Consequently,

τ2 should be at least three times as large as the largest likely value of |βv|. Either marginal or multivariate linear

regression of our actual data gives all coefficients with absolute value less than 0.2, so we use τ1 = 0.01 and τ2 = 10

in our analyses.

MCMC sampling

We use Gibbs sampling to alternate between updating τ and updating the indicator variables. We use Metropolis-

Hastings for each update. We only update the indicator variables once for each update of τ , but it might be more

efficient to try multiple indicator variable jumps between each jump of τ .

To define the notation, the Metropolis-Hastings algorithm to generate samples with density proportional to f(·)

draws a proposal ũ from a jumping distribution Q(ũ|u(m)), where u(m)
is the previous sample. Next, compute

R =
Q
(
u(m)

∣∣ũ)
Q
(
ũ
∣∣u(m)

) f (ũ)

f (u(m))
. (1)

The new sample is ũ with probability min(R, 1) and is u(m)
otherwise. To avoid overflow, we actually compute logR

and then take its exponential. The remainder of this section gives the definition of the jumping distributions used.

The jumping distribution for τ̃ given τ is N (τ, (τ2 − τ1)2/16) but truncated to the interval (τ1, τ2). When |Z| = 0,

the marginal posterior density is independent of τ in (τ1, τ2). Hence, if all effect sizes are very small, the τ samples

may be essentially uniform. This is because the data do not enable learning the effect sizes and has nothing to do

with the MCMC algorithm or its convergence.

With one level of indicator variables, our proposal distribution Q(Z̃|Z) is nonzero only if Z̃ − Z = δev for δ ∈

{−1,+1} and one v, where ev is the vector with entry v equal to one and all others equal to zero. Furthermore, for

such Z and Z̃,

QZ(Z̃|Z) =


1
p

if |Z| = 0 or |Z| = p

π+

p−|Z| if δ = +1

1−π+

|Z| if δ = −1

, (2)
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where π+ is the probability of adding a variable to the model.

Next we define QW,Z(W̃, Z̃|W,Z) for learning Across Traits. The first step at each iteration is to choose δ from

{−1, 0,+1} with probabilities π∗−, π∗0 , and π∗+, respectively, with obvious modifications if, say, δ = −1 is not possible

because |W| = 0. Then W̃ −W = δev , where variant v is chosen uniformly from the possible candidates. The

proposal Z̃ will be the same as Z except for changes to Zv. If δ = −1, Z̃v = 0. If δ = 0, (2) gives Q∗Z(Z̃v|Zv) with q

replacing p. If δ = +1, then draw Z̃v based on the prior for (Z|W): first draw sv from the beta-binomial distribution

Pr(sv) =
B(Av + sv, Bv + q − sv)

B(Av, Bv)

(
q

sv

)
(3)

and then sample sv distinct entries uniformly from {1, . . . , q}. The overall jumping probability isQW,Z(W̃, Z̃|W,Z) =

Q0(Z̃|W̃,W,Z)QW (W̃|W), where

Q0(Z̃|W̃,W,Z) =


1 if δ = −1

Q∗Z(Z̃v|Zv) if δ = 0

B(Av+sv,Bv+q−sv)
B(Av,Bv)

if δ = +1

(4)

and the nonzero values of the mass function for (W̃|W) are

QW (W̃|W) =



π̂W if δ = 0

1
p

if |W| = 0

π∗
−

(1−π∗
+)p

if |W| = p and δ = −1

π∗
+

p−|W|
if δ = +1 and |W| 6= 0

π∗
−

|W|
if δ = −1 and |W| 6= p

. (5)

The value of π̂W is irrelevant because it will be the same for QW (W̃|W) and QW (W|W̃), which will consequently

cancel each other in (1). Furthermore, if δ = +1, then Q0(Z̃|W̃,W,Z) in the denominator in (1) will cancel the

leftover factor in fW,Z(W̃, Z̃) in the numerator; whereas for δ = −1 a factor in fW,Z(W,Z) cancels Q0(Z|W,W̃, Z̃).

The mass functions for the Across Sites prior are more complicated, but the fortunate cancellations still occur.

First, pg replaces p in (2) to give Q
∗
Z(Z̃g|Zg) when δ = 0, and (4) becomes

Q0(Z̃|G̃,G,Z) =



1 if δ = −1

Q∗Z(Z̃g|Zg) if δ = 0

1 if δ = +1 and pg = 1

B(Ag+sg,Bg+pg−sg)

B(Ag,Bg)
if δ = +1 and pg > 1

. (6)

LetG∗g = 1 ifGg = 1 and pg > 1; otherwise it is zero. Assuming that at least one group has pg > 1, the nonzero values
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of the mass function for (G̃|G) are

QG(G̃|G) =



π̂G if δ = 0

1
r

if |G| = 0

π∗
−

(1−π∗
+)r

if |G| = r and δ = −1

π∗
+

r−|G|
if δ = +1 and |G∗| 6= 0

π∗
−

|G|
if δ = −1, |G∗| 6= 0, and |G| 6= r

π∗
+

(1−π∗
0 )(r−|G|)

if δ = +1, |G∗| = 0 and |G| 6= 0

π∗
−

(1−π∗
0 )|G|

if δ = −1, |G∗| = 0, and |G| 6= r

. (7)

In our experiments, π+ = 0.5 for the Z proposal, while π∗0 = 0.5 and π∗− = π∗+ = 0.25 for theW or G proposal.

One chain starts with no variants in the model while another starts with all variants in the model. For the other two

chains, the variants are ranked by the absolute value of their correlation with yt, and the Jt most strongly correlated

have Zvt set to one. For the actual phenotypic data, Jt is 10 for one chain and 20 for the other. For the simulations,

one chain has Jt equal to the expected number of variants that are causal for trait t (as determined by the ω or ν used

to generate Zt), and the other chain has Jt double that. The burn-in interval was 10,000 iterations. For the simulated

data, 500,000 samples were then used to compute the averages, which took a couple of hours or less (typically much

less, especially when using only one trait at a time) running the chains sequentially. For the actual data, 10 times as

many samples were used for the averages; the chains were run in parallel and each MCMC sampling took 2–3 hr. We

always used the g-prior.

To assess convergence of the averages Zvt, we computed the average for each chain and then set ∆Zvt equal to

the difference between the maximum and minimum averages over the four chains. For each prior applied to each

set of 100 datasets, at least 95% of∆Zvt were less than 0.05. For the priors that incorporateW orG, at least 95% of

the analogous values of ∆W v or ∆Gg were less than 0.05 except that only 92% of ∆Gg satisfied this condition when

the Across Sites prior was applied to the traits simulated from the genotype data.

Evaluation of variable selection performance

The p-values for use in the BH procedure are from ordinary least squares, using either one variant at a time

(‘marginal’) or all variants simultaneously (‘full’). For each dataset, we apply BH to all traits simultaneously, which

means each BH test has pq hypotheses. For the performance curves, we choose a target FDR, say α, and apply BH

with that α to each dataset, computing the false discovery proportion (FDP) and of discoveries of true null hypotheses

for each dataset. We then average over the 100 datasets to obtain the FDR and power for one point in our plots. For

our performance curves, we used the FDR control targets {0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5}. Applying BH to the

traits separately gave essentially the same results for the simulated data; the effect of testing traits separately in the

actual data is discussed below.

The performance curves for the Lasso show the effect of varying the penalty parameter λ. We use the R function

glmnet with its default parameters (with family=’gaussian’) except without an intercept. This returns the fits
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for a set of λ values, but that set depends upon the input data. We compute the FDP and power at each value of

λ output for that trait. Using locpoly() in the R package KernSmooth, we perform local linear regression on all
these points for all datasets to approximate FDP and power as functions of λ. When instead choosing a specific λ by

cross-validation, the one-standard error rule gives the largest value of λ such that the cross-validation error is within

one standard error of the minimum error. In this case, the choice depends upon the randomly drawn cross-validation

bins, so for reproducibility we set the random seed to 1234 immediately before calling cv.glmnet.
To compute the performance curves for Bayesian selection of variants, we choose threshold ξ, select using the

rule Zvt > ξ for each dataset, compute the FDP and power for each dataset (same as for BH), and then average over

all 100 datasets to obtain one point in our plots. The values of ξ were 0.01`, 1− 0.01`, and 0.1` for ` = 1, . . . , 9.

Genotype and phenotype data

Variants in dbSNP version 137 are indicated with their rs names, while other variants are referred to as v c9 107548661,

say, specifying chromosome and position (from GRCh37). Starting with the genotype and phenotype data in Service

et al. (2014), we removed 786 individuals that were missing values for any of the principal components or the three

traits HDL, LDL, and log-transformed TG, leaving 5335 subjects. From the sequencing data that had passed quality

control, we removed two variants that were missing data for over 20% of the subjects as well as variants whose minor

allele occurred only once in the remaining subjects, leaving 1326 variants.

Additional filtering involved: (1) annotation, whose possible values were nonsense, missense, coding synonymous,

UTR 5′, UTR 3′, intron, and unknown; (2) PolyPhen2 predictions, whose possible values were probably damaging,

possibly damaging, benign, and unknown; (3) marginal regression p-values from Service et al. (2014); and (4) minor

allele frequency (MAF). If all subjects have exactly the same genotype (including missing values) for two or more

variants, we chose one of the variants using the ad hoc rules in Figure A, thereby eliminating 24 more variants. This

X was used in the exact computation of the posterior probabilities in individual loci discussed briefly at the end of

the Results section of the main paper.

For theMCMCmethod of estimating the posterior probabilities across all loci simultaneously, we further pruned to

obtain a set of variants with maximal correlation less than a specified bound Cmax, for reasons discussed in the main

paper. Figure B gives our algorithm to achieve this. The set U0 contains variants mentioned in Service et al. (2014)

and Bogdan et al. (in press). It was introduced so that we only dropped such variants when they were correlated with

each other, which simplified comparison with those papers. Furthermore, we manually chose which of two variants

to drop in some cases, as we now explain. Service et al. (2014) list 39 associations between an ‘Array SNP’ and a

trait. Of those, 16 had p-value less than 0.001 for their data and involved one of the three traits HDL, LDL or TG. Our

filtering process dropped one of these: rs10096633, which was an Array SNP for both HDL and TG, because it had

correlation 0.96 with rs328, which has a nonsense mutation. Among the new discoveries reported by Service et al.

(2014), rs651821 and rs2266788 in gene APOA5 are both associated with one of our traits, but we had to drop one of

them because their correlation is 0.95. We dropped the latter because it had a slightly stronger correlation with the

Array SNP rs12805061.

For almost all of our results, Cmax = 0.3. In this case, after filtering, we put rs12805061 and rs3135506 (which is a
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For each of the 23 sets of variants for which all subjects have the same genotype

If they are on the same chromosome and have the same annotation and PolyPhen2 prediction

Choose one arbitrarily

Else if exactly one variant has annotation ‘missense’ (none had ‘nonsense’)

Choose it

Else if no variant has annotation ‘missense’

Choose the one with annotation ‘coding synonymous’ (which meant discarding UTR 3′ variant or
variant without annotation)

Else (this case only occurred once)

Choose the one with PolyPhen2 prediction of ‘probably damaging’ (which meant discarding the variant

predicted to be benign)

Figure A: Pseudocode for eliminating duplicate variants.

For mode = 1,2

For c = 0.9, 0.8, . . . , Cmax
variants = var.filter(variants, mode, c)

Function var.filter(V,m, c0)
C is the absolute value of the correlation matrix of V , computed with the R option use="pairwise.complete.obs"
Consider the entries of Cij in decreasing order

If Cij ≤ c0, return V
V ∗ = {vi, vj}
If (m == 1)

If vi and vj are on different chromosomes, continue
Add to V ∗ all v` on same chromosome as vi and such that Ci` or Cj` is greater than c0

U0 contains any entries in V
∗
that we particularly want to keep (see text)

U1 = arg minvi∈V ∗ p-value—but only consider common variants

U2 contains variants in V
∗
with the ‘worst’ annotation, where the ordering is nonsense, then missense with

probably damaging, then missense with possibly damaging, then missense with any prediction

If U0 is not empty

U is the entry in U0 with the highest priority

Else if U1 is empty

U = U2

Else if U2 is empty

U = U1

Else

U = U1 ∩ U2

If U is empty
U = U1

If U is empty, U = V ∗

Stop in the following rules when one gives single variant u:
1. u ∈ U
2. u is variant in U with greatest MAF
3. Choose u from U arbitrarily

Drop u from V and C

Figure B: Pseudocode for filtering correlated variants.
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missense mutation predicted to be probably damaging) back into X, which then had 768 variants. After imputation,

all pairwise correlations in X are less than 0.3 except for two that are slightly greater. There are 628 variants with

MAF<0.01. To explore the effects of pruning the variants, we also considerX obtained by setting Cmax to 0.5, 0.7 and

0.9, resulting in 968, 1042 and 1124 variants, respectively.

Using the phenotype data (via the p-values) when filtering the variants could affect the accuracy of methods to

estimate or control FDR, but our previous experience has been that this does not occur in this situation.

Because substituting means for missing genotype values is not accepted practice, we comment on our use of this

approach. Since we discard the two variants with very many missing values, only 0.04% of the values in X (with

Cmax = 0.3) are missing, and only six variants are missing data for more than 1% of subjects—one variant is missing

data for 2.2% of subjects and the next worst is missing 1.3%. With Cmax = 0.9, only 0.08% of the values in X are

missing.

Each of the traits (or its logarithm) were regressed on age, age
2
, and indicator variables for sex, oral contraceptive

use, pregnancy status, and cohort. The five genetic principal components along with the intercept were regressed out

of bothX and the residualsY from this regression, and the columns of both were then standardized.

Simulation scenarios

For the datasets with orthogonal X, we set n = 5000, p = 50, q = 5, and X =
√

n−1
n/p

(Ip Ip · · · Ip)T so that

XTX = (n− 1)Ip. The columns ofX were not centered because that would destroy the orthogonality. In generating

phenotypic data, ρ = 1, τ ∼ Unif(0.045, 0.063), nonzero βvt ∼ N (0, τ2), and the distributions of the probabilities of

association were as follows:

Exchangeable variants one ω ∼ Beta(12, 48) was drawn independently for each trait.

Pleiotropy one ωW ∼ Beta(16, 55) was drawn for each dataset, Wv was drawn for each variant, and then νv ∼

Beta(48, 12) was drawn for each nonzeroWv.

Gene effect ωG ∼ Beta(16, 55) was drawn independently for each trait, Gg was drawn for each group of five consec-

utive variants, and then νg ∼ Beta(48, 12) was drawn for each nonzero Gg.

These choices ensured nτ2 � 1 so that signal was greater than noise, E[Zvt] ≈ 0.2, and |Zt| exceeded 15 only about

5–15% of the time. Very roughly

〈yt,yt〉 = 〈XZtβZt
,XZtβZt

〉+ 2〈XZtβZt
, εt〉+ 〈εt, εt〉 ≈ n〈βZt

,βZt
〉+ 〈εt, εt〉 ≈

n

ρ

(
τ2|Zt|+ 1

)
, (8)

so the generated traits also had variance close to one—between 0.94 and 1.17. There were 100 datasets, each with

q = 5 traits. When applying the Across Sites prior to any of these data sets, the groups are the same as when

generating the dataset with gene effect: the first group consists of the first five variants, the second group consists of

the next five variants, and so forth.

When simulating phenotypes from the actual genotype data, all rare (MAF<0.01) variants in the same gene with

missense or nonsense mutations are in the same group. Every other variant—common or rare—is in a group by
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Table A: Pairs of variants used in the pleiotropy-linkage experiment. The total number of variants in the datasets for

that pair is p.
variants (MAF) locus p correlation

rs11142 (0.29) rs464218 (0.45) CELSR2 128 0.70

rs567243 (0.49) rs560887 (0.31) G6PC2 62 -0.66

rs15285 (0.24) rs316 (0.12) LPL 25 0.63

rs12445698 (0.19) rs5801 (0.18) CETP 88 0.65

rs1801706 (0.21) rs5882 (0.39) CETP 88 0.66

itself. Then Z was generated randomly as follows:

• for each trait t, draw one group from amongst those with at least five variants and set Zvt = 1 for 3–4 rare

variants (number drawn uniformly) in that group

• draw 10 common variants and, for every trait t, set Zvt = 1 with probability 0.9

• draw 40 common variants and, for every trait t, set Zvt = 1 with probability 0.1

The rest of the process to generate each trait was the same as in the other simulations. Again, there were 100

datasets, each with q = 3 traits. There are 20 genes with at least five nonsynonymous rare variants; 16 of them have

fewer than 10 variants, but the others have 14–16 variants.

We also created another set of simulations along the lines of a traditional investigation of pleiotropy versus coin-

cident linkage, which we will call the pleiotropy-linkage experiment. We began with X created by setting Cmax = 0.7

in Figure B. We then took pairwise correlations between all variants with MAF >0.1. From the 10 pairs with absolute

correlation greater than 0.6 and in the same locus, we selected the five pairs listed in Table A. For each selected pair,

we simulated 40 datasets, each withX restricted to the one locus and with two traits. In half the datasets, one of the

variants is causal for both traits (pleiotropy, with each variant causal equally often) while the other datasets have one

variant causal for one phenotype and the other variant causal for the other phenotype (coincident linkage). No other

variants were causal. The rest of the process to generate each trait was the same as in the other simulations.

Results for illustrative example

For our Bayesian variable selection methods and several non-Bayesian methods applied to the datasets with

orthogonal X, Figure C compares the power for FDR less than 0.2. In this range, the power of the Across Sites prior

applied to the dataset with pleiotropy is only slightly less than that of the basic prior or the non-Bayesian methods.

Similarly, the loss of power of the Across Traits prior applied to the dataset exhibiting gene effects is slight when FDR

is less than 0.2.

We also investigated the effect of using other hyperparameters. Figure D shows the results when the prior for τ

was Unif(2, 5) but everything else was the same as for the results in Figure C. As suggested by the approximations

given in the main paper for the conditional posterior expected values of the indicator variables, increasing τ causes

Zvt to decrease; so fewer variables are selected for given ξ, decreasing both FDR and power. This also means that Zvt

underestimates the probability that variant v is causal for trait t, and B̂FDR greatly overestimates FDR. On the other

hand, using the prior τ ∼ Unif(0.045, 0.063) as was used in data generation gave essentially the same results as in
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Figure C: Power (top) and B̂FDR (bottom) as a function of empirical FDR in the illustrative example, limiting to FDR<0.2.
Each color indicates a different variable selection approach (see legend at the top). The different columns correspond

to different data generating mechanisms.
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Figure D: Power (top) and B̂FDR (bottom) as a function of empirical FDR in the illustrative example with prior τ ∼
Unif(2, 5). Each color indicates a different variable selection approach (see legend at the top). The different columns
correspond to different data generating mechanisms.

Figure C because the mean and variance of the τ samples were usually less than 0.1 when using the uninformative

prior τ ∼ Unif(0.01, 10).

Finally, we tried using different hyperparameters for the priors on the probabilities of causality but with everything

else the same as for the results in Figure C. For the dataset with exchangeable variants, we again used uninformative

priors for ωW and ωG but all other Beta priors had parameters A = 12 and B = 48. For the dataset with pleiotropy,

we changed only the hyperparameters for ωW and ν for the Across Traits prior, which now have the same values as

during data generation, and likewise for the dataset with gene effects and the Across Sites prior. Figure E shows that

this did not have much effect on the results. This suggests there is not much advantage to using tighter priors, even

if it were possible to guess the hyperparameters so accurately.

Results for generating phenotypes from actual genotype data

When applying the Across Sites prior to data with actual genotype data, the groups were the same as described

above for simulating phenotypes from this data. This mimicked the burden tests in Service et al. (2014).

To create the performance curves in the lower row of plots in Figure 5 in the main paper, the FDR for each ξ is

equal to that computed for the curves for all variants, but the power is computed separately for each type of variant.

10 SI L. Stell and C. Sabatti



FDR

0.
4

0.
6

0.
8

1.
0

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●●●●
●

●
●

●
●

●

●

●
●

●
●

●
●

●●●●●●●●●
●

●●●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●●●●●●●●
●

●
●

●

●
●

●
●

●
●●

●
●

●
●

●
●
●
●●●●●●●●●
●

●●●●●
●

●
●

●
●

●

●
●

●
●

●
●

●●●●●●●●●
●

Exchangeable Variants

po
w

er

0.
4

0.
6

0.
8

1.
0

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●●●
●
●●●

●●●

●

●

●
●

●
●

●
●●●●●●●●●
●

●●●●●●●●●●
●●●

●

●

●

●

●●●●●●●●
●
●

●
●
●
●
●●●●●●

●

●

●
●

●
●

●
●●●●●●●●●

●

●●●●●●●●●●●
●

●

●

●

●

●

●●●●●●●●
●
●

Pleiotropy
po

w
er

0.
4

0.
6

0.
8

1.
0

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●●
●

●
●●●●●●

●

●

●
●

●
●

●
●●●●●●●●●

●

●●
●
●
●
●●●●●

●

●

●
●

●
●

●
●●●●●●●●●

●

●●●●●●●●●●
●●

●

●

●

●

●

●●●●●●●●●
●

●●●●●●●●●●

●

●

●

●
●

●
●

●●●●●●●●●
●

Gene Effect

po
w

er

0.
0

0.
2

0.
4

0.
6

0.
8

0.0 0.2 0.4 0.6 0.8

●●●●●
●

●
●

●
●

●

●

●
●

●●●●●●●●●●●●●

●●●●
●

●
●

●
●

●

●

●

●
●

●●●●●●●●●●●●●

●●●
●

●
●

●
●

●
●

●

●
●

●
●●●●●●●●●●●●●

●●●●●
●

●
●

●
●

●

●

●
●

●
●●●●●●●●●●●●

Exchangeable Variants

B
F

D
R

0.
0

0.
2

0.
4

0.
6

0.
8

0.0 0.2 0.4 0.6 0.8

●●●●●●●●●●

●

●

●

●
●

●
●●●●●●●●●●●

●

●

●
●

●
●●●●●

●
●●

●

●
●

●●●●●●●●●●●

●●●●●●●●●●

●

●

●

●

●
●

●●●●●●●●●●●

●●●●●●●●●●

●

●

●

●

●
●

●
●●●●●●●●●●

Pleiotropy

B
F

D
R

0.
0

0.
2

0.
4

0.
6

0.
8

0.0 0.2 0.4 0.6 0.8

●●●●●●●●●●

●

●

●

●
●

●
●●●●●●●●●●●

●●●
●
●●●●●●

●

●

●

●

●
●

●●●●●●●●●●●

●

●

●
●

●
●●●●●

●
●

●
●

●
●

●●●●●●●●●●●

●●●●●●●●●●

●

●

●

●

●

●
●

●●●●●●●●●●

Gene Effect

B
F

D
R

BH marginal
BH full

Lasso
basic

Across Traits
Across Sites

Unadjusted●

● ●

●

●

●

Figure E: Power (top) and B̂FDR (bottom) as a function of empirical FDR in the illustrative example with tighter priors

for the probability of causality in some cases. Each color indicates a different variable selection approach (see legend

at the top). The different columns correspond to different data generating mechanisms.
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Table B: FDR and power for selected values of ξ when applying Bayesian methods to simulated phenotypes with actual
genotype data.

FDR power FDR power FDR power

ξ = 0.5 ξ = 0.7 ξ = 0.8
basic 0.100 0.41 0.039 0.37 0.021 0.35

Across Traits 0.133 0.51 0.057 0.45 0.031 0.42

Across Sites 0.143 0.46 0.054 0.41 0.029 0.38
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Figure F: Power (top) and B̂FDR (bottom) as a function of empirical FDR in the experiment to check whether Across
Traits can distinguish between pleiotropy (right column) and traits with different correlated causal variants (left col-
umn). Each color indicates a different variable selection approach (see legend at the top).

Table B shows the FDR and power when using specified values of ξ to select variants after applying the Bayesian priors

to the same set of simulations. The results when ξ = 0.7 are essentially the same as the results in the paper from

controlling B̂FDR ≤ 0.05.

Next we discuss the results of the pleiotropy-linkage experiment. Over all the datasets, at least 95% of∆Zvt were

less than 0.05 after 500,000 MCMC iterations, and when using the Across Traits prior at least 90% of ∆W v were.

Figure F shows the FDR and power for the basic and Across Traits priors as well as BH applied to both sets of p-values.

In the case of separate causal variants, the Across Traits prior may have a slight loss of power when FDR is less than

0.5 but is still much better than BH with p-values from the full model. In the case of pleiotropic traits, however, the

Across Traits prior clearly has greater power per FDR than the other methods, which have roughly the same power

regardless of whether the traits have the same or different causal variants. For the variants other than the pair

listed in Table A, 8% of the time the difference in Zvt between the two priors is less than 0.05. When the traits are
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Table C: Comparison of selection results for HDL.

BH BH Across Acrossvariant position locus MAF full marg Lasso SLOPE basic Trait Sites PLOSv_c9_107548661 107548661 ABCA1 0.0002 x x x x x x xv_c9_107555091 107555091 ABCA1 0.0005 x x x x xv_c9_107555452 107555452 ABCA1 0.0002 x x x x x x x xrs76881554 107578620 ABCA1 0.0043 xrs2066715 107588033 ABCA1 0.0551 x x x x x x xrs2066718 107589255 ABCA1 0.0148 x x x x x x xrs145183203 107646756 ABCA1 0.0029 xrs2575875 107662494 ABCA1 0.2999 x x x x x x xv_c9_107665945 107665945 ABCA1 0.0002 xrs12805061 116553025 APOA1 0.2718 x x xrs651821 116662579 APOA1 0.0845 x x x x x xrs646776 109818530 CELSR2 0.2171 xrs34216426 56913088 CETP 0.0002 x x x xrs5801 56913513 CETP 0.1818 x x x x xrs5802 56919235 CETP 0.1194 xrs3764261 56993324 CETP 0.2719 x x x x x x x xrs5883 57007353 CETP 0.0401 x x x x x x xrs5880 57015091 CETP 0.0242 x x x x x x x xrs2303790 57017292 CETP 0.0006 x x x x x xv_c16_57095439 57095439 CETP 0.0002 x xrs509360 61548559 FADS1 0.3364 xrs174546 61569830 FADS1 0.4212 xrs611229 230324067 GALNT2 0.4077 x x x x x x xrs1532085 58683366 LIPC 0.4431 x x x x x x x xrs261336 58742418 LIPC 0.2302 x x x x x x xrs28933094 58855748 LIPC 0.0150 x x x x x x x xrs268 19813529 LPL 0.0180 x x x x x x x xrs328 19819724 LPL 0.0882 x x x x x x x xrs10096633 19830921 LPL 0.0943 xv_c11_47400044 47400044 MADD 0.0005 x x x x x xrs7946766 48004369 MADD 0.1965 x x x x x x xrs12314392 110010866 MVK 0.4033 x x

pleiotropic, the differences are similar for the non-causal variant; but for the causal variant, Zvt for the non-causal

variant is sometimes greater than 0.7 with the Across Traits prior even when it is less than 0.2 with the basic prior,

consequently increasing power considerably. When the traits are not pleiotropic, Across Traitsmay inflate Zvt for the

wrong variant of the pair, thereby increasing FDR slightly for given ξ, but very rarely increases Zvt by much for the

causal variant; so power is not increased.

Results for the case study

Figures G and H illustrate the model selection results for LDL and TG, respectively, which are interpreted in the

same way as the figure for HDL in the main paper. Tables C–E list the methods that select each variant for association

with HDL, LDL, and TG, respectively, for variants selected by at least one method. An x in a column indicates that
the method selects that variant for that trait. The column labeled ‘position’ gives the position (from GRCh37) of the

variant on its chromosome.

For LDL and TG, no method identifies any rare variant, and the Across Sites selections always agree with the

L. Stell and C. Sabatti 13 SI
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Figure G: Estimated variant effects on LDL. Each panel corresponds to a locus, the x-axis indicate the variant’s genomic
position and the y-axis its regression coefficient (with the exception of BH marginal, only nonzero coefficients are
represented). The color code of the panel titles indicates the presence/absence of prior evidence of association

between the locus and LDL (turquoise/orange, respectively). Model selectionmethods are distinguished using plotting

symbols, as indicated in the legend at the top.
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Figure H: Estimated variant effects on TG. Each panel corresponds to a locus, the x-axis indicate the variant’s genomic
position and the y-axis its regression coefficient (with the exception of BH marginal, only nonzero coefficients are
represented). The color code of the panel titles indicates the presence/absence of prior evidence of association

between the locus and TG (turquoise/orange, respectively). Model selection methods are distinguished using plotting

symbols, as indicated in the legend at the top.
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Table D: Comparison of selection results for LDL.

BH BH Across Acrossvariant position locus MAF full marg Lasso SLOPE basic Trait Sites PLOSrs6756629 44065090 ABCG8 0.0877 x x x x x x xrs145756111 44102302 ABCG8 0.0115 x xrs651821 116662579 APOA1 0.0845 x x x x xrs11216267 116952392 APOA1 0.4578 x x x x x xrs646776 109818530 CELSR2 0.2171 x x x x x x xrs12445698 56928216 CETP 0.1887 xrs3764261 56993324 CETP 0.2719 xrs174546 61569830 FADS1 0.4212 x x x x x x xrs611229 230324067 GALNT2 0.4077 xrs12610185 19721722 NCAN 0.0617 xrs2304130 19789528 NCAN 0.0610 x

Table E: Comparison of selection results for TG.

BH BH Across Acrossvariant position locus MAF full marg Lasso SLOPE basic Trait Sites PLOSrs12805061 116553025 APOA1 0.2718 x xrs2266788 116660686 APOA1 0.0891 xrs3135506 116662407 APOA1 0.0597 x x x x x x x xrs651821 116662579 APOA1 0.0845 x x x x x x xrs11216267 116952392 APOA1 0.4578 xrs1561140 56864398 CETP 0.4762 xrs6591657 61434532 FADS1 0.1506 xrs174546 61569830 FADS1 0.4212 xrs4846930 230346829 GALNT2 0.4050 xrs1260326 27730940 GCKR 0.3566 x x x x x x x xrs261336 58742418 LIPC 0.2302 x x x x x xrs28933094 58855748 LIPC 0.0150 x x x x x x xrs268 19813529 LPL 0.0180 x x x x x xrs328 19819724 LPL 0.0882 x x x x x x x xrs10096633 19830921 LPL 0.0943 xrs2304130 19789528 NCAN 0.0610 x x x x x x

majority of approaches. The Across Traits approach selects a few variants that are noteworthy. For LDL, it selects a

variant in each of three loci—CETP, GALNT2, and NCAN—where no other method identifies any signal. In each case,

the variant that the Across Traits approach selects has a strong association with either HDL or TG. Two of these three

loci have previous evidence of association with LDL. For TG, the Across Traits approach selects a variant in FADS1,

where no other method selects any. This is the same variant that caught our attention when only the Across Traits

approach selected it for HDL. Again, this locus has previous evidence of association with TG.

To conclude, we note that applying BH to each phenotype separately gives different results in some cases. When

applied to the p-values from the full model for HDL only, BH selects four variants that it does not select when applied

to all traits simultaneously: rs2066715 in ABCA1, rs651821 in APOA1, rs34216426 in CETP, and rs611229 in GALNT2.

All of these are also selected for HDL by most other methods. When applied to marginal p-values for HDL only,

BH selects three variants that it does not select when applied to all traits simultaneously: rs62136410 in ABCG8,
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rs2303790 in CETP, and rs11988 in MADD. Most methods select rs2303790 for HDL, but no other methods select the

other two of these; and ABCG8 does not even have prior evidence of association to HDL. The final difference arising

from applying BH to traits separately is that it does not select rs145756111 in ABCG8 for association with LDL when

using marginal p-values, which brings it into agreement with the other methods on this variant.

Effect of pruning variants

For the case study, we pruned the set of variants so that the maximum of the absolute values of the pairwise

correlations is 0.3 in order to facilitate comparison of the selection results by different methods. We will now describe

some experiments we performed with the actual data to investigate the effects of this pruning. First, we compare

our selection results presented in the main text and above to the results when using X obtained by setting Cmax in

Figure B equal to 0.5, 0.7 and 0.9. For clarity, let X(3)
, X(5)

, X(7)
and X(9)

denote the different versions of X. After

5,000,000 MCMC iterations for each of four chains, over 99% of ∆Zvt and of ∆W v or ∆Gg are less than 0.05 for all

levels of pruning, so convergence still seems acceptable.

The values of Zvt usually do not change very much for different versions of X; and when they do, they almost

always decrease. More precisely, much less than 1% of the values of Zvt increase by more than 0.05. For given prior

and trait, the percentage of values that change by more than 0.05 is less than 3% between X(3)
and X(5)

and 1%

betweenX(5)
andX(7)

and betweenX(7)
andX(9)

.

Table F compares the total number of variants selected by our Bayesian priors for each of the pruning levels; they

still did not select any variants that are in a locus (CRY2, G6PC2, MTNR1B, and PANK1) lacking any prior evidence

of association to lipid traits. The table also shows the number of variants selected by applying BH to the p-values

from X(3)
and X(9)

. For a more detailed look at the differences, Table G lists all cases in which a variant would be

selected for one version ofX but not another. These differences are explained in detail at the end of this section, but

for now we categorize them as follows: (1) one variant (rs2066715) is replaced in the selections by another strongly

correlated variant (rs2853579) when it enters X(7)
; (2) two rare variants are not in X(3)

but are selected (or close to

the threshold) for the other versions ofX, at least in part because one of the 2–3 subjects with the minor allele has an

extreme value for the trait; (3) two variants whose Zvt is barely above the selection threshold for some trait and prior

withX(3)
but then decreases by as much as 0.15 as correlated variants enterX with Zvt < 0.1; and (4) three variants

that are selected forX(3)
but their Zvt decreases by as much as 0.5 as correlated variants enterX with Zvt > 0.15.

To summarize, the different versions ofX considered here do not have much effect on the selections made when

computing Zvt from MCMC across all loci simultaneously. Very few of the variants that were left out of X
(3)
are

selected when they are included in a different version of X. In fact, adding correlated variants to X is more likely to

result in a slight reduction in the number of selected variants. In contrast, applying BH to the p-values has a much

greater effect on the selections betweenX(3)
andX(5)

, with marginal p-values resulting in many more selections and

p-values from the full model resulting in many fewer selections.

Variants with sufficiently strong correlations could, however, lead to convergence problems in our MCMC. To allow

arbitrary correlations, we also compute the posterior distribution exactly instead of using MCMC. To achieve this, we

make the following simplifications as in Servin and Stephens (2007); Hormozdiari et al. (2014); Chen et al. (2015):
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Table F: Comparison of selection results from BH and Bayesian methods applied to different levels of variant pruning.

The columns labeled R give the number of variants selected, and the columns labeled B̂FDR report the Bayesian FDR.
The selection threshold for the Bayesian methods was ξ = 0.7. For BH, α = 0.05.

HDL LDL TG

prior R B̂FDR R B̂FDR R B̂FDR

maximum correlation 0.3

basic 21 0.046 4 0.012 8 0.011

Across Traits 19 0.084 8 0.059 9 0.029

Across Sites 25 0.064 5 0.063 8 0.007

BH full 13 3 5

BH marginal 22 6 10

maximum correlation 0.5

basic 21 0.068 4 0.014 9 0.024

Across Traits 18 0.091 8 0.060 10 0.044

Across Sites 25 0.076 4 0.012 9 0.020

maximum correlation 0.7

basic 20 0.067 4 0.014 9 0.033

Across Traits 17 0.081 8 0.057 9 0.022

Across Sites 24 0.071 4 0.013 9 0.029

maximum correlation 0.9

basic 19 0.073 4 0.038 9 0.050

Across Traits 15 0.071 8 0.090 9 0.048

Across Sites 22 0.071 4 0.037 9 0.045

BH full 6 2 4

BH marginal 32 13 15

Table G: Cases in which a variant would be selected for one version of X but not another. Entries show Zvt; “NA”
means that the variant is not in that version of X, while blanks mean that the variant would not be selected for any
X.

none Across Traits Across Sites
max correlation 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

HDL

rs2066715 0.92 0.89 0.23 0.27 0.78 0.75 0.17 0.22 0.92 0.89 0.13 0.13

rs2853579 NA NA 0.75 0.70 NA NA 0.75 0.69 NA NA 0.88 0.87

rs140547417 NA 0.73 0.74 0.66

rs2575875 0.92 0.73 0.40 0.40 0.79 0.66 0.39 0.41 0.94 0.82 0.46 0.47

rs12314392 0.73 0.54 0.53 0.19

rs7946766 0.99 0.97 0.97 0.56 0.98 0.97 0.97 0.52 1.00 0.98 0.98 0.65

rs174546 0.72 0.70 0.62 0.58

LDL

rs651821 always >0.99 0.73 0.66 0.63 0.64

TG

v c9 107544165 NA 0.86 0.85 0.83 NA 0.83 0.82 0.79 NA 0.87 0.87 0.87

rs174546 0.74 0.74 0.68 0.64
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• Specify τ . We choose τ = 0.05 because the mean of the sampled values of τ in the MCMC was always between

0.04 and 0.06 for all versions ofX with the actual phenotype data.

• Assume the posterior density is zero if |Z| ≥ K, where K is typically no more than six but may be as small as

one.

Even requiring |Z| ≤ 4, however, would still leave far too many subsets if we were to consider all 1302 variants

simultaneously, so we only consider one locus at a time. In fact, we consider only two loci: ABCA1 and CETP, both

with trait HDL, because these show stronger evidence of influencing the trait via multiple variants. The locus ABCA1

has 58 variants, so we compute the posterior for |Z| ≤ 6; whereas the locus CETP has 98 variants, so we require

|Z| ≤ 5. Finally, we only tried this with our basic model.

In addition to estimating the marginal posterior expected values as E[Zv|y] ≈
∑

Z:Zv=1 fZ,τ (Z, τ = 0.05|y), we

also consider two other approaches to selection. One is simply to choose Z with the largest value of fZ,τ (Z, τ =

0.05|y). The other is to use the confidence set proposed by Hormozdiari et al. (2014), described as follows. The

probability that a set S of variants contains all causal variants is P(S) ≡
∑

Z:Zv=0 for v∈S fZ,τ (Z, τ = 0.05|y). Ideally,

one would choose the smallest S such that P(S) is above a specified threshold, but this is not computationally

feasible. Instead, we use the stepwise selection process in Hormozdiari et al. (2014). At each step, the variant that

increases P(S) the most is added to S. (Hormozdiari et al. 2014) use the stopping criterion P(S) ≥ 0.95, but this

results in a very large number of selections for our data when the maximum value of |Z| is four or greater. Instead,

we use threshold 0.7.

The 70%-confidence set contains all the variants selected by any of the Bayesian methods, so Table H lists the

variants in the order in which they enter the 70%-confidence set. The selections from BH applied to the p-values

for only the one locus and the HDL are also shown, although BH applied to the marginal p-values for locus CETP

selects nine additional variants that are not shown. Chen et al. (2015) give a good argument for preferring selections

based on marginal posterior expectations over the confidence set if there is more than one causal variant, so we do

not discuss the confidence sets further here. BH applied to marginal p-values is probably also selecting too many

variants. The other methods highlight many of the same variants. Overall, for 90% of the variants in X(9)
, the value

of Zvt computed by MCMC is within 0.01 of the exact posterior marginals without pruning, and the latter value is

almost always less than the former, which again suggests that pruning did not result in many missed discoveries.

One of the largest differences between these two values is for rs2853579, which—as noted above in connection with

Table G—is strongly correlated with rs2066715. Furthermore, for locus ABCA1, the set Z of variants with the largest

posterior density is equal to the variants selected by using Zvt withX
(3)
. For the locus CETP, these two sets cannot be

the same because Zvt selects six variants, while we had to assume |Z| ≤ 5 in order to compute the exact distribution;

additionally, the mode of the posterior density includes one very rare variant (MAF 0.0002) that is inX(3)
but that the

basic prior does not select.

For completeness, the detailed descriptions of the differences in Table G are as follows:

rs2066715 and rs2853579, which are both in ABCA1, are in the table for all three priors applied to response HDL.
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Their correlation is just below 0.7, and Zvt for the former decreases drastically when the latter is in X and is

selected instead—although Zvt for rs2853579 falls just below the selection threshold with Across Traits applied

toX(9)
. The former is a missense variant predicted to be benign; whereas the latter is a synonymous variant.

rs140547417 is not in X(3)
, has Zvt barely above the selection threshold for X

(5)
and X(7)

when Across Sites is

applied to HDL, then drops slightly below the threshold for X(9)
. Its minor allele occurs in only three subjects,

one of which has the 32nd largest value of HDL and another is in the 15th-percentile. Furthermore, this variant

is in gene CETP, and its group includes a variant with Zvt ≈ 0.8 and one with Zvt ≈ 0.3.

rs2575875 is strongly correlated with a new variant inX(5)
(withZvt = 0.24) and with another new variant inX(7)

—at

which point all three variants have Zvt in 0.3–0.4.

rs12314392 has Zvt barely above the selection threshold when Across Sites is applied toX(3)
. It has correlation 0.3–

0.4 with three variants that are in X(5)
. Two of these variants have Zvt < 0.05, while the other has Zvt = 0.2;

this is easily enough for rs12314392 to drop below the selection threshold. None of the new variants in X(7)

are strongly correlated with rs12314392, but four of the new variants in X(9)
have correlations 0.43–0.84 with

rs12314392. Three of these have Zvt < 0.1; but the one with correlation 0.75 has Zvt = 0.60, causing Zvt for

rs12314392 to decrease even more.

rs7946766 has Zvt > 0.96 for HDL with all three priors until several variants strongly correlated with it are added to

X(9)
, including two that have Zvt ≈ 0.3.

v c9 107544165 has minor allele that occurs in only two subjects, one of which has the 2nd largest value of HDL and

the other is in the 14th-percentile. It is in the UTR 3′ of ABCA1, which means it is in a group by itself in the Across

Sites prior.

rs174546 and rs651821 both have Zvt between 0.7 and 0.75 for X(3)
, but it decreases as more variables are added

toX until it is between 0.58 and 0.65 forX(9)
; in other words, these variants are near the threshold for selection

for all versions ofX.
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